Liu-Hy's picture
Add files using upload-large-folder tool
d5514d2 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Schizophrenia"
cohort = "GSE119288"
# Input paths
in_trait_dir = "../DATA/GEO/Schizophrenia"
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE119288"
# Output paths
out_data_file = "./output/preprocess/3/Schizophrenia/GSE119288.csv"
out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE119288.csv"
out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE119288.csv"
json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on the background info, this dataset contains gene expression data from hiPSC-derived NPCs
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Looking at cell IDs in row 1, we can infer patient/control status
trait_row = 1
age_row = None # No age information available
gender_row = None # No gender information available
def convert_trait(value: str) -> Optional[int]:
"""Convert cell ID to binary trait status"""
if not isinstance(value, str):
return None
# Extract value after colon and strip whitespace
value = value.split(':')[1].strip()
# VCAP appears to be a cancer cell line control
# Numbered IDs are patient-derived cells
if value == 'VCAP':
return 0 # Control
elif value.replace('-', '').replace('.', '').replace('A', '').isdigit():
return 1 # Patient
return None
def convert_age(value: str) -> Optional[float]:
"""Convert age value"""
# No age data available
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert gender value"""
# No gender data available
return None
# 3. Save initial metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
preview = preview_df(selected_clinical_df)
print("Preview of clinical data:")
print(preview)
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
requires_gene_mapping = True
# Extract gene annotation data with additional prefixes to catch platform annotations
prefixes = ['^', '!', '#', '!platform_table_begin']
gene_annotation = get_gene_annotation(soft_file_path)
# Look for platform annotation section
platform_annotation = None
with gzip.open(soft_file_path, 'rt') as f:
content = f.read()
platform_sections = re.split('!platform_table_begin|!platform_table_end', content)
if len(platform_sections) > 1:
platform_data = platform_sections[1].strip()
platform_annotation = pd.read_csv(io.StringIO(platform_data), sep='\t')
if platform_annotation is not None:
print("Platform annotation DataFrame preview:")
print(preview_df(platform_annotation))
else:
print("Platform annotation not found in SOFT file.")
print("\nBasic gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# Since proper gene mapping data is not available, preserve probe-level data for now
gene_data = genetic_data
# Save the probe expression data
gene_data.to_csv(out_gene_data_file)
# Preview the output data
print("Preview of gene expression data:")
print(preview_df(gene_data))
# 1. Skip gene symbol normalization since we're working with probe IDs
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (probe-level):", gene_data.shape)
# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)
# 2. Link clinical and genetic data using probe-level data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "This dataset contains probe-level expression data since platform-specific gene mapping was not available. The data was preprocessed successfully but remains at probe level rather than gene level."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable and not biased
if is_usable and not trait_biased:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)