Datasets:
metadata
configs:
- config_name: all
data_files: '*/*.tar'
default: true
- config_name: ahju
data_files: ahju/*.tar
- config_name: bboblackboxoffice
data_files: bboblackboxoffice/*.tar
- config_name: dangerousperson2.0
data_files: dangerousperson2.0/*.tar
- config_name: greenbeanmediaofficial
data_files: greenbeanmediaofficial/*.tar
- config_name: hieggo1001
data_files: hieggo1001/*.tar
- config_name: hkcrime
data_files: hkcrime/*.tar
- config_name: jerson8964
data_files: jerson8964/*.tar
- config_name: maviskuku
data_files: maviskuku/*.tar
- config_name: mingjai14
data_files: mingjai14/*.tar
- config_name: mm.millmilk
data_files: mm.millmilk/*.tar
- config_name: mpweekly
data_files: mpweekly/*.tar
- config_name: pinkytalks
data_files: pinkytalks/*.tar
- config_name: pricehongkongofficial
data_files: pricehongkongofficial/*.tar
- config_name: sunchannelhk
data_files: sunchannelhk/*.tar
- config_name: thedoshow0909
data_files: thedoshow0909/*.tar
- config_name: unwire
data_files: unwire/*.tar
license: mit
task_categories:
- automatic-speech-recognition
language:
- zh
- yue
size_categories:
- 100K<n<1M
Cantonese Audio Dataset from YouTube
This dataset contains Cantonese audio segments and creator uploaded transcripts (likely higher quality) extracted from various YouTube channels, along with corresponding transcript metadata. The data is intended for training automatic speech recognition (ASR) models.
Data Source and Processing
The data was obtained through the following process:
- Download: Audio (
.m4a
) and available Cantonese subtitles (.srt
forzh-TW
,zh-HK
,zh-Hant
) were downloaded from selected YouTube channels. This raw data, along with video metadata (metadata.csv
), is stored initially in adata/{channel_id}/
directory structure. - Segmentation: The raw audio files were segmented based on the timing information in the
.srt
files.- Audio files are splitted by SRT segments and then combined to a maximum duration less than but close to 30 seconds per group for Whisper.
- The corresponding audio portions for each group are extracted using
ffmpeg
and saved as.mp3
files at a 16000 Hz sample rate. - Metadata for each segment, including channel/video info and the text/timing of subtitles within the segment, is saved in a corresponding
.json
file.
Intermediate Dataset Structure (dataset
directory)
Before being packaged into TAR archives for Hugging Face, the segmented data resides in the dataset
directory with the following structure:
dataset/
βββ {channel_id}/ # Directory named after the YouTube channel ID
βββ {video_id}/ # Directory named after the YouTube video ID
βββ {video_id}_{group_name}.mp3 # Segmented audio file
βββ {video_id}_{group_name}.json # Corresponding metadata file
βββ ...
{channel_id}
: The ID of the YouTube channel (e.g.,greenbeanmediaofficial
).{video_id}
: The unique identifier for the YouTube video.{group_name}
: Represents the subtitles included in the segment. It's either the index of the first subtitle (e.g.,1
) if the group contains only one, or a range indicating the first and last subtitle indices (e.g.,1-5
) if the group contains multiple subtitles.
Dataset Summary
The dataset comprises audio from the following channels:
Channel | Videos | Duration | Percent
---------------------- | ----------- | ------------ | -------
AhJu | 132 videos | 28.81 hours | 1.56%
BBOBlackboxoffice | 122 videos | 32.66 hours | 1.76%
DangerousPerson2.0 | 114 videos | 70.53 hours | 3.81%
greenbeanmediaofficial | 594 videos | 179.97 hours | 9.71%
hieggo1001 | 1251 videos | 279.30 hours | 15.07%
hkcrime | 99 videos | 35.06 hours | 1.89%
JERSON8964 | 500 videos | 97.60 hours | 5.27%
maviskuku | 165 videos | 29.21 hours | 1.58%
mingjai14 | 158 videos | 43.85 hours | 2.37%
mm.millmilk | 958 videos | 271.25 hours | 14.64%
MPWeekly | 1119 videos | 156.45 hours | 8.44%
pinkytalks | 125 videos | 20.72 hours | 1.12%
pricehongkongofficial | 959 videos | 131.94 hours | 7.12%
SunChannelHK | 1160 videos | 409.18 hours | 22.08%
TheDoShow0909 | 23 videos | 17.78 hours | 0.96%
unwire | 345 videos | 48.53 hours | 2.62%
---------------------- | ----------- | ------------ | -------
Total | 7824 videos | 1852.83 hours| 100.00%
Loading the Data
You can load the data using the Hugging Face datasets
library:
import os
from datasets import load_dataset
ds = load_dataset(
"OrcinusOrca/YouTube-Cantonese",
"all", # or channel_id as config
split="train",
streaming=False, # or True
num_proc=os.cpu_count(),
)