YouTube-Cantonese / README.md
OrcinusOrca's picture
Update README.md
255bb23 verified
---
configs:
- config_name: all
data_files: "*/*.tar"
default: true
- config_name: ahju
data_files: ahju/*.tar
- config_name: bboblackboxoffice
data_files: bboblackboxoffice/*.tar
- config_name: dangerousperson2.0
data_files: dangerousperson2.0/*.tar
- config_name: greenbeanmediaofficial
data_files: greenbeanmediaofficial/*.tar
- config_name: hieggo1001
data_files: hieggo1001/*.tar
- config_name: hkcrime
data_files: hkcrime/*.tar
- config_name: jerson8964
data_files: jerson8964/*.tar
- config_name: maviskuku
data_files: maviskuku/*.tar
- config_name: mingjai14
data_files: mingjai14/*.tar
- config_name: mm.millmilk
data_files: mm.millmilk/*.tar
- config_name: mpweekly
data_files: mpweekly/*.tar
- config_name: pinkytalks
data_files: pinkytalks/*.tar
- config_name: pricehongkongofficial
data_files: pricehongkongofficial/*.tar
- config_name: sunchannelhk
data_files: sunchannelhk/*.tar
- config_name: thedoshow0909
data_files: thedoshow0909/*.tar
- config_name: unwire
data_files: unwire/*.tar
license: mit
task_categories:
- automatic-speech-recognition
language:
- zh
- yue
size_categories:
- 100K<n<1M
---
# Cantonese Audio Dataset from YouTube
This dataset contains Cantonese audio segments and **creator uploaded** transcripts (likely higher quality) extracted from various YouTube channels, along with corresponding transcript metadata. The data is intended for training automatic speech recognition (ASR) models.
## Data Source and Processing
The data was obtained through the following process:
1. **Download:** Audio (`.m4a`) and available Cantonese subtitles (`.srt` for `zh-TW`, `zh-HK`, `zh-Hant`) were downloaded from selected YouTube channels. This raw data, along with video metadata (`metadata.csv`), is stored initially in a `data/{channel_id}/` directory structure.
2. **Segmentation:** The raw audio files were segmented based on the timing information in the `.srt` files.
- Audio files are splitted by SRT segments and then combined to a maximum duration less than but close to 30 seconds per group for Whisper.
- The corresponding audio portions for each group are extracted using `ffmpeg` and saved as `.mp3` files at a 16000 Hz sample rate.
- Metadata for each segment, including channel/video info and the text/timing of subtitles within the segment, is saved in a corresponding `.json` file.
## Intermediate Dataset Structure (`dataset` directory)
Before being packaged into TAR archives for Hugging Face, the segmented data resides in the `dataset` directory with the following structure:
```
dataset/
└── {channel_id}/ # Directory named after the YouTube channel ID
└── {video_id}/ # Directory named after the YouTube video ID
β”œβ”€β”€ {video_id}_{group_name}.mp3 # Segmented audio file
β”œβ”€β”€ {video_id}_{group_name}.json # Corresponding metadata file
└── ...
```
- **`{channel_id}`:** The ID of the YouTube channel (e.g., `greenbeanmediaofficial`).
- **`{video_id}`:** The unique identifier for the YouTube video.
- **`{group_name}`:** Represents the subtitles included in the segment. It's either the index of the first subtitle (e.g., `1`) if the group contains only one, or a range indicating the first and last subtitle indices (e.g., `1-5`) if the group contains multiple subtitles.
## Dataset Summary
The dataset comprises audio from the following channels:
```
Channel | Videos | Duration | Percent
---------------------- | ----------- | ------------ | -------
AhJu | 132 videos | 28.81 hours | 1.56%
BBOBlackboxoffice | 122 videos | 32.66 hours | 1.76%
DangerousPerson2.0 | 114 videos | 70.53 hours | 3.81%
greenbeanmediaofficial | 594 videos | 179.97 hours | 9.71%
hieggo1001 | 1251 videos | 279.30 hours | 15.07%
hkcrime | 99 videos | 35.06 hours | 1.89%
JERSON8964 | 500 videos | 97.60 hours | 5.27%
maviskuku | 165 videos | 29.21 hours | 1.58%
mingjai14 | 158 videos | 43.85 hours | 2.37%
mm.millmilk | 958 videos | 271.25 hours | 14.64%
MPWeekly | 1119 videos | 156.45 hours | 8.44%
pinkytalks | 125 videos | 20.72 hours | 1.12%
pricehongkongofficial | 959 videos | 131.94 hours | 7.12%
SunChannelHK | 1160 videos | 409.18 hours | 22.08%
TheDoShow0909 | 23 videos | 17.78 hours | 0.96%
unwire | 345 videos | 48.53 hours | 2.62%
---------------------- | ----------- | ------------ | -------
Total | 7824 videos | 1852.83 hours| 100.00%
```
## Loading the Data
You can load the data using the Hugging Face `datasets` library:
```python
import os
from datasets import load_dataset
ds = load_dataset(
"OrcinusOrca/YouTube-Cantonese",
"all", # or channel_id as config
split="train",
streaming=False, # or True
num_proc=os.cpu_count(),
)
```