Liu-Hy's picture
Add files using upload-large-folder tool
d5514d2 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Sarcoma"
cohort = "GSE162789"
# Input paths
in_trait_dir = "../DATA/GEO/Sarcoma"
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE162789"
# Output paths
out_data_file = "./output/preprocess/3/Sarcoma/GSE162789.csv"
out_gene_data_file = "./output/preprocess/3/Sarcoma/gene_data/GSE162789.csv"
out_clinical_data_file = "./output/preprocess/3/Sarcoma/clinical_data/GSE162789.csv"
json_path = "./output/preprocess/3/Sarcoma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# Gene expression data availability
# Looking at Series title and sample characteristics, this appears to be gene expression data from Ewing sarcoma samples
is_gene_available = True
# Clinical feature availability and conversion functions
# Sample characteristics shows Ewing sarcoma patient data with age and gender info embedded
trait_row = 0 # The trait (sarcoma) info is in the 'soft tissue' entries
# Age can be extracted from the same entries as trait
age_row = 0
# Gender can also be extracted from the same entries
gender_row = 0
def convert_trait(value: str) -> int:
# Binary: 1 for Ewing sarcoma, 0 for other/control
if pd.isna(value):
return None
value = value.split(': ')[-1].lower()
if 'ewing sarcoma' in value:
return 1
elif 'cell line' in value:
return None # Exclude cell lines
return 0
def convert_age(value: str) -> float:
# Continuous: Extract age in years
if pd.isna(value):
return None
value = value.split(': ')[-1].lower()
if 'cell line' in value:
return None
try:
# Extract number before "year"
age = float(re.search(r'(\d+)\s*year', value).group(1))
return age
except:
return None
def convert_gender(value: str) -> int:
# Binary: 0 for female, 1 for male
if pd.isna(value):
return None
value = value.split(': ')[-1].lower()
if 'cell line' in value:
return None
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
# Validate and save cohort info
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# Extract clinical features if trait data is available
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers are probe IDs from the Affymetrix microarray platform,
# not human gene symbols. They need to be mapped to gene symbols for analysis.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
print("Column names and first few values:")
print(preview_df(gene_annotation))
print("\nGene annotation information available in 'gene_assignment' column.")
# Get gene mapping
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# Apply gene mapping to expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Preview gene data
print("Preview of gene expression data:")
print(preview_df(gene_data))
# Reload clinical data that was previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("Clinical data shape:", selected_clinical_df.shape)
# 1. Normalize gene symbols
genetic_data = pd.read_csv(out_gene_data_file, index_col=0)
genetic_data = normalize_gene_symbols_in_index(genetic_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "This dataset studies the paired tumor biopsies before and after treatment. The derived trait value 1 represents responders (PR = partial response) and 0 represents non-responders (SD = stable disease, PD = progressive disease)."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
# Handle case where clinical features were not properly extracted
note = "Failed to extract clinical trait information from sample characteristics."
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=None,
df=None,
note=note
)