|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Liver_Cancer" |
|
cohort = "GSE212047" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Liver_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE212047" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE212047.csv" |
|
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE212047.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE212047.csv" |
|
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
clinical_features = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nClinical Features and Sample Values:") |
|
print(json.dumps(clinical_features, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = None |
|
age_row = None |
|
gender_row = None |
|
|
|
def convert_trait(x): |
|
return None |
|
|
|
def convert_age(x): |
|
return None |
|
|
|
def convert_gender(x): |
|
return None |
|
|
|
|
|
|
|
is_trait_available = False if trait_row is None else True |
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
|
|
|
|
genetic_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("DataFrame info:") |
|
print(genetic_data.info()) |
|
print("\nDataFrame dimensions:", genetic_data.shape) |
|
|
|
|
|
print("\nFirst few rows and columns of data:") |
|
print(genetic_data.head().iloc[:, :5]) |
|
|
|
|
|
print("\nFirst 20 gene/probe IDs:") |
|
print(genetic_data.index[:20].tolist()) |
|
|
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
def extract_gene_symbol(assignment): |
|
if pd.isna(assignment) or assignment == '---': |
|
return None |
|
|
|
parts = assignment.split('//') |
|
if len(parts) >= 2: |
|
return parts[1].strip() |
|
return None |
|
|
|
|
|
mapping_df = pd.DataFrame({ |
|
'ID': gene_annotation['ID'], |
|
'Gene': gene_annotation['gene_assignment'].apply(extract_gene_symbol) |
|
}) |
|
|
|
|
|
print("Gene Mapping Preview:") |
|
preview = preview_df(mapping_df) |
|
print(json.dumps(preview, indent=2)) |
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
print("Gene Expression Data after Mapping:") |
|
print(f"Number of genes: {len(gene_data)}") |
|
print("\nFirst few rows and columns:") |
|
print(gene_data.head().iloc[:, :5]) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
empty_df = pd.DataFrame(columns=['trait']) |
|
|
|
|
|
is_biased = True |
|
note = "This is a mouse study without usable trait data for human disease analysis." |
|
|
|
validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=is_biased, |
|
df=empty_df, |
|
note=note |
|
) |