|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Psoriasis" |
|
cohort = "GSE252029" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Psoriasis" |
|
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE252029" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Psoriasis/GSE252029.csv" |
|
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE252029.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE252029.csv" |
|
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], |
|
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
sample_chars = { |
|
0: ['study id: CNTO1959PSO3001'], |
|
1: ['subject id: 10521', 'subject id: 10563', 'subject id: 10294', 'subject id: 10461', 'subject id: 10079', 'subject id: 10062', 'subject id: 10115', 'subject id: 10205', 'subject id: 10193', 'subject id: 10252', 'subject id: 10798', 'subject id: 10332', 'subject id: 10063', 'subject id: 10118', 'subject id: 10500', 'subject id: 10263', 'subject id: 10265', 'subject id: 10334', 'subject id: 10932', 'subject id: 10933', 'subject id: 10982', 'subject id: 10401', 'subject id: 10512', 'subject id: 10110', 'subject id: 10027', 'subject id: 10566', 'subject id: 10989', 'subject id: 10227', 'subject id: 10380', 'subject id: 10286'], |
|
2: ['treatment: Placebo to Guselkumab', 'treatment: Guselkumab', 'treatment: Adalimumab'], |
|
3: ['time point: WK_0', 'time point: WK_4', 'time point: WK_24', 'time point: WK_48'], |
|
4: ['skin: LS', 'skin: NL'] |
|
} |
|
clinical_data = pd.DataFrame(sample_chars).transpose() |
|
|
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 4 |
|
|
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> float: |
|
"""Convert skin type to binary trait value |
|
LS (lesional) = 1, NL (nonlesional) = 0""" |
|
if pd.isna(value) or not isinstance(value, str): |
|
return None |
|
value = value.split(": ")[-1].strip().upper() |
|
if value == "LS": |
|
return 1.0 |
|
elif value == "NL": |
|
return 0.0 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
return None |
|
|
|
def convert_gender(value: str) -> float: |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
selected_clinical = geo_select_clinical_features( |
|
clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview_df(selected_clinical) |
|
|
|
|
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
print("Error: Missing prerequisite data - sample characteristics and background information needed for analysis.") |
|
raise ValueError("Output from previous step containing sample characteristics and dataset background information is required to analyze variables and extract clinical features.") |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Column names:", gene_metadata.columns.tolist()) |
|
print("\nFirst few rows preview:") |
|
print(preview_df(gene_metadata)) |
|
|
|
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol') |
|
gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], |
|
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
) |
|
|
|
|
|
trait_row = 4 |
|
age_row = None |
|
gender_row = None |
|
|
|
def convert_trait(value: str) -> float: |
|
"""Convert skin type to binary trait value |
|
LS (lesional) = 1, NL (nonlesional) = 0""" |
|
if pd.isna(value) or not isinstance(value, str): |
|
return None |
|
value = value.split(": ")[-1].strip().upper() |
|
if value == "LS": |
|
return 1.0 |
|
elif value == "NL": |
|
return 0.0 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
return None |
|
|
|
def convert_gender(value: str) -> float: |
|
return None |
|
|
|
|
|
selected_clinical = geo_select_clinical_features( |
|
clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait_col=trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Contains gene expression and trait data (skin type: lesional vs nonlesional)." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |