File size: 9,887 Bytes
d56490a b9dc1ff d56490a 2379a88 d56490a 2cc9b89 d56490a b9dc1ff d56490a 2cc9b89 d56490a b9dc1ff d56490a 2cc9b89 d56490a 2a004f0 d56490a b9dc1ff d56490a b9dc1ff d56490a b9dc1ff d56490a 7daf842 d56490a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
license: cc-by-nc-nd-4.0
language:
- en
tags:
- histology
- pathology
- vision
- pytorch
extra_gated_prompt: >-
The data and associated code are released under the CC-BY-NC 4.0 license and may only be used for non-commercial, academic research purposes with proper attribution.
If you are a commercial entity, please contact the corresponding author.
extra_gated_fields:
Full name (first and last): text
Current affiliation (no abbreviations): text
Type of Affiliation:
type: select
options:
- Academia
- Industry
- label: Other
value: other
Current and official institutional email (**this must match your primary email in your Hugging Face account, @gmail/@hotmail/@qq email domains will be denied**): text
Please explain your intended research use: text
I agree to all terms outlined above: checkbox
I agree to use this model for non-commercial, academic purposes only: checkbox
I agree not to distribute the model, if another user within your organization wishes to use Patho-Bench data, they must register as an individual user: checkbox
metrics:
- accuracy
pipeline_tag: image-feature-extraction
library_name: timm
---
# ♆ Patho-Bench
[📄 Preprint](https://arxiv.org/pdf/2502.06750) | [Code](https://github.com/mahmoodlab/Patho-Bench)
<img src="patho_bench_public.png" alt="Patho-Bench" style="width: 38%;" align="right"/>
**Patho-Bench is designed to evaluate patch and slide encoder foundation models for whole-slide images (WSIs).**
This HuggingFace repository contains the data splits for the public Patho-Bench tasks. Please visit our codebase on [GitHub](https://github.com/mahmoodlab/Patho-Bench) for the full codebase and benchmark implementation.
This project was developed by the [Mahmood Lab](https://faisal.ai/) at Harvard Medical School and Brigham and Women's Hospital. This work was funded by NIH NIGMS R35GM138216.
> [!NOTE]
> Contributions are welcome! If you'd like to submit a new dataset and/or task for inclusion in Patho-Bench, please reach out to us via the [Issues](https://github.com/mahmoodlab/Patho-Bench/issues) tab of our Github repo.
Currently, Patho-Bench contains the following task families. We will add more tasks in the future. For further details on each task, please refer to the [THREADS foundation model paper](https://arxiv.org/abs/2501.16652).
| **Family** | **Description** | **Tasks** |
|--------------------------------------|---------------------------------------------------------------------------------------|----------|
| **Morphological Subtyping** | Classifying distinct morphological patterns associated with different disease subtypes | 4 |
| **Tumor Grading** | Assigning a grade based on cellular differentiation and growth patterns | 2 |
| **Molecular Subtyping** | Predicting antigen presence (e.g., via IHC staining) | 3 |
| **Mutation Prediction** | Predicting specific genetic mutations in tumors | 21 |
| **Treatment Response & Assessment** | Evaluating patient response to treatment | 6 |
| **Survival Prediction** | Predicting survival outcomes and risk stratification | 6 |
## 🔥 Latest updates
- **February 2025**: Patho-Bench is now available on HuggingFace.
## ⚡ Installation
Install the required packages:
```
pip install --upgrade datasets
pip install --upgrade huggingface_hub
```
## 🔑 Authentication
```python
from huggingface_hub import login
login(token="YOUR_HUGGINGFACE_TOKEN")
```
## ⬇️ Usage
The Patho-Bench data splits are designed for use with the Patho-Bench [software package](https://github.com/mahmoodlab/Patho-Bench). However, you are welcome to use the data splits in your custom pipeline. Each task is associated with a YAML file containing task metadata and a TSV file containing the sample IDs, slide IDs, and labels.
> [!NOTE]
> Patho-Bench only provides the data splits and labels, NOT the raw image data. You will need to download the raw image data from the respective dataset repositories (see links below).
### Download an individual task
```python
import datasets
dataset='cptac_coad'
task='KRAS_mutation'
datasets.load_dataset(
'MahmoodLab/Patho-Bench',
cache_dir='/path/to/saveto',
dataset_to_download=dataset, # Throws error if source not found
task_in_dataset=task, # Throws error if task not found in dataset
trust_remote_code=True
)
```
### Download all tasks from a dataset
```python
import datasets
dataset='cptac_coad'
task='*'
datasets.load_dataset(
'MahmoodLab/Patho-Bench',
cache_dir='/path/to/saveto',
dataset_to_download=dataset,
task_in_dataset=task,
trust_remote_code=True
)
```
### Download entire Patho-Bench [4.2 MB]
```python
import datasets
dataset='*'
datasets.load_dataset(
'MahmoodLab/Patho-Bench',
cache_dir='/path/to/saveto',
dataset_to_download=dataset,
trust_remote_code=True
)
```
## 📢 Image data access links
For each dataset in Patho-Bench, please visit the respective repository below to download the raw image data.
| Dataset | Link |
|---------|------|
| EBRAINS [Roetzer et al., 2022] | [https://doi.org/10.25493/WQ48-ZGX](https://doi.org/10.25493/WQ48-ZGX) |
| BRACS [Brancati et al., 2021] | [https://www.bracs.icar.cnr.it/](https://www.bracs.icar.cnr.it/) |
| PANDA [Bulten et al., 2022] | [https://panda.grand-challenge.org/data/](https://panda.grand-challenge.org/data/) |
| IMP [Neto et al., 2024] | [https://rdm.inesctec.pt/dataset/nis-2023-008](https://rdm.inesctec.pt/dataset/nis-2023-008) |
| BCNB [Xu et al., 2021] | [https://bupt-ai-cz.github.io/BCNB/](https://bupt-ai-cz.github.io/BCNB/) |
| CPTAC-BRCA [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-brca/](https://www.cancerimagingarchive.net/collection/cptac-brca/) |
| CPTAC-CCRCC [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-ccrcc/](https://www.cancerimagingarchive.net/collection/cptac-ccrcc/) |
| CPTAC-COAD [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-coad/](https://www.cancerimagingarchive.net/collection/cptac-coad/) |
| CPTAC-GBM [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-gbm/](https://www.cancerimagingarchive.net/collection/cptac-gbm/) |
| CPTAC-HNSC [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-hnsc/](https://www.cancerimagingarchive.net/collection/cptac-hnsc/) |
| CPTAC-LSCC [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-lscc/](https://www.cancerimagingarchive.net/collection/cptac-lscc/) |
| CPTAC-LUAD [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-luad/](https://www.cancerimagingarchive.net/collection/cptac-luad/) |
| CPTAC-PDAC [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-pda/](https://www.cancerimagingarchive.net/collection/cptac-pda/) |
| MUT-HET-RCC | [https://doi.org/10.25452/figshare.plus.c.5983795](https://doi.org/10.25452/figshare.plus.c.5983795) |
| OV-Bevacizumab [Wang et al., 2022] | [https://www.nature.com/articles/s41597-022-01127-6](https://www.nature.com/articles/s41597-022-01127-6) |
| NADT-Prostate [Wilkinson et al., 2021] | [https://www.medrxiv.org/content/10.1101/2020.09.29.20199711v1.full](https://www.medrxiv.org/content/10.1101/2020.09.29.20199711v1.full) |
| POST-NAT-BRCA | [https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.23244](https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.23244) |
| BOEHMK | [https://www.synapse.org/Synapse:syn25946117/wiki/611576](https://www.synapse.org/Synapse:syn25946117/wiki/611576) |
| MBC | [https://www.synapse.org/Synapse:syn59490671/wiki/628046](https://www.synapse.org/Synapse:syn59490671/wiki/628046) |
| SURGEN | [https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1285](https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1285) / [arXiv](https://arxiv.org/abs/2502.04946) |
## 📇 Contact
For any questions, contact:
- Faisal Mahmood ([email protected])
- Anurag Vaidya ([email protected])
- Andrew Zhang ([email protected])
- Guillaume Jaume ([email protected])
## 📜 Data description
Developed by: Mahmood Lab AI for Pathology @ Harvard/BWH
Repository: GitHub
License: CC-BY-NC-4.0
## 🤝 Acknowledgements
Patho-Bench tasks were compiled from public image datasets and repositories (linked above). We thank the authors of these datasets for making their data publicly available.
## 📰 How to cite
If Patho-Bench contributes to your research, please cite:
```
@article{vaidya2025molecular,
title={Molecular-driven Foundation Model for Oncologic Pathology},
author={Vaidya, Anurag and Zhang, Andrew and Jaume, Guillaume and Song, Andrew H and Ding, Tong and Wagner, Sophia J and Lu, Ming Y and Doucet, Paul and Robertson, Harry and Almagro-Perez, Cristina and others},
journal={arXiv preprint arXiv:2501.16652},
year={2025}
}
@article{zhang2025standardizing,
title={Accelerating Data Processing and Benchmarking of AI Models for Pathology},
author={Zhang, Andrew and Jaume, Guillaume and Vaidya, Anurag and Ding, Tong and Mahmood, Faisal},
journal={arXiv preprint arXiv:2502.06750},
year={2025}
}
``` |