|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Liver_Cancer" |
|
cohort = "GSE164760" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Liver_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE164760" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE164760.csv" |
|
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE164760.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE164760.csv" |
|
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print("-" * 80) |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
print("-" * 80) |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 0 |
|
|
|
age_row = None |
|
|
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> Optional[int]: |
|
"""Convert tissue type to binary trait value. |
|
1: NASH-HCC tumor (case) |
|
0: NASH liver, non-tumoral NASH liver (control) |
|
None: Healthy liver, cirrhotic liver (excluded) |
|
""" |
|
if not value or ':' not in value: |
|
return None |
|
tissue = value.split(':', 1)[1].strip().lower() |
|
if 'nash-hcc tumor' in tissue: |
|
return 1 |
|
elif 'nash liver' in tissue: |
|
return 0 |
|
else: |
|
return None |
|
|
|
def convert_age(value: str) -> Optional[float]: |
|
return None |
|
|
|
def convert_gender(value: str) -> Optional[int]: |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_data_processed = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait |
|
) |
|
|
|
|
|
print("Preview of processed clinical data:") |
|
print(preview_df(clinical_data_processed)) |
|
|
|
|
|
clinical_data_processed.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 gene/probe identifiers:") |
|
print(genetic_data.index[:20]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
print("Column names and first few values in gene annotation data:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
prob_col = 'ID' |
|
gene_col = 'Gene Symbol' |
|
|
|
|
|
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_data_processed, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Expression array data of NASH-HCC patients and NASH controls. No age/gender information available." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |