Datasets:
metadata
license: cc-by-nc-4.0
tags:
- music
- documents
- end-to-end
- full-page
- system-level
annotations_creators:
- manually expert-generated
pretty_name: Jazzmus
size_categories:
- 1K<n<10K
task_categories:
- image-to-text
- image-segmentation
- text-retrieval
subtasks:
- document-retrieval
extra_gated_fields:
Affiliation: text
⚠️ Work in Progress! JAZZMUS ⚠️
Overview
JAZZMUS is a dataset of handwritten jazz lead sheet scores developed at the University of Alicante at the Pattern Recognition and Artificial Intelligence Group.
Use Cases:
- Optical Music Recognition (OMR): system-level, full-page
- Image Segmentation: music regions
Dataset Details
Each page includes the corresponding agnostic symbol sequences.
JAZZMUS usage 📖
JAZZMUS is available upon request at HuggingFace.
To download from HuggingFace:
- Gain access to the dataset and get your HF access token from: https://huggingface.co/settings/tokens.
- Install dependencies and login HF:
- Install Python
- Run
pip install pillow datasets huggingface_hub[cli]
- Login by
huggingface-cli login
and paste the HF access token. Check here for details.
- Use the following code to load SMB and extract the regions:
import datasets
import matplotlib.pyplot as plt
# Here we just load 10 samples
jazzmus_d = datasets.load_dataset("PRAIG/JAZZMUS", split="train[:10]")
ID = 6 # score id
music = jazzmus_d[ID]["regions"]["music"]
chords = jazzmus_d[ID]["regions"]["chords"]
both = jazzmus_d[ID]["regions"]["both"]
plt.figure(figsize=(10, 10))
def plot_box(bbox, color, alpha=0.5):
box = bbox["bounding_box"]
fromx, fromy, tox, toy = box["fromX"], box["fromY"], box["toX"], box["toY"]
x, y = fromx, fromy
w, h = tox - fromx, toy - fromy
plt.gca().add_patch(
plt.Rectangle((x, y), w, h, fill=False, edgecolor=color, lw=1.5, alpha=alpha)
)
for bbox_m, bbox_c, bbox_b in zip(music, chords, both):
plot_box(bbox_m, "red")
plot_box(bbox_c, "blue")
plot_box(bbox_b, "green")
plt.tight_layout()
plt.axis("off")
plt.imshow(jazzmus_d[ID]["image"])
Citation
If you use our work, please cite us:
@preprint{,
author = {},
title = {},
year = {2025}
}