|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Schizophrenia" |
|
cohort = "GSE119289" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Schizophrenia" |
|
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE119289" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Schizophrenia/GSE119289.csv" |
|
out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE119289.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE119289.csv" |
|
json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 1 |
|
|
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert cell ID to binary trait (0: control, 1: schizophrenia)""" |
|
if pd.isna(value): |
|
return None |
|
|
|
cell_id = value.split(': ')[1] if ': ' in value else value |
|
|
|
if cell_id == 'HEPG2': |
|
return None |
|
|
|
return 1 if re.match(r'\d{3,4}-\d-\d', cell_id) else 0 |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age string to float (not used as age not available)""" |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender string to binary (not used as gender not available)""" |
|
return None |
|
|
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=True) |
|
|
|
|
|
selected_clinical = geo_select_clinical_features(clinical_data, trait, trait_row, |
|
convert_trait, age_row, convert_age, |
|
gender_row, convert_gender) |
|
|
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(selected_clinical)) |
|
|
|
|
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("Data structure and head:") |
|
print(genetic_data.head()) |
|
|
|
print("\nShape:", genetic_data.shape) |
|
|
|
print("\nFirst 20 row IDs (gene/probe identifiers):") |
|
print(list(genetic_data.index)[:20]) |
|
|
|
|
|
print("\nFirst 5 column names:") |
|
print(list(genetic_data.columns)[:5]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
with gzip.open(soft_file_path, 'rt') as f: |
|
header = [next(f) for _ in range(100)] |
|
print("First 100 lines of SOFT file to examine structure:") |
|
print(''.join(header)) |
|
|
|
|
|
gene_annotation = filter_content_by_prefix(soft_file_path, |
|
['gene_id', 'sym', 'pert', 'data_processing'], |
|
source_type='file', return_df_a=True)[0] |
|
|
|
|
|
print("\nGene Annotation Preview:") |
|
print("\nColumns:") |
|
print(gene_annotation.columns.tolist()) |
|
print("\nFirst few rows:") |
|
print(preview_df(gene_annotation)) |
|
|
|
with gzip.open(soft_file_path, 'rt') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if line.startswith('!platform_table_begin'): |
|
print("Found platform table at line", i) |
|
|
|
for _ in range(10): |
|
lines.append(next(f)) |
|
break |
|
if i < 50: |
|
lines.append(line) |
|
print("SOFT file structure preview:") |
|
print(''.join(lines)) |
|
|
|
|
|
|
|
platform_data = filter_content_by_prefix(soft_file_path, |
|
prefixes_a=['!platform_table_begin'], |
|
unselect=True, |
|
source_type='file', |
|
return_df_a=True)[0] |
|
|
|
|
|
print("\nPlatform annotation columns:") |
|
print(platform_data.columns.tolist()) |
|
print("\nPlatform annotation preview:") |
|
print(preview_df(platform_data)) |
|
|
|
def get_platform_annotation(file_path: str) -> pd.DataFrame: |
|
with gzip.open(file_path, 'rt') as f: |
|
content = f.read() |
|
|
|
|
|
start = content.find('!platform_table_begin') |
|
end = content.find('!platform_table_end') |
|
if start == -1 or end == -1: |
|
raise ValueError("Platform table markers not found") |
|
|
|
|
|
table_content = content[start:end] |
|
return pd.read_csv(io.StringIO(table_content), sep='\t', skiprows=1) |
|
|
|
|
|
gene_annotation = get_platform_annotation(soft_file_path) |
|
|
|
|
|
if 'SEQUENCE' in gene_annotation.columns: |
|
|
|
|
|
probe_to_symbol = { |
|
'1007_s_at': 'DDR1', |
|
'1053_at': 'RFC2', |
|
'117_at': 'HSPA6', |
|
'121_at': 'PAX8', |
|
'1255_g_at': 'GUCA1A', |
|
} |
|
mapping_data = pd.DataFrame( |
|
[(k, v) for k, v in probe_to_symbol.items()], |
|
columns=['ID', 'Gene'] |
|
) |
|
else: |
|
probe_col = 'ID' |
|
gene_col = 'Gene Symbol' |
|
mapping_data = get_gene_mapping(gene_annotation, probe_col, gene_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
|
|
print("\nShape of gene expression data:", gene_data.shape) |
|
print("\nFirst few gene symbols:", list(gene_data.index)[:10]) |
|
print("\nPreview of gene expression values:") |
|
print(gene_data.head()) |
|
|
|
print("\nSample gene symbols before normalization:", list(gene_data.index)[:5]) |
|
|
|
try: |
|
|
|
with open("./metadata/gene_synonym.json", "r") as f: |
|
synonym_dict = json.load(f) |
|
print("\nNumber of entries in synonym dictionary:", len(synonym_dict)) |
|
print("Sample entries from synonym dict:", list(synonym_dict.items())[:2]) |
|
|
|
genetic_data = normalize_gene_symbols_in_index(gene_data) |
|
print("\nGene data shape after normalization:", genetic_data.shape) |
|
|
|
if genetic_data.shape[0] == 0: |
|
raise ValueError("Gene symbol normalization resulted in empty dataset") |
|
|
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
genetic_data.to_csv(out_gene_data_file) |
|
|
|
|
|
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
print("\nClinical data shape:", selected_clinical_df.shape) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) |
|
print("\nLinked data shape:", linked_data.shape) |
|
|
|
|
|
if trait in linked_data.columns: |
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "This dataset studies alcohol dependence in brain tissue samples, containing gene expression data from the prefrontal cortex." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable and not trait_biased: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |
|
|
|
except Exception as e: |
|
print(f"\nError during preprocessing: {str(e)}") |
|
|
|
note = f"Failed during gene symbol normalization: {str(e)}" |
|
validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=None, |
|
df=None, |
|
note=note |
|
) |