|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "LDL_Cholesterol_Levels" |
|
cohort = "GSE28893" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/LDL_Cholesterol_Levels" |
|
in_cohort_dir = "../DATA/GEO/LDL_Cholesterol_Levels/GSE28893" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/GSE28893.csv" |
|
out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/GSE28893.csv" |
|
out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/GSE28893.csv" |
|
json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json" |
|
|
|
|
|
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_path) |
|
|
|
|
|
sample_chars = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nClinical Features Overview:") |
|
print(json.dumps(sample_chars, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = None |
|
|
|
|
|
age_row = 1 |
|
|
|
|
|
gender_row = 2 |
|
|
|
|
|
def convert_trait(x): |
|
|
|
return None |
|
|
|
def convert_age(x): |
|
try: |
|
|
|
age = int(x.split(': ')[1]) |
|
return age |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
try: |
|
|
|
gender = x.split(': ')[1] |
|
if gender == 'F': |
|
return 0 |
|
elif gender == 'M': |
|
return 1 |
|
return None |
|
except: |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=False |
|
) |
|
|
|
|
|
|
|
genetic_data = get_genetic_data(matrix_path) |
|
|
|
|
|
print("First few rows of the raw data:") |
|
print(genetic_data.head()) |
|
|
|
print("\nShape of the data:") |
|
print(genetic_data.shape) |
|
|
|
|
|
print("\nFirst 20 probe/gene identifiers:") |
|
print(list(genetic_data.index)[:20]) |
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_path) |
|
|
|
|
|
print("Gene annotation data preview:") |
|
print(preview_df(gene_metadata)) |
|
|
|
|
|
|
|
|
|
mapping_data = get_gene_mapping(gene_metadata, "ID", "Symbol") |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
|
|
print("Gene expression data preview:") |
|
print(gene_data.head()) |
|
print("\nShape after mapping:", gene_data.shape) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
|
|
|
|
note = "The dataset contains gene expression data but lacks LDL cholesterol level measurements" |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False |
|
) |