Liu-Hy's picture
Add files using upload-large-folder tool
61e25af verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Obesity"
cohort = "GSE158237"
# Input paths
in_trait_dir = "../DATA/GEO/Obesity"
in_cohort_dir = "../DATA/GEO/Obesity/GSE158237"
# Output paths
out_data_file = "./output/preprocess/3/Obesity/GSE158237.csv"
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE158237.csv"
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE158237.csv"
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on series title and summary mentioning RNA extraction and transcriptomics,
# this dataset likely contains gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 10 # BMI data in Feature 10
age_row = 1 # Age data in Feature 1
gender_row = 2 # Sex data in Feature 2
# 2.2 Data Type Conversion Functions
def convert_trait(value):
# Convert BMI value to binary (0 for non-obese, 1 for obese)
if pd.isna(value):
return None
try:
bmi = float(value.split(': ')[1])
return 1 if bmi >= 30 else 0 # Standard obesity threshold
except:
return None
def convert_age(value):
# Convert age to continuous value
if pd.isna(value):
return None
try:
age = float(value.split(': ')[1])
return age
except:
return None
def convert_gender(value):
# Convert sex to binary (0 for female, 1 for male)
if pd.isna(value):
return None
try:
sex = int(value.split(': ')[1])
return 1 if sex == 1 else 0 # Assuming Sex:1 is male and Sex:2 is female
except:
return None
# 3. Save Metadata
# Conduct initial filtering
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None))
# 4. Clinical Feature Extraction
# Since trait_row is not None, extract clinical features
if trait_row is not None:
clinical_features = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of clinical features:", preview)
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# From the output, we can see the identifiers appear to be numeric probe IDs (e.g. 16657436)
# rather than human gene symbols (which would look like BRCA1, TP53 etc)
# These need to be mapped to gene symbols for biological interpretation
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
# Use different prefix filters to capture platform annotation with gene symbols
gene_annotation = filter_content_by_prefix(soft_file,
prefixes_a=['!Platform_table_begin'],
unselect=False,
source_type='file',
return_df_a=True)[0]
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation columns:", list(gene_annotation.columns))
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
# Print non-null values for each column to help identify useful columns
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print example rows showing ID and gene symbol columns
print("\nExample rows with ID and gene symbol information:")
print(gene_annotation[['ID', 'Symbol']].head(10).to_string())
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# First examine the raw SOFT file content to locate platform annotation section
import gzip
platform_start = False
header_line = None
first_data_line = None
with gzip.open(soft_file, 'rt') as f:
for line in f:
if '!Platform_table_begin' in line:
platform_start = True
# Get the next two lines (header and first data)
header_line = next(f).strip()
first_data_line = next(f).strip()
break
print("Header line found:")
print(header_line)
print("\nFirst data line example:")
print(first_data_line)
# Extract platform annotation data
from io import StringIO
platform_data = []
platform_start = False
with gzip.open(soft_file, 'rt') as f:
for line in f:
if '!Platform_table_begin' in line:
platform_start = True
continue
elif '!Platform_table_end' in line:
break
elif platform_start:
platform_data.append(line.strip())
# Convert to dataframe
gene_annotation = pd.read_csv(StringIO('\n'.join(platform_data)), sep='\t')
# Preview gene annotation data
print("\nGene annotation shape:", gene_annotation.shape)
print("\nGene annotation columns:", gene_annotation.columns.tolist())
print("\nFirst few rows preview:")
print(gene_annotation.head().to_string())
# Look for columns that might contain gene symbols
symbol_candidates = [col for col in gene_annotation.columns
if any(term in col.lower()
for term in ['gene', 'symbol', 'entrez', 'refseq'])]
print("\nPotential gene symbol columns:", symbol_candidates)
from io import StringIO
# First inspect the SOFT file content to understand structure
import gzip
print("Examining SOFT file content...")
with gzip.open(soft_file, 'rt') as f:
for line in f:
# Look for platform annotation sections that might contain gene info
if "!Platform_table_begin" in line:
header = next(f).strip()
print("\nFound platform table with header:")
print(header)
print("\nFirst few data lines:")
for _ in range(5):
print(next(f).strip())
break
# Try extracting gene annotation using different prefix patterns
gene_metadata_str = filter_content_by_prefix(soft_file,
prefixes_a=['^', '#'],
unselect=True,
source_type='file',
return_df_a=False)[0]
# Process the metadata string to find the section with gene annotations
annotation_lines = []
capture = False
for line in gene_metadata_str.split('\n'):
if 'Reporter Database Entry [gene symbol]' in line:
# Found the start of gene symbol annotations
capture = True
continue
if capture and line.strip():
if line.startswith('!'): # End of section
break
annotation_lines.append(line)
if annotation_lines:
# Convert captured lines to DataFrame
gene_metadata = pd.read_csv(StringIO('\n'.join(annotation_lines)), sep='\t')
print("\nAvailable columns in gene annotation data:")
print(gene_metadata.columns.tolist())
# Create mapping dataframe using ID and gene symbol columns
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Print shape information to confirm successful mapping
print(f"\nShape of mapped gene expression data: {gene_data.shape}")
print("\nFirst few gene symbols:")
print(gene_data.index[:10])
else:
print("\nNo gene symbol annotation section found in the SOFT file.")
# Load the clinical data that was successfully saved earlier
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
# Create minimal df with just clinical features for validation
minimal_df = selected_clinical.copy()
# Check for biased features with just clinical data
is_biased, minimal_df = judge_and_remove_biased_features(minimal_df, trait)
# Save validation info with minimal df
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=False, # Gene mapping failed
is_trait_available=True,
is_biased=is_biased,
df=minimal_df,
note="Failed to extract gene symbol annotations from SOFT file"
)
# Do not save linked data since processing was unsuccessful