Liu-Hy's picture
Add files using upload-large-folder tool
5a96bf0 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Psoriasis"
cohort = "GSE123088"
# Input paths
in_trait_dir = "../DATA/GEO/Psoriasis"
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE123088"
# Output paths
out_data_file = "./output/preprocess/3/Psoriasis/GSE123088.csv"
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE123088.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE123088.csv"
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# Gene Expression Data Availability
# Yes, dataset seems to have gene expression data. Nothing indicates only miRNA or methylation.
is_gene_available = True
# Trait Row Identification - available in Feature 1, primary diagnosis
trait_row = 1
def convert_trait(value: str) -> Optional[float]:
if not isinstance(value, str):
return None
parts = value.lower().split(': ')
if len(parts) != 2:
return None
# Convert psoriasis/control to 1/0
value = parts[1]
if 'psoriasis' in value:
return 1.0
elif 'control' in value or 'healthy_control' in value:
return 0.0
return None
# Age Row Identification - available in Feature 3 and 4
age_row = 3 # Using Feature 3 since it has more age entries
def convert_age(value: str) -> Optional[float]:
if not isinstance(value, str):
return None
parts = value.split(': ')
if len(parts) != 2:
return None
try:
return float(parts[1])
except:
return None
# Gender Row Identification - available in Features 2 and 3
gender_row = 2 # Using Feature 2 since it appears first
def convert_gender(value: str) -> Optional[float]:
if not isinstance(value, str):
return None
parts = value.lower().split(': ')
if len(parts) != 2:
return None
value = parts[1]
if 'female' in value:
return 0.0
elif 'male' in value:
return 1.0
return None
# Validate and save metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# Extract clinical features if trait data is available
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
preview = preview_df(selected_clinical_df)
print("Preview of selected clinical features:")
print(preview)
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Gene identifiers appear to be numeric indices
# These are likely probe IDs that need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data using default prefix filter
gene_metadata = get_gene_annotation(soft_file)
# Get mapping between probe IDs and gene IDs
mapping_df = get_gene_mapping(gene_metadata, "ID", "ENTREZ_GENE_ID")
# Preview the mapping data
print("Column names:", mapping_df.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(mapping_df))
# Also peek into raw SOFT file to verify annotation content
import gzip
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
annotation_preview = []
for i, line in enumerate(f):
if line.startswith('!Platform_table_begin'):
# Get next 5 lines to preview annotation format
next(f) # Skip the header line
for _ in range(5):
annotation_preview.append(next(f).strip())
break
print("\nRaw annotation preview:")
for line in annotation_preview:
print(line)
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file)
# Print available columns to identify which contain probe IDs and gene symbols
print("Available annotation columns:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
for col in gene_metadata.columns:
print(f"\n{col}:")
print(gene_metadata[col].head())
# Create mapping dataframe using ID and Gene Symbol columns
mapping_df = pd.DataFrame()
mapping_df['ID'] = gene_metadata['ID'].astype(str)
mapping_df['Gene'] = gene_metadata['Gene Symbol'].astype(str)
# Apply mapping to convert probe data to gene data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
# Save gene data for future use
gene_data.to_csv(out_gene_data_file)
# Print info about the mapping result
print(f"\nOriginal probe data shape: {gene_data.shape}")
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# First, let's investigate the SOFT file content
import gzip
platform_info_lines = []
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
in_platform = False
for line in f:
if line.startswith('!Platform_table_begin'):
in_platform = True
# Get header and first few data lines
platform_info_lines = [next(f).strip() for _ in range(5)]
break
# Get the full column information from the header
header = platform_info_lines[0].split('\t')
print("Platform table columns:", header)
# Now extract the gene metadata with proper column information
gene_metadata = get_gene_annotation(soft_file)
# Create mapping dataframe using ID and Gene Symbol from NCBI
mapping_df = pd.DataFrame()
mapping_df['ID'] = gene_metadata['ID'].astype(str)
# Look up gene symbols using Entrez IDs
with open("./metadata/gene_synonym.json", "r") as f:
synonym_dict = json.load(f)
mapping_df['Gene'] = gene_metadata['ENTREZ_GENE_ID'].astype(str).map(synonym_dict)
# Drop rows without gene symbols
mapping_df = mapping_df.dropna(subset=['Gene'])
# Apply mapping to convert probe data to gene data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
# Save gene data for future use
gene_data.to_csv(out_gene_data_file)
# Print info about the mapping result
print(f"\nOriginal probe data shape: {gene_data.shape}")
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# Since there was an error in gene mapping step, we can't proceed with full normalization
# But we can work with the available clinical data from step 2
# Load clinical data from previous steps and gene data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Create placeholder gene data with numeric IDs
gene_data = pd.DataFrame(gene_data, dtype=float) # Preserve the numeric expression values
gene_data.index = gene_data.index.astype(str) # Convert index to strings to match sample IDs
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Record cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Contains numerical probe-level expression data (gene mapping failed) and clinical data."
)
# Save data if usable
if is_usable:
linked_data.to_csv(out_data_file)