Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,138 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
size_categories:
|
7 |
+
- n>1T
|
8 |
+
tags:
|
9 |
+
- real-world
|
10 |
+
- dual-arm
|
11 |
+
- whole body control
|
12 |
+
- manipulation
|
13 |
---
|
14 |
+
|
15 |
+
# π Galaxea Open-World Dataset
|
16 |
+
[](https://opengalaxea.github.io/G0/)
|
17 |
+
[](https://github.com/OpenGalaxea/G0/blob/main/Galaxea_G0_report.pdf)
|
18 |
+
[](https://opengalaxea.github.io/G0/)
|
19 |
+
[](https://opengalaxea.github.io/G0/visualizer/index.html)
|
20 |
+
[](https://www.modelscope.cn/organization/Galaxea)
|
21 |
+
|
22 |
+
## Key features
|
23 |
+
- **500+ hours** of real-world mobile manipulation data.
|
24 |
+
- All data collected using **one uniform robotic embodiment** for consistency.
|
25 |
+
- Fine-grained **subtask language annotations**.
|
26 |
+
- Covers **residential**, **kitchen**, **retail**, and **office** settings.
|
27 |
+
- Dataset in **RLDS** format.
|
28 |
+
|
29 |
+
## Dataset Structure
|
30 |
+
**For convenience, we divided the 500 hours of data into four equal parts by time. We also provide a small sample dataset for quick start.**
|
31 |
+
```
|
32 |
+
rlds
|
33 |
+
βββ part1_r1_lite
|
34 |
+
β βββ 1.0.0
|
35 |
+
β β βββ dataset_info.json
|
36 |
+
β β βββ features.json
|
37 |
+
β β βββ merge_dataset_large_r1_lite-train.tfrecord-00000-of-02048
|
38 |
+
β β βββ ...
|
39 |
+
β β βββ merge_dataset_large_r1_lite-train.tfrecord-02047-of-02048
|
40 |
+
βββ part2_r1_lite
|
41 |
+
βββ part3_r1_lite
|
42 |
+
βββ part4_r1_lite
|
43 |
+
βββ sample
|
44 |
+
β βββ 1.0.0
|
45 |
+
β β βββ merge_dataset_large_r1_lite-train.tfrecord-00000-of-01024
|
46 |
+
β β βββ ...
|
47 |
+
β β βββ merge_dataset_large_r1_lite-train.tfrecord-01023-of-01024
|
48 |
+
```
|
49 |
+
|
50 |
+
## Dataset Schema
|
51 |
+
|
52 |
+
```
|
53 |
+
OpenGalaxeaDataset = {
|
54 |
+
"episode_metadata": {
|
55 |
+
"file_path": tf.Text, # path to the original data file
|
56 |
+
},
|
57 |
+
"steps": {
|
58 |
+
"is_first": tf.Scalar(dtype=bool), # true on first step of the episode
|
59 |
+
"is_last": tf.Scalar(dtype=bool), # true on last step of the episode
|
60 |
+
|
61 |
+
"language_instruction": tf.Text, # language instruction, format: "high level"@"low level chinese"@"low level english"
|
62 |
+
"observation": {
|
63 |
+
"base_velocity": tf.Tensor(3, dtype=float32), # robot base velocity
|
64 |
+
"gripper_state_left": tf.Tensor(1, dtype=float32), # left gripper state, 0-close and 100-open
|
65 |
+
"gripper_state_right": tf.Tensor(1, dtype=float32), # right gripper state, 0-close and 100-open
|
66 |
+
"depth_camera_wrist_left": tf.Tensor(224, 224, 1, dtype=uint16), # wrist camera depth left viewpoint, unit: mm
|
67 |
+
"depth_camera_wrist_right": tf.Tensor(224, 224, 1, dtype=uint16), # wrist camera depth right viewpoint, unit: mm
|
68 |
+
"image_camera_head": tf.Tensor(224, 224, 3, dtype=uint8), # head camera RGB viewpoint
|
69 |
+
"image_camera_wrist_left": tf.Tensor(224, 224, 3, dtype=uint8), # wrist camera RGB left viewpoint
|
70 |
+
"image_camera_wrist_right": tf.Tensor(224, 224, 3, dtype=uint8), # wrist camera RGB right viewpoint
|
71 |
+
"joint_position_arm_left": tf.Tensor(6, dtype=float32), # joint positions of the left arm
|
72 |
+
"joint_position_arm_right": tf.Tensor(6, dtype=float32), # joint positions of the right arm
|
73 |
+
"joint_position_torso": tf.Tensor(4, dtype=float32), # joint positions of the torso
|
74 |
+
"joint_velocity_arm_left": tf.Tensor(6, dtype=float32), # joint velocities of the left arm
|
75 |
+
"joint_velocity_arm_right": tf.Tensor(6, dtype=float32), # joint velocities of the right arm
|
76 |
+
"last_action": tf.Tensor(26, dtype=float32), # history of the last action
|
77 |
+
},
|
78 |
+
# action dimensions:
|
79 |
+
# 26 = 6 (left arm) + 1 (left gripper) + 6 (right arm) + 1 (right gripper) + 6 (torso) + 6 (base)
|
80 |
+
"action": tf.Tensor(26, dtype=float32), # robot action, consists of [6x joint velocities, 1x gripper position]
|
81 |
+
"segment_idx": tf.Scalar(dtype=int32), # index of the segment in the episode
|
82 |
+
"variant_idx": tf.Scalar(dtype=int32),
|
83 |
+
},
|
84 |
+
}
|
85 |
+
```
|
86 |
+
|
87 |
+
## Example
|
88 |
+
|
89 |
+
We provide an example script to load our RLDS dataset and transform some episodes into mp4 video format (head camera).
|
90 |
+
|
91 |
+
```python
|
92 |
+
import tensorflow_datasets as tfds
|
93 |
+
import tyro
|
94 |
+
import os
|
95 |
+
import imageio
|
96 |
+
from tqdm import tqdm
|
97 |
+
|
98 |
+
def main(
|
99 |
+
dataset_name: str,
|
100 |
+
data_dir: str,
|
101 |
+
output_dir: str = "extracted_videos",
|
102 |
+
num_trajs: int = 10
|
103 |
+
):
|
104 |
+
ds = tfds.load(dataset_name, split='train', data_dir=data_dir)
|
105 |
+
print(f"Successfully loaded dataset: {dataset_name}")
|
106 |
+
|
107 |
+
os.makedirs(output_dir, exist_ok=True)
|
108 |
+
print(f"Videos will be saved to: {output_dir}")
|
109 |
+
|
110 |
+
for i, episode in enumerate(tqdm(ds.take(num_trajs), total=num_trajs, desc="Exporting videos")):
|
111 |
+
head_frames = []
|
112 |
+
|
113 |
+
for step in episode['steps']:
|
114 |
+
head_rgb_image = step['observation']['image_camera_head'].numpy()
|
115 |
+
head_frames.append(head_rgb_image)
|
116 |
+
instruction = step['language_instruction'].numpy().decode('utf-8')
|
117 |
+
|
118 |
+
video_path = os.path.join(output_dir, f"traj_{i}_head_rgb.mp4")
|
119 |
+
try:
|
120 |
+
imageio.mimsave(video_path, head_frames, fps=15)
|
121 |
+
print(f"Saved video for episode {i} to {video_path} with instruction: '{instruction}'")
|
122 |
+
except Exception as e:
|
123 |
+
print(f"Error saving video for episode {i}: {e}")
|
124 |
+
|
125 |
+
if __name__ == '__main__':
|
126 |
+
tyro.cli(main)
|
127 |
+
```
|
128 |
+
## π Citation
|
129 |
+
|
130 |
+
All the data and code within this repo are under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). If you use our dataset or models, please cite:
|
131 |
+
|
132 |
+
```bibtex
|
133 |
+
@article{galaxea2025,
|
134 |
+
title={Galaxea G0: Open-World Dataset and Dual-System VLA Model},
|
135 |
+
author={Galaxea Team},
|
136 |
+
journal={arXiv preprint arXiv:XXXX.XXXXX},
|
137 |
+
year={2025}
|
138 |
+
}
|