Dataset Viewer
Auto-converted to Parquet
_id
stringlengths
2
6
partition
stringclasses
3 values
text
stringlengths
87
6.4k
title
stringclasses
1 value
language
stringclasses
1 value
meta_information
dict
d1
train
def writeBoolean(self, n): """ Writes a Boolean to the stream. """ t = TYPE_BOOL_TRUE if n is False: t = TYPE_BOOL_FALSE self.stream.write(t)
PYTHON
{ "dummy_field": "" }
d2
train
def paste(xsel=False): """Returns system clipboard contents.""" selection = "primary" if xsel else "clipboard" try: return subprocess.Popen(["xclip", "-selection", selection, "-o"], stdout=subprocess.PIPE).communicate()[0].decode("utf-8") except OSError as why: raise XclipNotFound
PYTHON
{ "dummy_field": "" }
d4
train
def create_path(path): """Creates a absolute path in the file system. :param path: The path to be created """ import os if not os.path.exists(path): os.makedirs(path)
PYTHON
{ "dummy_field": "" }
d5
train
def _vector_or_scalar(x, type='row'): """Convert an object to either a scalar or a row or column vector.""" if isinstance(x, (list, tuple)): x = np.array(x) if isinstance(x, np.ndarray): assert x.ndim == 1 if type == 'column': x = x[:, None] return x
PYTHON
{ "dummy_field": "" }
d6
train
def experiment_property(prop): """Get a property of the experiment by name.""" exp = experiment(session) p = getattr(exp, prop) return success_response(field=prop, data=p, request_type=prop)
PYTHON
{ "dummy_field": "" }
d10
train
def _convert_to_array(array_like, dtype): """ Convert Matrix attributes which are array-like or buffer to array. """ if isinstance(array_like, bytes): return np.frombuffer(array_like, dtype=dtype) return np.asarray(array_like, dtype=dtype)
PYTHON
{ "dummy_field": "" }
d13
train
def _array2cstr(arr): """ Serializes a numpy array to a compressed base64 string """ out = StringIO() np.save(out, arr) return b64encode(out.getvalue())
PYTHON
{ "dummy_field": "" }
d15
train
def _string_hash(s): """String hash (djb2) with consistency between py2/py3 and persistency between runs (unlike `hash`).""" h = 5381 for c in s: h = h * 33 + ord(c) return h
PYTHON
{ "dummy_field": "" }
d16
train
def transform_from_rot_trans(R, t): """Transforation matrix from rotation matrix and translation vector.""" R = R.reshape(3, 3) t = t.reshape(3, 1) return np.vstack((np.hstack([R, t]), [0, 0, 0, 1]))
PYTHON
{ "dummy_field": "" }
d18
train
def transform_to_3d(points,normal,z=0): """Project points into 3d from 2d points.""" d = np.cross(normal, (0, 0, 1)) M = rotation_matrix(d) transformed_points = M.dot(points.T).T + z return transformed_points
PYTHON
{ "dummy_field": "" }
d22
train
def mag(z): """Get the magnitude of a vector.""" if isinstance(z[0], np.ndarray): return np.array(list(map(np.linalg.norm, z))) else: return np.linalg.norm(z)
PYTHON
{ "dummy_field": "" }
d23
train
def config_parser_to_dict(config_parser): """ Convert a ConfigParser to a dictionary. """ response = {} for section in config_parser.sections(): for option in config_parser.options(section): response.setdefault(section, {})[option] = config_parser.get(section, option) return response
PYTHON
{ "dummy_field": "" }
d24
train
def __add__(self, other): """Handle the `+` operator.""" return self._handle_type(other)(self.value + other.value)
PYTHON
{ "dummy_field": "" }
d25
train
def connect_mysql(host, port, user, password, database): """Connect to MySQL with retries.""" return pymysql.connect( host=host, port=port, user=user, passwd=password, db=database )
PYTHON
{ "dummy_field": "" }
d26
train
def get_column(self, X, column): """Return a column of the given matrix. Args: X: `numpy.ndarray` or `pandas.DataFrame`. column: `int` or `str`. Returns: np.ndarray: Selected column. """ if isinstance(X, pd.DataFrame): return X[column].values return X[:, column]
PYTHON
{ "dummy_field": "" }
d27
train
def connect(url, username, password): """ Return a connected Bitbucket session """ bb_session = stashy.connect(url, username, password) logger.info('Connected to: %s as %s', url, username) return bb_session
PYTHON
{ "dummy_field": "" }
d28
train
def add_blank_row(self, label): """ Add a blank row with only an index value to self.df. This is done inplace. """ col_labels = self.df.columns blank_item = pd.Series({}, index=col_labels, name=label) # use .loc to add in place (append won't do that) self.df.loc[blank_item.name] = blank_item return self.df
PYTHON
{ "dummy_field": "" }
d29
train
def teardown(self): """ Stop and remove the container if it exists. """ while self._http_clients: self._http_clients.pop().close() if self.created: self.halt()
PYTHON
{ "dummy_field": "" }
d34
train
def serialize(obj): """Takes a object and produces a dict-like representation :param obj: the object to serialize """ if isinstance(obj, list): return [serialize(o) for o in obj] return GenericSerializer(ModelProviderImpl()).serialize(obj)
PYTHON
{ "dummy_field": "" }
d35
train
def advance_one_line(self): """Advances to next line.""" current_line = self._current_token.line_number while current_line == self._current_token.line_number: self._current_token = ConfigParser.Token(*next(self._token_generator))
PYTHON
{ "dummy_field": "" }
d37
train
def do_next(self, args): """Step over the next statement """ self._do_print_from_last_cmd = True self._interp.step_over() return True
PYTHON
{ "dummy_field": "" }
d39
train
def get_line_flux(line_wave, wave, flux, **kwargs): """Interpolated flux at a given wavelength (calls np.interp).""" return np.interp(line_wave, wave, flux, **kwargs)
PYTHON
{ "dummy_field": "" }
d41
train
def get_number(s, cast=int): """ Try to get a number out of a string, and cast it. """ import string d = "".join(x for x in str(s) if x in string.digits) return cast(d)
PYTHON
{ "dummy_field": "" }
d45
train
def populate_obj(obj, attrs): """Populates an object's attributes using the provided dict """ for k, v in attrs.iteritems(): setattr(obj, k, v)
PYTHON
{ "dummy_field": "" }
d46
train
def wordfreq(text, is_filename=False): """Return a dictionary of words and word counts in a string.""" if is_filename: with open(text) as f: text = f.read() freqs = {} for word in text.split(): lword = word.lower() freqs[lword] = freqs.get(lword, 0) + 1 return freqs
PYTHON
{ "dummy_field": "" }
d47
train
def copyFile(input, output, replace=None): """Copy a file whole from input to output.""" _found = findFile(output) if not _found or (_found and replace): shutil.copy2(input, output)
PYTHON
{ "dummy_field": "" }
d48
train
def push(h, x): """Push a new value into heap.""" h.push(x) up(h, h.size()-1)
PYTHON
{ "dummy_field": "" }
d50
train
def filter_contour(imageFile, opFile): """ convert an image by applying a contour """ im = Image.open(imageFile) im1 = im.filter(ImageFilter.CONTOUR) im1.save(opFile)
PYTHON
{ "dummy_field": "" }
d51
train
def count(lines): """ Counts the word frequences in a list of sentences. Note: This is a helper function for parallel execution of `Vocabulary.from_text` method. """ words = [w for l in lines for w in l.strip().split()] return Counter(words)
PYTHON
{ "dummy_field": "" }
d54
train
def visit_Name(self, node): """ Get range for parameters for examples or false branching. """ return self.add(node, self.result[node.id])
PYTHON
{ "dummy_field": "" }
d55
train
def mkdir(dir, enter): """Create directory with template for topic of the current environment """ if not os.path.exists(dir): os.makedirs(dir)
PYTHON
{ "dummy_field": "" }
d56
train
def qrot(vector, quaternion): """Rotate a 3D vector using quaternion algebra. Implemented by Vladimir Kulikovskiy. Parameters ---------- vector: np.array quaternion: np.array Returns ------- np.array """ t = 2 * np.cross(quaternion[1:], vector) v_rot = vector + quaternion[0] * t + np.cross(quaternion[1:], t) return v_rot
PYTHON
{ "dummy_field": "" }
d57
train
def _numpy_char_to_bytes(arr): """Like netCDF4.chartostring, but faster and more flexible. """ # based on: http://stackoverflow.com/a/10984878/809705 arr = np.array(arr, copy=False, order='C') dtype = 'S' + str(arr.shape[-1]) return arr.view(dtype).reshape(arr.shape[:-1])
PYTHON
{ "dummy_field": "" }
d60
train
def get_tri_area(pts): """ Given a list of coords for 3 points, Compute the area of this triangle. Args: pts: [a, b, c] three points """ a, b, c = pts[0], pts[1], pts[2] v1 = np.array(b) - np.array(a) v2 = np.array(c) - np.array(a) area_tri = abs(sp.linalg.norm(sp.cross(v1, v2)) / 2) return area_tri
PYTHON
{ "dummy_field": "" }
d62
train
def round_to_int(number, precision): """Round a number to a precision""" precision = int(precision) rounded = (int(number) + precision / 2) // precision * precision return rounded
PYTHON
{ "dummy_field": "" }
d66
train
def string_input(prompt=''): """Python 3 input()/Python 2 raw_input()""" v = sys.version[0] if v == '3': return input(prompt) else: return raw_input(prompt)
PYTHON
{ "dummy_field": "" }
d69
train
def _display(self, layout): """launch layouts display""" print(file=self.out) TextWriter().format(layout, self.out)
PYTHON
{ "dummy_field": "" }
d70
train
def assert_list(self, putative_list, expected_type=string_types, key_arg=None): """ :API: public """ return assert_list(putative_list, expected_type, key_arg=key_arg, raise_type=lambda msg: TargetDefinitionException(self, msg))
PYTHON
{ "dummy_field": "" }
d72
train
def assert_exactly_one_true(bool_list): """This method asserts that only one value of the provided list is True. :param bool_list: List of booleans to check :return: True if only one value is True, False otherwise """ assert isinstance(bool_list, list) counter = 0 for item in bool_list: if item: counter += 1 return counter == 1
PYTHON
{ "dummy_field": "" }
d78
train
def exit(exit_code=0): r"""A function to support exiting from exit hooks. Could also be used to exit from the calling scripts in a thread safe manner. """ core.processExitHooks() if state.isExitHooked and not hasattr(sys, 'exitfunc'): # The function is called from the exit hook sys.stderr.flush() sys.stdout.flush() os._exit(exit_code) #pylint: disable=W0212 sys.exit(exit_code)
PYTHON
{ "dummy_field": "" }
d80
train
def reloader_thread(softexit=False): """If ``soft_exit`` is True, we use sys.exit(); otherwise ``os_exit`` will be used to end the process. """ while RUN_RELOADER: if code_changed(): # force reload if softexit: sys.exit(3) else: os._exit(3) time.sleep(1)
PYTHON
{ "dummy_field": "" }
d86
train
def loganalytics_data_plane_client(cli_ctx, _): """Initialize Log Analytics data client for use with CLI.""" from .vendored_sdks.loganalytics import LogAnalyticsDataClient from azure.cli.core._profile import Profile profile = Profile(cli_ctx=cli_ctx) cred, _, _ = profile.get_login_credentials( resource="https://api.loganalytics.io") return LogAnalyticsDataClient(cred)
PYTHON
{ "dummy_field": "" }
d90
train
def get_stoplist(language): """Returns an built-in stop-list for the language as a set of words.""" file_path = os.path.join("stoplists", "%s.txt" % language) try: stopwords = pkgutil.get_data("justext", file_path) except IOError: raise ValueError( "Stoplist for language '%s' is missing. " "Please use function 'get_stoplists' for complete list of stoplists " "and feel free to contribute by your own stoplist." % language ) return frozenset(w.decode("utf8").lower() for w in stopwords.splitlines())
PYTHON
{ "dummy_field": "" }
d91
train
def add_str(window, line_num, str): """ attempt to draw str on screen and ignore errors if they occur """ try: window.addstr(line_num, 0, str) except curses.error: pass
PYTHON
{ "dummy_field": "" }
d93
train
def dictfetchall(cursor): """Returns all rows from a cursor as a dict (rather than a headerless table) From Django Documentation: https://docs.djangoproject.com/en/dev/topics/db/sql/ """ desc = cursor.description return [dict(zip([col[0] for col in desc], row)) for row in cursor.fetchall()]
PYTHON
{ "dummy_field": "" }
d94
train
def xmltreefromfile(filename): """Internal function to read an XML file""" try: return ElementTree.parse(filename, ElementTree.XMLParser(collect_ids=False)) except TypeError: return ElementTree.parse(filename, ElementTree.XMLParser())
PYTHON
{ "dummy_field": "" }
d96
train
def beta_pdf(x, a, b): """Beta distirbution probability density function.""" bc = 1 / beta(a, b) fc = x ** (a - 1) sc = (1 - x) ** (b - 1) return bc * fc * sc
PYTHON
{ "dummy_field": "" }
d97
train
def filter_out(queryset, setting_name): """ Remove unwanted results from queryset """ kwargs = helpers.get_settings().get(setting_name, {}).get('FILTER_OUT', {}) queryset = queryset.exclude(**kwargs) return queryset
PYTHON
{ "dummy_field": "" }
d99
train
def listlike(obj): """Is an object iterable like a list (and not a string)?""" return hasattr(obj, "__iter__") \ and not issubclass(type(obj), str)\ and not issubclass(type(obj), unicode)
PYTHON
{ "dummy_field": "" }
d100
train
def table_top_abs(self): """Returns the absolute position of table top""" table_height = np.array([0, 0, self.table_full_size[2]]) return string_to_array(self.floor.get("pos")) + table_height
PYTHON
{ "dummy_field": "" }
d104
train
def mean_date(dt_list): """Calcuate mean datetime from datetime list """ dt_list_sort = sorted(dt_list) dt_list_sort_rel = [dt - dt_list_sort[0] for dt in dt_list_sort] avg_timedelta = sum(dt_list_sort_rel, timedelta())/len(dt_list_sort_rel) return dt_list_sort[0] + avg_timedelta
PYTHON
{ "dummy_field": "" }
d106
train
def similarity(self, other): """Calculates the cosine similarity between this vector and another vector.""" if self.magnitude == 0 or other.magnitude == 0: return 0 return self.dot(other) / self.magnitude
PYTHON
{ "dummy_field": "" }
d107
train
def rotate_img(im, deg, mode=cv2.BORDER_CONSTANT, interpolation=cv2.INTER_AREA): """ Rotates an image by deg degrees Arguments: deg (float): degree to rotate. """ r,c,*_ = im.shape M = cv2.getRotationMatrix2D((c//2,r//2),deg,1) return cv2.warpAffine(im,M,(c,r), borderMode=mode, flags=cv2.WARP_FILL_OUTLIERS+interpolation)
PYTHON
{ "dummy_field": "" }
d108
train
def _calculate_distance(latlon1, latlon2): """Calculates the distance between two points on earth. """ lat1, lon1 = latlon1 lat2, lon2 = latlon2 dlon = lon2 - lon1 dlat = lat2 - lat1 R = 6371 # radius of the earth in kilometers a = np.sin(dlat / 2)**2 + np.cos(lat1) * np.cos(lat2) * (np.sin(dlon / 2))**2 c = 2 * np.pi * R * np.arctan2(np.sqrt(a), np.sqrt(1 - a)) / 180 return c
PYTHON
{ "dummy_field": "" }
d110
train
def direct2dDistance(self, point): """consider the distance between two mapPoints, ignoring all terrain, pathing issues""" if not isinstance(point, MapPoint): return 0.0 return ((self.x-point.x)**2 + (self.y-point.y)**2)**(0.5) # simple distance formula
PYTHON
{ "dummy_field": "" }
d112
train
def horz_dpi(self): """ Integer dots per inch for the width of this image. Defaults to 72 when not present in the file, as is often the case. """ pHYs = self._chunks.pHYs if pHYs is None: return 72 return self._dpi(pHYs.units_specifier, pHYs.horz_px_per_unit)
PYTHON
{ "dummy_field": "" }
d113
train
def parse(self, s): """ Parses a date string formatted like ``YYYY-MM-DD``. """ return datetime.datetime.strptime(s, self.date_format).date()
PYTHON
{ "dummy_field": "" }
d116
train
def inh(table): """ inverse hyperbolic sine transformation """ t = [] for i in table: t.append(np.ndarray.tolist(np.arcsinh(i))) return t
PYTHON
{ "dummy_field": "" }
d117
train
def daterange(start, end, delta=timedelta(days=1), lower=Interval.CLOSED, upper=Interval.OPEN): """Returns a generator which creates the next value in the range on demand""" date_interval = Interval(lower=lower, lower_value=start, upper_value=end, upper=upper) current = start if start in date_interval else start + delta while current in date_interval: yield current current = current + delta
PYTHON
{ "dummy_field": "" }
d118
train
async def _thread_coro(self, *args): """ Coroutine called by MapAsync. It's wrapping the call of run_in_executor to run the synchronous function as thread """ return await self._loop.run_in_executor( self._executor, self._function, *args)
PYTHON
{ "dummy_field": "" }
d120
train
def check_output(args, env=None, sp=subprocess): """Call an external binary and return its stdout.""" log.debug('calling %s with env %s', args, env) output = sp.check_output(args=args, env=env) log.debug('output: %r', output) return output
PYTHON
{ "dummy_field": "" }
d122
train
def retry_on_signal(function): """Retries function until it doesn't raise an EINTR error""" while True: try: return function() except EnvironmentError, e: if e.errno != errno.EINTR: raise
PYTHON
{ "dummy_field": "" }
d124
train
def test(*args): """ Run unit tests. """ subprocess.call(["py.test-2.7"] + list(args)) subprocess.call(["py.test-3.4"] + list(args))
PYTHON
{ "dummy_field": "" }
d126
train
def sortable_title(instance): """Uses the default Plone sortable_text index lower-case """ title = plone_sortable_title(instance) if safe_callable(title): title = title() return title.lower()
PYTHON
{ "dummy_field": "" }
d128
train
def percent_cb(name, complete, total): """ Callback for updating target progress """ logger.debug( "{}: {} transferred out of {}".format( name, sizeof_fmt(complete), sizeof_fmt(total) ) ) progress.update_target(name, complete, total)
PYTHON
{ "dummy_field": "" }
d129
train
def now(self): """ Return a :py:class:`datetime.datetime` instance representing the current time. :rtype: :py:class:`datetime.datetime` """ if self.use_utc: return datetime.datetime.utcnow() else: return datetime.datetime.now()
PYTHON
{ "dummy_field": "" }
d133
train
def ToDatetime(self): """Converts Timestamp to datetime.""" return datetime.utcfromtimestamp( self.seconds + self.nanos / float(_NANOS_PER_SECOND))
PYTHON
{ "dummy_field": "" }
d138
train
def print_latex(o): """A function to generate the latex representation of sympy expressions.""" if can_print_latex(o): s = latex(o, mode='plain') s = s.replace('\\dag','\\dagger') s = s.strip('$') return '$$%s$$' % s # Fallback to the string printer return None
PYTHON
{ "dummy_field": "" }
d141
train
def isInteractive(): """ A basic check of if the program is running in interactive mode """ if sys.stdout.isatty() and os.name != 'nt': #Hopefully everything but ms supports '\r' try: import threading except ImportError: return False else: return True else: return False
PYTHON
{ "dummy_field": "" }
d144
train
def parse(source, remove_comments=True, **kw): """Thin wrapper around ElementTree.parse""" return ElementTree.parse(source, SourceLineParser(), **kw)
PYTHON
{ "dummy_field": "" }
d146
train
def show_image(self, key): """Show image (item is a PIL image)""" data = self.model.get_data() data[key].show()
PYTHON
{ "dummy_field": "" }
d148
train
def _interval_to_bound_points(array): """ Helper function which returns an array with the Intervals' boundaries. """ array_boundaries = np.array([x.left for x in array]) array_boundaries = np.concatenate( (array_boundaries, np.array([array[-1].right]))) return array_boundaries
PYTHON
{ "dummy_field": "" }
d149
train
def closing_plugin(self, cancelable=False): """Perform actions before parent main window is closed""" self.dialog_manager.close_all() self.shell.exit_interpreter() return True
PYTHON
{ "dummy_field": "" }
d150
train
def test(): """Local test.""" from spyder.utils.qthelpers import qapplication app = qapplication() dlg = ProjectDialog(None) dlg.show() sys.exit(app.exec_())
PYTHON
{ "dummy_field": "" }
d151
train
def del_label(self, name): """Delete a label by name.""" labels_tag = self.root[0] labels_tag.remove(self._find_label(name))
PYTHON
{ "dummy_field": "" }
d153
train
def delete_all_eggs(self): """ delete all the eggs in the directory specified """ path_to_delete = os.path.join(self.egg_directory, "lib", "python") if os.path.exists(path_to_delete): shutil.rmtree(path_to_delete)
PYTHON
{ "dummy_field": "" }
d154
train
def get_system_cpu_times(): """Return system CPU times as a namedtuple.""" user, nice, system, idle = _psutil_osx.get_system_cpu_times() return _cputimes_ntuple(user, nice, system, idle)
PYTHON
{ "dummy_field": "" }
d155
train
def remove(self, document_id, namespace, timestamp): """Removes documents from Solr The input is a python dictionary that represents a mongo document. """ self.solr.delete(id=u(document_id), commit=(self.auto_commit_interval == 0))
PYTHON
{ "dummy_field": "" }
d158
train
def dictify(a_named_tuple): """Transform a named tuple into a dictionary""" return dict((s, getattr(a_named_tuple, s)) for s in a_named_tuple._fields)
PYTHON
{ "dummy_field": "" }
d159
train
def _py2_and_3_joiner(sep, joinable): """ Allow '\n'.join(...) statements to work in Py2 and Py3. :param sep: :param joinable: :return: """ if ISPY3: sep = bytes(sep, DEFAULT_ENCODING) joined = sep.join(joinable) return joined.decode(DEFAULT_ENCODING) if ISPY3 else joined
PYTHON
{ "dummy_field": "" }
d160
train
def c_str(string): """"Convert a python string to C string.""" if not isinstance(string, str): string = string.decode('ascii') return ctypes.c_char_p(string.encode('utf-8'))
PYTHON
{ "dummy_field": "" }
d161
train
def endline_semicolon_check(self, original, loc, tokens): """Check for semicolons at the end of lines.""" return self.check_strict("semicolon at end of line", original, loc, tokens)
PYTHON
{ "dummy_field": "" }
d162
train
def _datetime_to_date(arg): """ convert datetime/str to date :param arg: :return: """ _arg = parse(arg) if isinstance(_arg, datetime.datetime): _arg = _arg.date() return _arg
PYTHON
{ "dummy_field": "" }
d165
train
def from_json(cls, json_str): """Deserialize the object from a JSON string.""" d = json.loads(json_str) return cls.from_dict(d)
PYTHON
{ "dummy_field": "" }
d166
train
def update(kernel=False): """ Upgrade all packages, skip obsoletes if ``obsoletes=0`` in ``yum.conf``. Exclude *kernel* upgrades by default. """ manager = MANAGER cmds = {'yum -y --color=never': {False: '--exclude=kernel* update', True: 'update'}} cmd = cmds[manager][kernel] run_as_root("%(manager)s %(cmd)s" % locals())
PYTHON
{ "dummy_field": "" }
d167
train
def guess_encoding(text, default=DEFAULT_ENCODING): """Guess string encoding. Given a piece of text, apply character encoding detection to guess the appropriate encoding of the text. """ result = chardet.detect(text) return normalize_result(result, default=default)
PYTHON
{ "dummy_field": "" }
d168
train
def commajoin_as_strings(iterable): """ Join the given iterable with ',' """ return _(u',').join((six.text_type(i) for i in iterable))
PYTHON
{ "dummy_field": "" }
d169
train
def supports_color(): """ Returns True if the running system's terminal supports color, and False otherwise. """ unsupported_platform = (sys.platform in ('win32', 'Pocket PC')) # isatty is not always implemented, #6223. is_a_tty = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty() if unsupported_platform or not is_a_tty: return False return True
PYTHON
{ "dummy_field": "" }
d171
train
def __contains__(self, key): """ Invoked when determining whether a specific key is in the dictionary using `key in d`. The key is looked up case-insensitively. """ k = self._real_key(key) return k in self._data
PYTHON
{ "dummy_field": "" }
d173
train
def Serializable(o): """Make sure an object is JSON-serializable Use this to return errors and other info that does not need to be deserialized or does not contain important app data. Best for returning error info and such""" if isinstance(o, (str, dict, int)): return o else: try: json.dumps(o) return o except Exception: LOG.debug("Got a non-serilizeable object: %s" % o) return o.__repr__()
PYTHON
{ "dummy_field": "" }
d175
train
def is_identifier(string): """Check if string could be a valid python identifier :param string: string to be tested :returns: True if string can be a python identifier, False otherwise :rtype: bool """ matched = PYTHON_IDENTIFIER_RE.match(string) return bool(matched) and not keyword.iskeyword(string)
PYTHON
{ "dummy_field": "" }
d176
train
def uniform_iterator(sequence): """Uniform (key, value) iteration on a `dict`, or (idx, value) on a `list`.""" if isinstance(sequence, abc.Mapping): return six.iteritems(sequence) else: return enumerate(sequence)
PYTHON
{ "dummy_field": "" }
d177
train
def _guess_type(val): """Guess the input type of the parameter based off the default value, if unknown use text""" if isinstance(val, bool): return "choice" elif isinstance(val, int): return "number" elif isinstance(val, float): return "number" elif isinstance(val, str): return "text" elif hasattr(val, 'read'): return "file" else: return "text"
PYTHON
{ "dummy_field": "" }
d178
train
def _to_corrected_pandas_type(dt): """ When converting Spark SQL records to Pandas DataFrame, the inferred data type may be wrong. This method gets the corrected data type for Pandas if that type may be inferred uncorrectly. """ import numpy as np if type(dt) == ByteType: return np.int8 elif type(dt) == ShortType: return np.int16 elif type(dt) == IntegerType: return np.int32 elif type(dt) == FloatType: return np.float32 else: return None
PYTHON
{ "dummy_field": "" }
d182
train
def _bytes_to_json(value): """Coerce 'value' to an JSON-compatible representation.""" if isinstance(value, bytes): value = base64.standard_b64encode(value).decode("ascii") return value
PYTHON
{ "dummy_field": "" }
d185
train
def filter_dict(d, keys): """ Creates a new dict from an existing dict that only has the given keys """ return {k: v for k, v in d.items() if k in keys}
PYTHON
{ "dummy_field": "" }
d188
train
def numpy_aware_eq(a, b): """Return whether two objects are equal via recursion, using :func:`numpy.array_equal` for comparing numpy arays. """ if isinstance(a, np.ndarray) or isinstance(b, np.ndarray): return np.array_equal(a, b) if ((isinstance(a, Iterable) and isinstance(b, Iterable)) and not isinstance(a, str) and not isinstance(b, str)): if len(a) != len(b): return False return all(numpy_aware_eq(x, y) for x, y in zip(a, b)) return a == b
PYTHON
{ "dummy_field": "" }
d192
train
def is_json_file(filename, show_warnings = False): """Check configuration file type is JSON Return a boolean indicating wheather the file is JSON format or not """ try: config_dict = load_config(filename, file_type = "json") is_json = True except: is_json = False return(is_json)
PYTHON
{ "dummy_field": "" }
d193
train
def _remove_dict_keys_with_value(dict_, val): """Removes `dict` keys which have have `self` as value.""" return {k: v for k, v in dict_.items() if v is not val}
PYTHON
{ "dummy_field": "" }
d199
train
def dict_to_querystring(dictionary): """Converts a dict to a querystring suitable to be appended to a URL.""" s = u"" for d in dictionary.keys(): s = unicode.format(u"{0}{1}={2}&", s, d, dictionary[d]) return s[:-1]
PYTHON
{ "dummy_field": "" }
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
17