Liu-Hy's picture
Add files using upload-large-folder tool
d5514d2 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Schizophrenia"
cohort = "GSE161986"
# Input paths
in_trait_dir = "../DATA/GEO/Schizophrenia"
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE161986"
# Output paths
out_data_file = "./output/preprocess/3/Schizophrenia/GSE161986.csv"
out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE161986.csv"
out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE161986.csv"
json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on background info mentioning "genome-wide mRNA" data and "[mRNA]" in title
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Key Identification
trait_row = 1 # 'diagnosis' field contains control vs alcohol info
age_row = 2 # 'age' field available
gender_row = None # All male samples per background info, so gender is constant
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if not isinstance(x, str):
return None
value = x.split(': ')[1].strip().lower()
if value == 'alcohol':
return 1
elif value == 'control':
return 0
return None
def convert_age(x):
if not isinstance(x, str):
return None
try:
return float(x.split(': ')[1].strip())
except:
return None
def convert_gender(x):
# Not needed since gender is constant (all male)
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
# Save to CSV
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Looking at identifiers like '1007_s_at', '1053_at', '117_at', these are clearly Affymetrix probe IDs, not human gene symbols
# They need to be mapped to gene symbols for biological interpretation
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# Looking at the annotation preview, 'ID' contains probe IDs matching genetic_data's indices,
# and 'Gene Symbol' contains the human gene symbols we want
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# Apply the gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview results
print("First few rows of mapped gene data:")
print(gene_data.head())
print("\nShape of mapped gene data:", gene_data.shape)
# 1. Normalize gene symbols
print("\nSample gene symbols before normalization:", list(gene_data.index)[:5])
try:
# Verify synonym dictionary
with open("./metadata/gene_synonym.json", "r") as f:
synonym_dict = json.load(f)
print("\nNumber of entries in synonym dictionary:", len(synonym_dict))
print("Sample entries from synonym dict:", list(synonym_dict.items())[:2])
genetic_data = normalize_gene_symbols_in_index(gene_data)
print("\nGene data shape after normalization:", genetic_data.shape)
if genetic_data.shape[0] == 0:
raise ValueError("Gene symbol normalization resulted in empty dataset")
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
genetic_data.to_csv(out_gene_data_file)
# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "This dataset studies alcohol dependence in brain tissue samples, containing gene expression data from the prefrontal cortex."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable and not biased
if is_usable and not trait_biased:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
except Exception as e:
print(f"\nError during preprocessing: {str(e)}")
# Record failure
note = f"Failed during gene symbol normalization: {str(e)}"
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=None,
df=None,
note=note
)