_id
stringlengths 2
6
| partition
stringclasses 3
values | text
stringlengths 87
6.4k
| title
stringclasses 1
value | language
stringclasses 1
value | meta_information
dict |
---|---|---|---|---|---|
d420
|
train
|
def columns(self):
"""Return names of all the addressable columns (including foreign keys) referenced in user supplied model"""
res = [col['name'] for col in self.column_definitions]
res.extend([col['name'] for col in self.foreign_key_definitions])
return res
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d424
|
train
|
def angle(x0, y0, x1, y1):
""" Returns the angle between two points.
"""
return degrees(atan2(y1-y0, x1-x0))
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d425
|
train
|
def delete_duplicates(seq):
"""
Remove duplicates from an iterable, preserving the order.
Args:
seq: Iterable of various type.
Returns:
list: List of unique objects.
"""
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d429
|
train
|
def get_colors(img):
"""
Returns a list of all the image's colors.
"""
w, h = img.size
return [color[:3] for count, color in img.convert('RGB').getcolors(w * h)]
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d430
|
train
|
def pop(h):
"""Pop the heap value from the heap."""
n = h.size() - 1
h.swap(0, n)
down(h, 0, n)
return h.pop()
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d432
|
train
|
def check_precomputed_distance_matrix(X):
"""Perform check_array(X) after removing infinite values (numpy.inf) from the given distance matrix.
"""
tmp = X.copy()
tmp[np.isinf(tmp)] = 1
check_array(tmp)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d434
|
train
|
def linedelimited (inlist,delimiter):
"""
Returns a string composed of elements in inlist, with each element
separated by 'delimiter.' Used by function writedelimited. Use '\t'
for tab-delimiting.
Usage: linedelimited (inlist,delimiter)
"""
outstr = ''
for item in inlist:
if type(item) != StringType:
item = str(item)
outstr = outstr + item + delimiter
outstr = outstr[0:-1]
return outstr
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d435
|
train
|
def get_month_start_end_day():
"""
Get the month start date a nd end date
"""
t = date.today()
n = mdays[t.month]
return (date(t.year, t.month, 1), date(t.year, t.month, n))
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d436
|
train
|
def dequeue(self, block=True):
"""Dequeue a record and return item."""
return self.queue.get(block, self.queue_get_timeout)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d437
|
train
|
def return_value(self, *args, **kwargs):
"""Extracts the real value to be returned from the wrapping callable.
:return: The value the double should return when called.
"""
self._called()
return self._return_value(*args, **kwargs)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d438
|
train
|
def get_best_encoding(stream):
"""Returns the default stream encoding if not found."""
rv = getattr(stream, 'encoding', None) or sys.getdefaultencoding()
if is_ascii_encoding(rv):
return 'utf-8'
return rv
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d440
|
train
|
def we_are_in_lyon():
"""Check if we are on a Lyon machine"""
import socket
try:
hostname = socket.gethostname()
ip = socket.gethostbyname(hostname)
except socket.gaierror:
return False
return ip.startswith("134.158.")
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d442
|
train
|
def is_callable(*p):
""" True if all the args are functions and / or subroutines
"""
import symbols
return all(isinstance(x, symbols.FUNCTION) for x in p)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d444
|
train
|
def eqstr(a, b):
"""
Determine whether two strings are equivalent.
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/eqstr_c.html
:param a: Arbitrary character string.
:type a: str
:param b: Arbitrary character string.
:type b: str
:return: True if A and B are equivalent.
:rtype: bool
"""
return bool(libspice.eqstr_c(stypes.stringToCharP(a), stypes.stringToCharP(b)))
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d445
|
train
|
def get_by(self, name):
"""get element by name"""
return next((item for item in self if item.name == name), None)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d446
|
train
|
def validate(self, *args, **kwargs): # pylint: disable=arguments-differ
"""
Validate a parameter dict against a parameter schema from an ocrd-tool.json
Args:
obj (dict):
schema (dict):
"""
return super(ParameterValidator, self)._validate(*args, **kwargs)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d447
|
train
|
def get_parent_dir(name):
"""Get the parent directory of a filename."""
parent_dir = os.path.dirname(os.path.dirname(name))
if parent_dir:
return parent_dir
return os.path.abspath('.')
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d450
|
train
|
def show_guestbook():
"""Returns all existing guestbook records."""
cursor = flask.g.db.execute(
'SELECT name, message FROM entry ORDER BY id DESC;')
entries = [{'name': row[0], 'message': row[1]} for row in cursor.fetchall()]
return jinja2.Template(LAYOUT).render(entries=entries)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d452
|
train
|
def rank(idx, dim):
"""Calculate the index rank according to Bertran's notation."""
idxm = multi_index(idx, dim)
out = 0
while idxm[-1:] == (0,):
out += 1
idxm = idxm[:-1]
return out
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d453
|
train
|
def get_last_commit(git_path=None):
"""
Get the HEAD commit SHA1 of repository in current dir.
"""
if git_path is None: git_path = GIT_PATH
line = get_last_commit_line(git_path)
revision_id = line.split()[1]
return revision_id
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d454
|
train
|
def csvpretty(csvfile: csvfile=sys.stdin):
""" Pretty print a CSV file. """
shellish.tabulate(csv.reader(csvfile))
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d455
|
train
|
def array_dim(arr):
"""Return the size of a multidimansional array.
"""
dim = []
while True:
try:
dim.append(len(arr))
arr = arr[0]
except TypeError:
return dim
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d458
|
train
|
def is_static(self, filename):
"""Check if a file is a static file (which should be copied, rather
than compiled using Jinja2).
A file is considered static if it lives in any of the directories
specified in ``staticpaths``.
:param filename: the name of the file to check
"""
if self.staticpaths is None:
# We're not using static file support
return False
for path in self.staticpaths:
if filename.startswith(path):
return True
return False
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d460
|
train
|
def serve_static(request, path, insecure=False, **kwargs):
"""Collect and serve static files.
This view serves up static files, much like Django's
:py:func:`~django.views.static.serve` view, with the addition that it
collects static files first (if enabled). This allows images, fonts, and
other assets to be served up without first loading a page using the
``{% javascript %}`` or ``{% stylesheet %}`` template tags.
You can use this view by adding the following to any :file:`urls.py`::
urlpatterns += static('static/', view='pipeline.views.serve_static')
"""
# Follow the same logic Django uses for determining access to the
# static-serving view.
if not django_settings.DEBUG and not insecure:
raise ImproperlyConfigured("The staticfiles view can only be used in "
"debug mode or if the --insecure "
"option of 'runserver' is used")
if not settings.PIPELINE_ENABLED and settings.PIPELINE_COLLECTOR_ENABLED:
# Collect only the requested file, in order to serve the result as
# fast as possible. This won't interfere with the template tags in any
# way, as those will still cause Django to collect all media.
default_collector.collect(request, files=[path])
return serve(request, path, document_root=django_settings.STATIC_ROOT,
**kwargs)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d461
|
train
|
def items(cls):
"""
All values for this enum
:return: list of tuples
"""
return [
cls.PRECIPITATION,
cls.WIND,
cls.TEMPERATURE,
cls.PRESSURE
]
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d467
|
train
|
def _get_local_ip():
"""
Get the local ip of this device
:return: Ip of this computer
:rtype: str
"""
return set([x[4][0] for x in socket.getaddrinfo(
socket.gethostname(),
80,
socket.AF_INET
)]).pop()
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d471
|
train
|
def last_day(year=_year, month=_month):
"""
get the current month's last day
:param year: default to current year
:param month: default to current month
:return: month's last day
"""
last_day = calendar.monthrange(year, month)[1]
return datetime.date(year=year, month=month, day=last_day)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d473
|
train
|
def get_obj_cols(df):
"""
Returns names of 'object' columns in the DataFrame.
"""
obj_cols = []
for idx, dt in enumerate(df.dtypes):
if dt == 'object' or is_category(dt):
obj_cols.append(df.columns.values[idx])
return obj_cols
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d475
|
train
|
def get_property_by_name(pif, name):
"""Get a property by name"""
return next((x for x in pif.properties if x.name == name), None)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d481
|
train
|
def get(s, delimiter='', format="diacritical"):
"""Return pinyin of string, the string must be unicode
"""
return delimiter.join(_pinyin_generator(u(s), format=format))
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d482
|
train
|
def center_eigenvalue_diff(mat):
"""Compute the eigvals of mat and then find the center eigval difference."""
N = len(mat)
evals = np.sort(la.eigvals(mat))
diff = np.abs(evals[N/2] - evals[N/2-1])
return diff
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d483
|
train
|
def get_property_by_name(pif, name):
"""Get a property by name"""
return next((x for x in pif.properties if x.name == name), None)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d484
|
train
|
def center_eigenvalue_diff(mat):
"""Compute the eigvals of mat and then find the center eigval difference."""
N = len(mat)
evals = np.sort(la.eigvals(mat))
diff = np.abs(evals[N/2] - evals[N/2-1])
return diff
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d488
|
train
|
def clear_es():
"""Clear all indexes in the es core"""
# TODO: should receive a catalog slug.
ESHypermap.es.indices.delete(ESHypermap.index_name, ignore=[400, 404])
LOGGER.debug('Elasticsearch: Index cleared')
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d489
|
train
|
def get_idx_rect(index_list):
"""Extract the boundaries from a list of indexes"""
rows, cols = list(zip(*[(i.row(), i.column()) for i in index_list]))
return ( min(rows), max(rows), min(cols), max(cols) )
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d490
|
train
|
def _get_node_parent(self, age, pos):
"""Get the parent node of node, whch is located in tree's node list.
Returns:
object: The parent node.
"""
return self.nodes[age][int(pos / self.comp)]
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d492
|
train
|
def dedup_list(l):
"""Given a list (l) will removing duplicates from the list,
preserving the original order of the list. Assumes that
the list entrie are hashable."""
dedup = set()
return [ x for x in l if not (x in dedup or dedup.add(x))]
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d493
|
train
|
def tf2():
"""Provide the root module of a TF-2.0 API for use within TensorBoard.
Returns:
The root module of a TF-2.0 API, if available.
Raises:
ImportError: if a TF-2.0 API is not available.
"""
# Import the `tf` compat API from this file and check if it's already TF 2.0.
if tf.__version__.startswith('2.'):
return tf
elif hasattr(tf, 'compat') and hasattr(tf.compat, 'v2'):
# As a fallback, try `tensorflow.compat.v2` if it's defined.
return tf.compat.v2
raise ImportError('cannot import tensorflow 2.0 API')
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d499
|
train
|
def get_bottomrect_idx(self, pos):
""" Determine if cursor is on bottom right corner of a hot spot."""
for i, r in enumerate(self.link_bottom_rects):
if r.Contains(pos):
return i
return -1
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d501
|
train
|
def table_top_abs(self):
"""Returns the absolute position of table top"""
table_height = np.array([0, 0, self.table_full_size[2]])
return string_to_array(self.floor.get("pos")) + table_height
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d502
|
train
|
def plot_epsilon_residuals(self):
"""Plots the epsilon residuals for the variogram fit."""
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(range(self.epsilon.size), self.epsilon, c='k', marker='*')
ax.axhline(y=0.0)
plt.show()
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d503
|
train
|
def get_property_by_name(pif, name):
"""Get a property by name"""
return next((x for x in pif.properties if x.name == name), None)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d505
|
train
|
def forceupdate(self, *args, **kw):
"""Like a bulk :meth:`forceput`."""
self._update(False, self._ON_DUP_OVERWRITE, *args, **kw)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d508
|
train
|
def get_element_with_id(self, id):
"""Return the element with the specified ID."""
# Should we maintain a hashmap of ids to make this more efficient? Probably overkill.
# TODO: Elements can contain nested elements (captions, footnotes, table cells, etc.)
return next((el for el in self.elements if el.id == id), None)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d509
|
train
|
def vector_distance(a, b):
"""The Euclidean distance between two vectors."""
a = np.array(a)
b = np.array(b)
return np.linalg.norm(a - b)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d511
|
train
|
def euclidean(c1, c2):
"""Square of the euclidean distance"""
diffs = ((i - j) for i, j in zip(c1, c2))
return sum(x * x for x in diffs)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d512
|
train
|
def get_free_memory_win():
"""Return current free memory on the machine for windows.
Warning : this script is really not robust
Return in MB unit
"""
stat = MEMORYSTATUSEX()
ctypes.windll.kernel32.GlobalMemoryStatusEx(ctypes.byref(stat))
return int(stat.ullAvailPhys / 1024 / 1024)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d515
|
train
|
def is_in(self, point_x, point_y):
""" Test if a point is within this polygonal region """
point_array = array(((point_x, point_y),))
vertices = array(self.points)
winding = self.inside_rule == "winding"
result = points_in_polygon(point_array, vertices, winding)
return result[0]
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d518
|
train
|
def title(self):
""" The title of this window """
with switch_window(self._browser, self.name):
return self._browser.title
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d519
|
train
|
def visit_BoolOp(self, node):
""" Return type may come from any boolop operand. """
return sum((self.visit(value) for value in node.values), [])
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d520
|
train
|
def __get_xml_text(root):
""" Return the text for the given root node (xml.dom.minidom). """
txt = ""
for e in root.childNodes:
if (e.nodeType == e.TEXT_NODE):
txt += e.data
return txt
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d522
|
train
|
def fetch_event(urls):
"""
This parallel fetcher uses gevent one uses gevent
"""
rs = (grequests.get(u) for u in urls)
return [content.json() for content in grequests.map(rs)]
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d523
|
train
|
def get_order(self, codes):
"""Return evidence codes in order shown in code2name."""
return sorted(codes, key=lambda e: [self.ev2idx.get(e)])
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d524
|
train
|
def equal(list1, list2):
""" takes flags returns indexes of True values """
return [item1 == item2 for item1, item2 in broadcast_zip(list1, list2)]
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d525
|
train
|
def select(self, cmd, *args, **kwargs):
""" Execute the SQL command and return the data rows as tuples
"""
self.cursor.execute(cmd, *args, **kwargs)
return self.cursor.fetchall()
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d526
|
train
|
def go_to_parent_directory(self):
"""Go to parent directory"""
self.chdir(osp.abspath(osp.join(getcwd_or_home(), os.pardir)))
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d529
|
train
|
def exp_fit_fun(x, a, tau, c):
"""Function used to fit the exponential decay."""
# pylint: disable=invalid-name
return a * np.exp(-x / tau) + c
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d531
|
train
|
def nb_to_python(nb_path):
"""convert notebook to python script"""
exporter = python.PythonExporter()
output, resources = exporter.from_filename(nb_path)
return output
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d532
|
train
|
def searchlast(self,n=10):
"""Return the last n results (or possibly less if not found). Note that the last results are not necessarily the best ones! Depending on the search type."""
solutions = deque([], n)
for solution in self:
solutions.append(solution)
return solutions
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d534
|
train
|
def _text_to_graphiz(self, text):
"""create a graphviz graph from text"""
dot = Source(text, format='svg')
return dot.pipe().decode('utf-8')
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d535
|
train
|
def get_colors(img):
"""
Returns a list of all the image's colors.
"""
w, h = img.size
return [color[:3] for count, color in img.convert('RGB').getcolors(w * h)]
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d536
|
train
|
def _round_half_hour(record):
"""
Round a time DOWN to half nearest half-hour.
"""
k = record.datetime + timedelta(minutes=-(record.datetime.minute % 30))
return datetime(k.year, k.month, k.day, k.hour, k.minute, 0)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d538
|
train
|
def threads_init(gtk=True):
"""Enables multithreading support in Xlib and PyGTK.
See the module docstring for more info.
:Parameters:
gtk : bool
May be set to False to skip the PyGTK module.
"""
# enable X11 multithreading
x11.XInitThreads()
if gtk:
from gtk.gdk import threads_init
threads_init()
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d539
|
train
|
def security(self):
"""Print security object information for a pdf document"""
return {k: v for i in self.pdf.resolvedObjects.items() for k, v in i[1].items()}
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d540
|
train
|
def enable_gtk3(self, app=None):
"""Enable event loop integration with Gtk3 (gir bindings).
Parameters
----------
app : ignored
Ignored, it's only a placeholder to keep the call signature of all
gui activation methods consistent, which simplifies the logic of
supporting magics.
Notes
-----
This methods sets the PyOS_InputHook for Gtk3, which allows
the Gtk3 to integrate with terminal based applications like
IPython.
"""
from pydev_ipython.inputhookgtk3 import create_inputhook_gtk3
self.set_inputhook(create_inputhook_gtk3(self._stdin_file))
self._current_gui = GUI_GTK
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d541
|
train
|
def dot(a, b):
"""Take arrays `a` and `b` and form the dot product between the last axis
of `a` and the first of `b`.
"""
b = numpy.asarray(b)
return numpy.dot(a, b.reshape(b.shape[0], -1)).reshape(a.shape[:-1] + b.shape[1:])
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d542
|
train
|
def guess_encoding(text, default=DEFAULT_ENCODING):
"""Guess string encoding.
Given a piece of text, apply character encoding detection to
guess the appropriate encoding of the text.
"""
result = chardet.detect(text)
return normalize_result(result, default=default)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d544
|
train
|
def __gzip(filename):
""" Compress a file returning the new filename (.gz)
"""
zipname = filename + '.gz'
file_pointer = open(filename,'rb')
zip_pointer = gzip.open(zipname,'wb')
zip_pointer.writelines(file_pointer)
file_pointer.close()
zip_pointer.close()
return zipname
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d545
|
train
|
def forceupdate(self, *args, **kw):
"""Like a bulk :meth:`forceput`."""
self._update(False, self._ON_DUP_OVERWRITE, *args, **kw)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d547
|
train
|
def rfft2d_freqs(h, w):
"""Computes 2D spectrum frequencies."""
fy = np.fft.fftfreq(h)[:, None]
# when we have an odd input dimension we need to keep one additional
# frequency and later cut off 1 pixel
if w % 2 == 1:
fx = np.fft.fftfreq(w)[: w // 2 + 2]
else:
fx = np.fft.fftfreq(w)[: w // 2 + 1]
return np.sqrt(fx * fx + fy * fy)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d550
|
train
|
def h5ToDict(h5, readH5pyDataset=True):
""" Read a hdf5 file into a dictionary """
h = h5py.File(h5, "r")
ret = unwrapArray(h, recursive=True, readH5pyDataset=readH5pyDataset)
if readH5pyDataset: h.close()
return ret
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d551
|
train
|
def current_zipfile():
"""A function to vend the current zipfile, if any"""
if zipfile.is_zipfile(sys.argv[0]):
fd = open(sys.argv[0], "rb")
return zipfile.ZipFile(fd)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d552
|
train
|
def __unixify(self, s):
""" stupid windows. converts the backslash to forwardslash for consistency """
return os.path.normpath(s).replace(os.sep, "/")
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d555
|
train
|
def apply(f, obj, *args, **kwargs):
"""Apply a function in parallel to each element of the input"""
return vectorize(f)(obj, *args, **kwargs)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d560
|
train
|
def _heappush_max(heap, item):
""" why is this not in heapq """
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap) - 1)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d561
|
train
|
def _remove_keywords(d):
"""
copy the dict, filter_keywords
Parameters
----------
d : dict
"""
return { k:v for k, v in iteritems(d) if k not in RESERVED }
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d563
|
train
|
def uniq(seq):
""" Return a copy of seq without duplicates. """
seen = set()
return [x for x in seq if str(x) not in seen and not seen.add(str(x))]
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d567
|
train
|
def ci(a, which=95, axis=None):
"""Return a percentile range from an array of values."""
p = 50 - which / 2, 50 + which / 2
return percentiles(a, p, axis)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d569
|
train
|
def tuple_search(t, i, v):
"""
Search tuple array by index and value
:param t: tuple array
:param i: index of the value in each tuple
:param v: value
:return: the first tuple in the array with the specific index / value
"""
for e in t:
if e[i] == v:
return e
return None
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d571
|
train
|
def area(x,y):
"""
Calculate the area of a polygon given as x(...),y(...)
Implementation of Shoelace formula
"""
# http://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates
return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d577
|
train
|
def _get_compiled_ext():
"""Official way to get the extension of compiled files (.pyc or .pyo)"""
for ext, mode, typ in imp.get_suffixes():
if typ == imp.PY_COMPILED:
return ext
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d579
|
train
|
def inh(table):
"""
inverse hyperbolic sine transformation
"""
t = []
for i in table:
t.append(np.ndarray.tolist(np.arcsinh(i)))
return t
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d581
|
train
|
def median(lst):
""" Calcuates the median value in a @lst """
#: http://stackoverflow.com/a/24101534
sortedLst = sorted(lst)
lstLen = len(lst)
index = (lstLen - 1) // 2
if (lstLen % 2):
return sortedLst[index]
else:
return (sortedLst[index] + sortedLst[index + 1])/2.0
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d583
|
train
|
def iter_finds(regex_obj, s):
"""Generate all matches found within a string for a regex and yield each match as a string"""
if isinstance(regex_obj, str):
for m in re.finditer(regex_obj, s):
yield m.group()
else:
for m in regex_obj.finditer(s):
yield m.group()
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d587
|
train
|
def find_lt(a, x):
"""Find rightmost value less than x."""
i = bs.bisect_left(a, x)
if i: return i - 1
raise ValueError
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d588
|
train
|
def is_in(self, point_x, point_y):
""" Test if a point is within this polygonal region """
point_array = array(((point_x, point_y),))
vertices = array(self.points)
winding = self.inside_rule == "winding"
result = points_in_polygon(point_array, vertices, winding)
return result[0]
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d592
|
train
|
def apply_fit(xy,coeffs):
""" Apply the coefficients from a linear fit to
an array of x,y positions.
The coeffs come from the 'coeffs' member of the
'fit_arrays()' output.
"""
x_new = coeffs[0][2] + coeffs[0][0]*xy[:,0] + coeffs[0][1]*xy[:,1]
y_new = coeffs[1][2] + coeffs[1][0]*xy[:,0] + coeffs[1][1]*xy[:,1]
return x_new,y_new
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d600
|
train
|
def get_document_frequency(self, term):
"""
Returns the number of documents the specified term appears in.
"""
if term not in self._terms:
raise IndexError(TERM_DOES_NOT_EXIST)
else:
return len(self._terms[term])
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d606
|
train
|
def is_password_valid(password):
"""
Check if a password is valid
"""
pattern = re.compile(r"^.{4,75}$")
return bool(pattern.match(password))
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d610
|
train
|
def gauss_pdf(x, mu, sigma):
"""Normalized Gaussian"""
return 1 / np.sqrt(2 * np.pi) / sigma * np.exp(-(x - mu) ** 2 / 2. / sigma ** 2)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d612
|
train
|
def ExecuteRaw(self, position, command):
"""Send a command string to gdb."""
self.EnsureGdbPosition(position[0], None, None)
return gdb.execute(command, to_string=True)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d616
|
train
|
def uniqueID(size=6, chars=string.ascii_uppercase + string.digits):
"""A quick and dirty way to get a unique string"""
return ''.join(random.choice(chars) for x in xrange(size))
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d618
|
train
|
def _generate_key_map(entity_list, key, entity_class):
""" Helper method to generate map from key to entity object for given list of dicts.
Args:
entity_list: List consisting of dict.
key: Key in each dict which will be key in the map.
entity_class: Class representing the entity.
Returns:
Map mapping key to entity object.
"""
key_map = {}
for obj in entity_list:
key_map[obj[key]] = entity_class(**obj)
return key_map
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d620
|
train
|
def _rndPointDisposition(dx, dy):
"""Return random disposition point."""
x = int(random.uniform(-dx, dx))
y = int(random.uniform(-dy, dy))
return (x, y)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d622
|
train
|
def sine_wave(frequency):
"""Emit a sine wave at the given frequency."""
xs = tf.reshape(tf.range(_samples(), dtype=tf.float32), [1, _samples(), 1])
ts = xs / FLAGS.sample_rate
return tf.sin(2 * math.pi * frequency * ts)
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d624
|
train
|
def bitsToString(arr):
"""Returns a string representing a numpy array of 0's and 1's"""
s = array('c','.'*len(arr))
for i in xrange(len(arr)):
if arr[i] == 1:
s[i]='*'
return s
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d627
|
train
|
def do_next(self, args):
"""Step over the next statement
"""
self._do_print_from_last_cmd = True
self._interp.step_over()
return True
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d628
|
train
|
def uniqueID(size=6, chars=string.ascii_uppercase + string.digits):
"""A quick and dirty way to get a unique string"""
return ''.join(random.choice(chars) for x in xrange(size))
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d631
|
train
|
def copy(self):
"""
Return a copy of the dictionary.
This is a middle-deep copy; the copy is independent of the original in
all attributes that have mutable types except for:
* The values in the dictionary
Note that the Python functions :func:`py:copy.copy` and
:func:`py:copy.deepcopy` can be used to create completely shallow or
completely deep copies of objects of this class.
"""
result = NocaseDict()
result._data = self._data.copy() # pylint: disable=protected-access
return result
|
PYTHON
|
{
"dummy_field": ""
}
|
|
d632
|
train
|
def longest_run(da, dim='time'):
"""Return the length of the longest consecutive run of True values.
Parameters
----------
arr : N-dimensional array (boolean)
Input array
dim : Xarray dimension (default = 'time')
Dimension along which to calculate consecutive run
Returns
-------
N-dimensional array (int)
Length of longest run of True values along dimension
"""
d = rle(da, dim=dim)
rl_long = d.max(dim=dim)
return rl_long
|
PYTHON
|
{
"dummy_field": ""
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.