|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Obesity" |
|
cohort = "GSE281144" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Obesity" |
|
in_cohort_dir = "../DATA/GEO/Obesity/GSE281144" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Obesity/GSE281144.csv" |
|
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE281144.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE281144.csv" |
|
json_path = "./output/preprocess/3/Obesity/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 1 |
|
|
|
age_row = None |
|
|
|
gender_row = 0 |
|
|
|
|
|
def convert_trait(value: str) -> Optional[int]: |
|
"""Convert diabetes status to binary (0: Control, 1: Diabetic)""" |
|
if not isinstance(value, str): |
|
return None |
|
value = value.lower() |
|
if 'diabetic' in value: |
|
return 1 |
|
elif 'control' in value: |
|
return 0 |
|
return None |
|
|
|
def convert_gender(value: str) -> Optional[int]: |
|
"""Convert gender to binary (0: Female, 1: Male)""" |
|
if not isinstance(value, str): |
|
return None |
|
value = value.lower() |
|
if ':' in value: |
|
value = value.split(':')[1].strip() |
|
if 'female' in value: |
|
return 0 |
|
elif 'male' in value: |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(clinical_features) |
|
print("Preview of processed clinical data:", preview) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
with gzip.open(soft_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for line in f: |
|
if line.startswith('!platform_table_begin'): |
|
next(f) |
|
for data_line in f: |
|
if data_line.startswith('!platform_table_end'): |
|
break |
|
lines.append(data_line) |
|
break |
|
|
|
|
|
gene_annotation = pd.read_csv(io.StringIO(''.join(lines)), sep='\t') |
|
|
|
|
|
print("Gene annotation shape:", gene_annotation.shape) |
|
print("\nColumns in annotation data:") |
|
print(gene_annotation.columns.tolist()) |
|
|
|
|
|
print("\nFirst 5 rows of key mapping columns:") |
|
if 'ID' in gene_annotation.columns and 'Gene Symbol' in gene_annotation.columns: |
|
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string()) |
|
else: |
|
|
|
print(gene_annotation.head().to_string()) |
|
|
|
gene_annotation['ID'] = gene_annotation.iloc[:, 0].str.split('.').str[0] + '_st' |
|
|
|
|
|
def extract_genes(annotation): |
|
if pd.isna(annotation): |
|
return [] |
|
parts = str(annotation).split(' // ') |
|
|
|
symbols = [parts[i] for i in range(1, len(parts), 3) if i < len(parts)] |
|
return symbols |
|
|
|
|
|
mapping_data = pd.DataFrame({ |
|
'ID': gene_annotation['ID'], |
|
'Gene': gene_annotation.iloc[:, 7].apply(extract_genes) |
|
}) |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
|
|
|
|
print("Shape of gene expression data after mapping:", gene_data.shape) |
|
print("\nFirst few rows of mapped gene data:") |
|
print(gene_data.head()) |
|
|
|
gene_annotation['ID'] = gene_annotation.iloc[:, 0].str.split('.').str[0] + '_st' |
|
|
|
|
|
mapping_data = pd.DataFrame({ |
|
'ID': gene_annotation['ID'], |
|
'Gene': gene_annotation.iloc[:, 7].apply(extract_human_gene_symbols) |
|
}) |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
|
|
|
|
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0) |
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |