Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

πŸš€ Galaxea Open-World Dataset

Project Page Paper Videos Visualizer Modelscope

Key features

  • 500+ hours of real-world mobile manipulation data.
  • All data collected using one uniform robotic embodiment for consistency.
  • Fine-grained subtask language annotations.
  • Covers residential, kitchen, retail, and office settings.
  • Dataset in RLDS format.

Dataset Structure

For convenience, we divided the 500 hours of data into four equal parts by time. We also provide a small sample dataset for quick start.

rlds
β”œβ”€β”€ part1_r1_lite
β”‚   β”œβ”€β”€ 1.0.0
β”‚   β”‚   β”œβ”€β”€ dataset_info.json
β”‚   β”‚   β”œβ”€β”€ features.json
β”‚   β”‚   β”œβ”€β”€ merge_dataset_large_r1_lite-train.tfrecord-00000-of-02048
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ merge_dataset_large_r1_lite-train.tfrecord-02047-of-02048
β”œβ”€β”€ part2_r1_lite
β”œβ”€β”€ part3_r1_lite
β”œβ”€β”€ part4_r1_lite
β”œβ”€β”€ sample
β”‚   β”œβ”€β”€ 1.0.0
β”‚   β”‚   β”œβ”€β”€ merge_dataset_large_r1_lite-train.tfrecord-00000-of-01024
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ merge_dataset_large_r1_lite-train.tfrecord-01023-of-01024

Dataset Schema

OpenGalaxeaDataset = {
    "episode_metadata": {
        "file_path": tf.Text,  # path to the original data file
    },
    "steps": {
        "is_first": tf.Scalar(dtype=bool),  # true on first step of the episode
        "is_last": tf.Scalar(dtype=bool),  # true on last step of the episode

        "language_instruction": tf.Text,  # language instruction, format: "high level"@"low level chinese"@"low level english"
        "observation": {
            "base_velocity": tf.Tensor(3, dtype=float32),   # robot base velocity
            "gripper_state_left": tf.Tensor(1, dtype=float32),  # left gripper state, 0-close and 100-open
            "gripper_state_right": tf.Tensor(1, dtype=float32), # right gripper state, 0-close and 100-open
            "depth_camera_wrist_left": tf.Tensor(224, 224, 1, dtype=uint16),  # wrist camera depth left viewpoint, unit: mm
            "depth_camera_wrist_right": tf.Tensor(224, 224, 1, dtype=uint16),  # wrist camera depth right viewpoint, unit: mm
            "image_camera_head": tf.Tensor(224, 224, 3, dtype=uint8), # head camera RGB viewpoint
            "image_camera_wrist_left": tf.Tensor(224, 224, 3, dtype=uint8), # wrist camera RGB left viewpoint
            "image_camera_wrist_right": tf.Tensor(224, 224, 3, dtype=uint8), # wrist camera RGB right viewpoint
            "joint_position_arm_left": tf.Tensor(6, dtype=float32), # joint positions of the left arm
            "joint_position_arm_right": tf.Tensor(6, dtype=float32), # joint positions of the right arm
            "joint_position_torso": tf.Tensor(4, dtype=float32), # joint positions of the torso
            "joint_velocity_arm_left": tf.Tensor(6, dtype=float32), # joint velocities of the left arm
            "joint_velocity_arm_right": tf.Tensor(6, dtype=float32), # joint velocities of the right arm
            "last_action": tf.Tensor(26, dtype=float32), # history of the last action
        },
        # action dimensions:
        # 26 = 6 (left arm) + 1 (left gripper) + 6 (right arm) + 1 (right gripper) + 6 (torso) + 6 (base)
        "action": tf.Tensor(26, dtype=float32),  # robot action, consists of [6x joint velocities, 1x gripper position]
        "segment_idx": tf.Scalar(dtype=int32),  # index of the segment in the episode
        "variant_idx": tf.Scalar(dtype=int32), 
    },
}

Example

We provide an example script to load our RLDS dataset and transform some episodes into mp4 video format (head camera).

import tensorflow_datasets as tfds
import tyro
import os
import imageio
from tqdm import tqdm

def main(
    dataset_name: str, 
    data_dir: str, 
    output_dir: str = "extracted_videos",
    num_trajs: int = 10
):
    ds = tfds.load(dataset_name, split='train', data_dir=data_dir)
    print(f"Successfully loaded dataset: {dataset_name}")

    os.makedirs(output_dir, exist_ok=True)
    print(f"Videos will be saved to: {output_dir}")

    for i, episode in enumerate(tqdm(ds.take(num_trajs), total=num_trajs, desc="Exporting videos")):
        head_frames = []
        
        for step in episode['steps']:
            head_rgb_image = step['observation']['image_camera_head'].numpy()
            head_frames.append(head_rgb_image)
            instruction = step['language_instruction'].numpy().decode('utf-8')

        video_path = os.path.join(output_dir, f"traj_{i}_head_rgb.mp4")
        try:
            imageio.mimsave(video_path, head_frames, fps=15)
            print(f"Saved video for episode {i} to {video_path} with instruction: '{instruction}'")
        except Exception as e:
            print(f"Error saving video for episode {i}: {e}")

if __name__ == '__main__':
    tyro.cli(main)

πŸ“œ Citation

All the data and code within this repo are under CC BY-NC-SA 4.0. If you use our dataset or models, please cite:

@article{galaxea2025,
  title={Galaxea G0: Open-World Dataset and Dual-System VLA Model},
  author={Galaxea Team},
  journal={arXiv preprint arXiv:XXXX.XXXXX},
  year={2025}
}
Downloads last month
45,602