Liu-Hy's picture
Add files using upload-large-folder tool
1a37a63 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Ovarian_Cancer"
cohort = "GSE201525"
# Input paths
in_trait_dir = "../DATA/GEO/Ovarian_Cancer"
in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE201525"
# Output paths
out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE201525.csv"
out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE201525.csv"
out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE201525.csv"
json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# From the background info, this appears to be a gene expression dataset studying interferon effects
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# All samples are ovarian cancer - trait info can be inferred from study design
trait_row = 0 # Treatment info row can be used to identify samples
age_row = None # No age info available
gender_row = None # No gender info available
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if not isinstance(value, str):
return None
value = value.split(": ")[-1].lower()
# All samples are cancer cases
return 1
def convert_age(value):
# Not needed since age data unavailable
return None
def convert_gender(value):
# Not needed since gender data unavailable
return None
# 3. Save Metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True # All samples are cancer cases
)
# 4. Clinical Feature Extraction
# Extract clinical features (trait data) since trait_row is available
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview_dict = preview_df(selected_clinical_df)
print("\nPreview of processed clinical data:")
print(preview_dict)
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
# Verify this is gene expression data and check identifiers
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
genetic_data.to_csv(out_gene_data_file)
# Looking at the gene identifiers in the index, they are numerical IDs (1,2,3,4,5)
# These are not standard human gene symbols and will need to be mapped
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# Extract mapping between probe IDs and gene symbols from annotation data
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# Convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview the gene data
print("Gene expression data preview:")
print("\nFirst 5 genes:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# Debug print to check data structure
print("Linked data preview:")
print(linked_data.head())
print("\nColumns:", linked_data.columns)
# 3. Transpose data to get samples as rows and genes/features as columns
linked_data = linked_data.T
# Debug print after transpose
print("\nAfter transpose:")
print(linked_data.head())
print("\nColumns:", linked_data.columns[:5], "...", len(linked_data.columns), "total columns")
print(f"\nTrait values:\n{linked_data[trait].value_counts()}")
# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 5. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Gene expression data from ovarian cancer studying interferon treatment effects."
)
# 7. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)