|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Psoriasis" |
|
cohort = "GSE254707" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Psoriasis" |
|
in_cohort_dir = "../DATA/GEO/Psoriasis/GSE254707" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Psoriasis/GSE254707.csv" |
|
out_gene_data_file = "./output/preprocess/3/Psoriasis/gene_data/GSE254707.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Psoriasis/clinical_data/GSE254707.csv" |
|
json_path = "./output/preprocess/3/Psoriasis/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], |
|
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 5 |
|
|
|
def convert_trait(value): |
|
if not value or ":" not in value: |
|
return None |
|
diagnosis = value.split(":")[1].strip() |
|
if diagnosis == "Psoriasis": |
|
return 1 |
|
elif diagnosis == "Healthy": |
|
return 0 |
|
return None |
|
|
|
|
|
age_row = None |
|
convert_age = None |
|
|
|
|
|
gender_row = None |
|
convert_gender = None |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview = preview_df(selected_clinical) |
|
print("Clinical data preview:", preview) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) |
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
print("Scanning file for matrix data marker:") |
|
marker_line_num = None |
|
data_header = None |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
for i, line in enumerate(f): |
|
if i < 5: |
|
print(f"Line {i}: {line.strip()}") |
|
if "!series_matrix_table_begin" in line.lower(): |
|
marker_line_num = i |
|
print(f"\nFound matrix marker at line {i}") |
|
|
|
data_header = next(f).strip() |
|
print(f"Header line: {data_header}") |
|
|
|
print("\nFirst few data lines:") |
|
for _ in range(3): |
|
print(next(f).strip()) |
|
break |
|
if marker_line_num is None: |
|
print("\nWarning: Matrix data marker not found!") |
|
|
|
|
|
if marker_line_num is not None: |
|
try: |
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("\nShape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
except Exception as e: |
|
print(f"\nError reading gene data: {str(e)}") |
|
else: |
|
print("Cannot read gene data - matrix marker not found") |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
|
|
for line in f: |
|
if "!series_matrix_table_begin" in line: |
|
|
|
header = next(f).strip() |
|
print("\nPeeking at matrix data structure:") |
|
for _ in range(3): |
|
print(next(f).strip()) |
|
break |
|
|
|
|
|
def get_genetic_data_modified(file_path: str, marker: str = "!series_matrix_table_begin") -> pd.DataFrame: |
|
|
|
with gzip.open(file_path, 'rt') as file: |
|
for i, line in enumerate(file): |
|
if marker in line: |
|
skip_rows = i + 1 |
|
break |
|
else: |
|
raise ValueError(f"Marker '{marker}' not found") |
|
|
|
|
|
genetic_data = pd.read_csv(file_path, |
|
compression='gzip', |
|
skiprows=skip_rows, |
|
comment='!', |
|
delimiter='\t', |
|
quotechar='"', |
|
on_bad_lines='skip') |
|
|
|
|
|
genetic_data.columns = genetic_data.columns.str.strip('"') |
|
|
|
|
|
genetic_data = genetic_data.rename(columns={'ID_REF': 'ID'}).astype({'ID': 'str'}) |
|
genetic_data.set_index('ID', inplace=True) |
|
|
|
return genetic_data |
|
|
|
|
|
gene_data = get_genetic_data_modified(matrix_file) |
|
|
|
|
|
print("\nShape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |