Liu-Hy's picture
Add files using upload-large-folder tool
1a37a63 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Osteoarthritis"
cohort = "GSE98460"
# Input paths
in_trait_dir = "../DATA/GEO/Osteoarthritis"
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE98460"
# Output paths
out_data_file = "./output/preprocess/3/Osteoarthritis/GSE98460.csv"
out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE98460.csv"
out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE98460.csv"
json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
is_gene_available = True # RNA microarray data indicated in background info
# 2. Variable Availability and Data Type
# Trait (OA) - can be inferred from diagnosis field
trait_row = 1
def convert_trait(x):
if not x or ':' not in x:
return None
value = x.split(':')[1].strip().lower()
if 'osteoarthritis' in value or 'oa' in value:
return 1
return 0
# Age - available in field 2
age_row = 2
def convert_age(x):
if not x or ':' not in x:
return None
try:
return float(x.split(':')[1].strip().split()[0])
except:
return None
# Gender - available in field 3
gender_row = 3
def convert_gender(x):
if not x or ':' not in x:
return None
value = x.split(':')[1].strip().lower()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
# 3. Save metadata
is_trait_available = trait_row is not None
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Examining gene identifiers
# The IDs look like custom platform probe IDs (e.g. 16650001, 16650003)
# These are not standard human gene symbols (which would be like BRCA1, TP53, etc.)
# We will need to map these probe IDs to gene symbols
requires_gene_mapping = True
# Look at more content in SOFT file to find gene annotation section
with gzip.open(soft_file_path, 'rt') as f:
platform_found = False
table_start = False
first_row = None
gene_rows = []
for line in f:
if '!Platform_table_begin' in line:
table_start = True
continue
elif '!Platform_table_end' in line:
break
elif table_start:
if first_row is None:
first_row = line.strip()
else:
gene_rows.append(line.strip())
# Create dataframe from the platform table data
import io
header = first_row.split('\t')
gene_data = '\n'.join(gene_rows)
gene_annotation = pd.read_csv(io.StringIO(gene_data), sep='\t', names=header)
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# First examine more content in SOFT file to locate gene symbol information
with gzip.open(soft_file_path, 'rt') as f:
found_table = False
header = None
first_five_rows = []
for line in f:
if '!Platform_title' in line:
print("Platform title:", line.strip())
elif '!Platform_organism' in line:
print("Platform organism:", line.strip())
elif '!Platform_table_begin' in line:
found_table = True
continue
elif found_table:
if header is None:
header = line.strip()
print("\nPlatform table header:")
print(header)
elif len(first_five_rows) < 5:
first_five_rows.append(line.strip())
else:
break
print("\nFirst few rows:")
for row in first_five_rows:
print(row)
# Now try using tabs as delimiter to see full column structure
print("\nSplitting first row by tabs to check all fields:")
if first_five_rows:
print(first_five_rows[0].split('\t'))
# Based on examination results, extract complete platform data
platform_data = pd.read_csv(gzip.open(soft_file_path, 'rt'),
sep='\t',
skiprows=lambda x: x == 0 or not found_table,
comment='!')
print("\nFull column names found:")
print(platform_data.columns.tolist())
print("\nPreview of complete annotation data:")
print(preview_df(platform_data))
# Extract gene annotation using library function
gene_annotation = get_gene_annotation(soft_file_path)
# Print available columns to identify correct names
print("Available columns:", gene_annotation.columns.tolist())
# First examine the column names
probe_data = gene_annotation.head()
print("\nFirst few rows:")
print(preview_df(probe_data))
# Create mapping after seeing actual column names
mapping_df = get_gene_mapping(gene_annotation,
prob_col='ID',
gene_col='Gene Title')
# Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
print("\nPreview of gene expression data after mapping:")
print(preview_df(gene_data))
# Load clinical data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Normalize gene symbols and save gene expression data
genetic_data = normalize_gene_symbols_in_index(genetic_data)
genetic_data.to_csv(out_gene_data_file)
# Link clinical and genetic data using library function
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Final validation and information saving
note = "This dataset contains cartilage tissue samples from OA patients, with gene expression data and demographic information."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
# First examine platform information in SOFT file
print("Examining platform information in SOFT file...")
with gzip.open(soft_file_path, 'rt') as f:
platform_lines = []
capture = False
for line in f:
if line.startswith(('!Platform_title', '!Platform_organism', '!Platform_technology')):
print(line.strip())
elif '!platform_table_begin' in line.lower():
capture = True
continue
elif '!platform_table_end' in line.lower():
break
elif capture:
platform_lines.append(line.strip())
# Now extract complete annotation with pandas
print("\nExtracting complete platform annotation...")
platform_df = pd.read_csv(io.StringIO('\n'.join(platform_lines)), sep='\t')
print("\nFound columns:")
print(platform_df.columns.tolist())
print("\nPreview of annotation data:")
print(preview_df(platform_df))