Liu-Hy's picture
Add files using upload-large-folder tool
5a96bf0 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Prostate_Cancer"
cohort = "GSE201805"
# Input paths
in_trait_dir = "../DATA/GEO/Prostate_Cancer"
in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE201805"
# Output paths
out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE201805.csv"
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE201805.csv"
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE201805.csv"
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# Check gene expression data availability
# Based on series title and summary, this is a gene expression study
is_gene_available = True
# Track trait data availability
# Treatment arm can indicate prostate cancer severity/response
trait_row = 5 # randomization arm row
def convert_trait(value):
if pd.isna(value):
return None
value = value.split(": ")[-1].strip()
# Treatment arm indicates disease severity/intervention status
return 1 if value == "Treatment" else 0
# Track age data availability
age_row = 3 # age row
def convert_age(value):
if pd.isna(value):
return None
try:
# Extract numeric age value after colon
age = int(value.split(": ")[-1].strip())
return age
except:
return None
# Track gender data availability
# This is a prostate cancer study - all subjects are male
gender_row = None # gender not needed since all male
def convert_gender(value):
return 1 # all male
# Save metadata about data availability
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# Extract clinical features using library function
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age
)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of extracted clinical features:")
print(preview)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers appear to be numeric IDs (e.g. 2315554, 2315633, etc.)
# These are not standard human gene symbols which are typically alphanumeric (e.g. BRCA1, TP53)
# Therefore gene mapping will be required
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Try searching for ID patterns in all columns
print("All column names:", gene_metadata.columns.tolist())
print("\nPreview first few rows of each column to locate numeric IDs:")
for col in gene_metadata.columns:
sample_values = gene_metadata[col].dropna().head().tolist()
print(f"\n{col}:")
print(sample_values)
# Inspect raw file to see unfiltered annotation format
import gzip
print("\nRaw SOFT file preview:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
header = []
for i, line in enumerate(f):
header.append(line.strip())
if i >= 10: # Preview first 10 lines
break
print('\n'.join(header))
# From the preview, 'ID' column matches numeric identifiers in gene expression data
# 'gene_assignment' contains gene symbols between '//' delimiters
# Get probe-to-gene mapping
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')
# Apply mapping to convert probe-level to gene-level expression
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Preview results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few gene symbols and their expression values:")
print(gene_data.head())
# Save probe-level gene data
gene_data.to_csv(out_gene_data_file)
# Load clinical data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and probe-level gene data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Record cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Contains probe-level gene expression data and clinical features. Gene symbol mapping was not successful."
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)