Liu-Hy's picture
Add files using upload-large-folder tool
61e25af verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Obstructive_sleep_apnea"
cohort = "GSE133601"
# Input paths
in_trait_dir = "../DATA/GEO/Obstructive_sleep_apnea"
in_cohort_dir = "../DATA/GEO/Obstructive_sleep_apnea/GSE133601"
# Output paths
out_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/GSE133601.csv"
out_gene_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/gene_data/GSE133601.csv"
out_clinical_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/clinical_data/GSE133601.csv"
json_path = "./output/preprocess/3/Obstructive_sleep_apnea/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on background info mentioning "gene expression in peripheral blood mononuclear cells" and CD1D/RAB20 genes
is_gene_available = True
# 2.1 Data Availability
# trait: Can be inferred from timepoint (pre vs post CPAP)
trait_row = 2
# Age and gender are not available in sample characteristics
age_row = None
gender_row = None
# 2.2 Convert Functions
def convert_trait(value: str) -> int:
"""Convert pre/post CPAP to binary OSA status
pre-CPAP: 1 (has OSA)
post-CPAP: 0 (treated OSA)"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'pre-cpap' in value:
return 1
elif 'post-cpap' in value:
return 0
return None
def convert_age(value: str) -> float:
"""Convert age to float"""
return None # Not available
def convert_gender(value: str) -> int:
"""Convert gender to binary"""
return None # Not available
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features
if trait_row is not None:
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Preview of clinical data:")
print(preview_df(clinical_df))
# Save to CSV
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# These appear to be Affymetrix probe IDs (ending in "_at"), not gene symbols
# Need to map these IDs to human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data from between Platform table markers
gene_annotation = filter_content_by_prefix(soft_file_path,
prefixes_a=['!Platform_table_begin'],
prefixes_b=['!Platform_table_end'],
unselect=True,
source_type='file',
return_df_a=True,
return_df_b=False)[0]
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Print first few rows to see full data structure
print("\nFirst few rows of annotation data:")
print(gene_annotation.head())
# Get gene annotation and create mapping
gene_annotation = get_gene_annotation(soft_file_path)
probe_gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Description')
# Apply mapping to convert probe-level to gene-level data
gene_data = apply_gene_mapping(genetic_data, probe_gene_mapping)
# Preview results
print("Preview of mapped gene expression data:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
print("\nFirst 10 gene symbols:")
print(list(gene_data.index)[:10])
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)