Dataset Viewer
Auto-converted to Parquet
task_id
stringlengths
17
19
prompt
stringlengths
122
728
canonical_solution
stringlengths
97
1.53k
test
stringlengths
192
1.54k
entry_point
stringlengths
3
50
difficulty_scale
stringclasses
3 values
qiskitHumanEval/0
Generate a Quantum Circuit for the given int 'n_qubits' and return it. You must implement this using a function named `create_quantum_circuit` with the following arguments: n_qubits.
from qiskit import QuantumCircuit def create_quantum_circuit(n_qubits): return QuantumCircuit(n_qubits)
from qiskit import QuantumCircuit def check(candidate): result = candidate(3) assert isinstance(result, QuantumCircuit) assert result.num_qubits == 3 check(create_quantum_circuit)
create_quantum_circuit
basic
qiskitHumanEval/1
Define a phi plus bell state using Qiskit, transpile the circuit using pass manager with optimization level as 1, run it using Qiskit Sampler with the Aer simulator as backend and return the counts dictionary. You must implement this using a function named `run_bell_state_simulator` with no arguments.
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def run_bell_state_simulator(): bell = QuantumCircuit(2) bell.h(0) bell.cx(0, 1) bell.measure_all() backend = AerSimulator() pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) isa_circuit = pass_manager.run(bell) sampler = Sampler(mode=backend) result = sampler.run([isa_circuit], shots=1000).result() return result[0].data.meas.get_counts()
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): result = candidate() assert isinstance(result, dict) assert result.keys() == {"00", "11"} assert 0.4 < (result["00"] / sum(result.values())) < 0.6 check(run_bell_state_simulator)
run_bell_state_simulator
basic
qiskitHumanEval/2
Return a phi+ Bell statevector. You must implement this using a function named `create_bell_statevector` with no arguments.
from qiskit.quantum_info import Statevector from math import sqrt def create_bell_statevector(): return (Statevector.from_label("00") + Statevector.from_label("11")) / sqrt(2)
from qiskit.quantum_info import Statevector from math import sqrt def check(candidate): result = candidate() solution = (Statevector.from_label("00") + Statevector.from_label("11")) / sqrt(2) assert result.equiv(solution) check(create_bell_statevector)
create_bell_statevector
basic
qiskitHumanEval/3
Generate a QuantumCircuit for a 3 qubit GHZ State and measure it. If `drawing` is True, return both the circuit object and the Matplotlib drawing of the circuit, otherwise return just the circuit object. You must implement this using a function named `create_ghz` with the following arguments: drawing.
from qiskit import QuantumCircuit def create_ghz(drawing=False): ghz = QuantumCircuit(3) ghz.h(0) ghz.cx(0, 1) ghz.cx(0, 2) ghz.measure_all() if drawing: return ghz, ghz.draw(output="mpl") return ghz
from qiskit import QuantumCircuit def check(candidate): from qiskit.quantum_info import Statevector import math import matplotlib def check_circuit(circuit): assert circuit.data[-1].operation.name == "measure" circuit.remove_final_measurements() ghz_statevector = ( Statevector.from_label("000") + Statevector.from_label("111") ) / math.sqrt(2) assert Statevector.from_instruction(circuit).equiv(ghz_statevector) circuit = candidate() check_circuit(circuit) circuit, drawing = candidate(drawing=True) check_circuit(circuit) assert isinstance(drawing, matplotlib.figure.Figure) check(create_ghz)
create_ghz
basic
qiskitHumanEval/4
Write the function that converts the matrix [[0, 0, 0, 1],[0, 0, 1, 0],[1, 0, 0, 0],[0, 1, 0, 0]] into a unitary gate and apply it to a Quantum Circuit. Then return the circuit. You must implement this using a function named `create_unitary_from_matrix` with no arguments.
from qiskit import QuantumCircuit def create_unitary_from_matrix(): matrix = [[0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0]] circuit = QuantumCircuit(2) circuit.unitary(matrix, [0, 1]) return circuit
from qiskit import QuantumCircuit def check(candidate): from qiskit.quantum_info import Operator matrix = [[0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0]] solution = QuantumCircuit(2) solution.unitary(matrix, [0, 1]) assert Operator(solution).equiv(Operator(candidate())) check(create_unitary_from_matrix)
create_unitary_from_matrix
basic
qiskitHumanEval/5
Return a QuantumCircuit that prepares the binary state 1. You must implement this using a function named `create_state_prep` with no arguments.
from qiskit import QuantumCircuit def create_state_prep(): qc = QuantumCircuit(2) qc.prepare_state("01") return qc
from qiskit import QuantumCircuit def check(candidate): from qiskit.quantum_info import Statevector candidate_circuit = candidate() assert isinstance(candidate_circuit, QuantumCircuit) candidate_sv = Statevector.from_instruction(candidate()) refrence_sv = Statevector.from_label("1".zfill(candidate_sv.num_qubits)) assert candidate_sv.equiv(refrence_sv) check(create_state_prep)
create_state_prep
basic
qiskitHumanEval/6
Return a QuantumCircuit that prepares the state |1> on an n-qubit register. You must implement this using a function named `create_state_prep` with the following arguments: num_qubits.
from qiskit import QuantumCircuit def create_state_prep(num_qubits): qc = QuantumCircuit(num_qubits) qc.prepare_state(1) return qc
from qiskit import QuantumCircuit def check(candidate): from qiskit.quantum_info import Statevector candidate_circuit = candidate(num_qubits=5) assert isinstance(candidate_circuit, QuantumCircuit) assert candidate_circuit.num_qubits == 5 candidate_sv = Statevector.from_instruction(candidate_circuit) refrence_sv = Statevector.from_label("1".zfill(candidate_sv.num_qubits)) assert candidate_sv.equiv(refrence_sv) check(create_state_prep)
create_state_prep
basic
qiskitHumanEval/7
Generate a 1 qubit QuantumCircuit with a parametrized Rx gate with parameter "theta". You must implement this using a function named `create_parametrized_gate` with no arguments.
from qiskit.circuit import QuantumCircuit, Parameter def create_parametrized_gate(): theta = Parameter("theta") quantum_circuit = QuantumCircuit(1) quantum_circuit.rx(theta, 0) return quantum_circuit
from qiskit.circuit import QuantumCircuit, Parameter def check(candidate): circuit = candidate() assert circuit.num_qubits == 1 assert circuit.data[0].operation.name == "rx" assert circuit.data[0].operation.params[0].name == "theta" check(create_parametrized_gate)
create_parametrized_gate
basic
qiskitHumanEval/8
Return a 1-qubit QuantumCircuit with a parametrized Rx gate and parameter "theta". If value is not None, return the circuit with value assigned to theta. You must implement this using a function named `rx_gate` with the following arguments: value.
from qiskit.circuit import QuantumCircuit, Parameter def rx_gate(value=None): theta = Parameter("theta") quantum_circuit = QuantumCircuit(1) quantum_circuit.rx(theta, 0) if value is not None: return quantum_circuit.assign_parameters({theta: value}) return quantum_circuit
from qiskit.circuit import QuantumCircuit, Parameter def check(candidate): from qiskit.quantum_info import Operator import math circuit = candidate() assert circuit.num_qubits == 1 assert circuit.data[0].operation.name == "rx" assert circuit.data[0].operation.params[0].name == "theta" candidate_circuit = candidate(value=math.pi * 3 / 4) solution_circuit = QuantumCircuit(1) solution_circuit.rx((math.pi * 3 / 4), 0) assert Operator(solution_circuit).equiv(Operator(candidate_circuit)) check(rx_gate)
rx_gate
basic
qiskitHumanEval/9
Generate an EfficientSU2 circuit with 3 qubits, 1 reps and make insert_barriers true. You must implement this using a function named `create_efficientSU2` with no arguments.
from qiskit.circuit.library import EfficientSU2 def create_efficientSU2(): circuit = EfficientSU2(num_qubits=3, reps=1, insert_barriers=True) return circuit
from qiskit.circuit.library import EfficientSU2 def check(candidate): result = candidate() solution = EfficientSU2(num_qubits=3, reps=1, insert_barriers=True) assert isinstance(solution, EfficientSU2) assert solution.reps == result.reps assert solution.num_qubits == result.num_qubits check(create_efficientSU2)
create_efficientSU2
basic
qiskitHumanEval/10
Create a Qiskit circuit with the following unitary [[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]], consisting of only single-qubit gates and CX gates, then transpile the circuit using pass manager with optimization level as 1. You must implement this using a function named `create_operator` with no arguments.
from qiskit.circuit import QuantumCircuit from qiskit.quantum_info.operators import Operator from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def create_operator(): XX = Operator([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]]) circ = QuantumCircuit(2, 2) circ.append(XX, [0, 1]) pass_manager = generate_preset_pass_manager(optimization_level=1, basis_gates=["u", "cx"]) return pass_manager.run(circ)
from qiskit.circuit import QuantumCircuit from qiskit.quantum_info.operators import Operator from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): result = candidate() XX = Operator([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]]) assert XX.equiv(Operator(result)) for inst in result.data: if inst.operation.num_qubits > 1: assert inst.operation.name in ["cx", "barrier"] check(create_operator)
create_operator
basic
qiskitHumanEval/11
Return the statevector from a circuit. You must implement this using a function named `get_statevector` with the following arguments: circuit.
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector def get_statevector(circuit): sv = Statevector.from_instruction(circuit) return sv
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector def check(candidate): test_circuit = QuantumCircuit(2) test_circuit.u(0.39702, 0.238798, 0.298374, 0) test_circuit.cx(0, 1) result = candidate(test_circuit) assert isinstance(result, Statevector) assert Statevector.from_instruction(test_circuit).equiv(result) check(get_statevector)
get_statevector
basic
qiskitHumanEval/12
Get unitary matrix for a phi plus bell circuit and return it. You must implement this using a function named `get_unitary` with no arguments.
from qiskit import QuantumCircuit from qiskit.quantum_info import Operator def get_unitary(): circ = QuantumCircuit(2) circ.h(0) circ.cx(0, 1) return Operator.from_circuit(circ).to_matrix()
from qiskit import QuantumCircuit from qiskit.quantum_info import Operator def check(candidate): result = candidate() solution = QuantumCircuit(2) solution.h(0) solution.cx(0, 1) assert Operator(solution).equiv(result) check(get_unitary)
get_unitary
basic
qiskitHumanEval/13
Create a quantum circuit that carries out a custom single-qubit rotation gate (U gate) with angles theta, phi and lambda all equal to pi/2. You must implement this using a function named `custom_rotation_gate` with no arguments.
from qiskit import QuantumCircuit import numpy as np def custom_rotation_gate(): circuit = QuantumCircuit(1) circuit.u(np.pi / 2, np.pi / 2, np.pi / 2, 0) return circuit
from qiskit import QuantumCircuit import numpy as np def check(candidate): from qiskit.quantum_info import Operator result = candidate() assert isinstance(result, QuantumCircuit) solution = QuantumCircuit(1) solution.u(np.pi / 2, np.pi / 2, np.pi / 2, 0) assert Operator(solution).equiv(Operator(result)) check(custom_rotation_gate)
custom_rotation_gate
basic
qiskitHumanEval/14
Run a phi plus Bell circuit using Qiskit Sampler with the Aer simulator as backend for 10 shots and return measurement results for each shots. To do so, transpile the circuit using a pass manager with optimization level as 1. You must implement this using a function named `bell_each_shot` with no arguments.
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def bell_each_shot(): bell = QuantumCircuit(2) # Apply gates bell.h(0) bell.cx(0, 1) bell.measure_all() # choose simulator backend backend = AerSimulator() # Transpile for simulator pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) bell_circ = pass_manager.run(bell) sampler = Sampler(mode=backend) result = sampler.run([bell_circ],shots=10).result() memory = result[0].data.meas.get_bitstrings() return memory
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): result = candidate() assert isinstance(result, list) assert len(result) > 0 assert set(result) == {"00", "11"} check(bell_each_shot)
bell_each_shot
basic
qiskitHumanEval/15
Transpile a bell circuit using pass manager with optimization level as 1, run it using Qiskit Sampler with the Aer simulator as backend and get the execution counts. You must implement this using a function named `noisy_bell` with no arguments.
from qiskit_ibm_runtime.fake_provider import FakeBelemV2 from qiskit_ibm_runtime import Sampler from qiskit_aer import AerSimulator from qiskit import QuantumCircuit from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def noisy_bell(): bell = QuantumCircuit(2) bell.h(0) bell.cx(0, 1) bell.measure_all() device_backend = FakeBelemV2() simulator = AerSimulator.from_backend(device_backend) pass_manager = generate_preset_pass_manager(optimization_level=1, backend=simulator) bell_circ = pass_manager.run(bell) sampler = Sampler(mode=simulator) result = sampler.run([bell_circ], shots=1000).result() counts = result[0].data.meas.get_counts() return counts
from qiskit_ibm_runtime.fake_provider import FakeBelemV2 from qiskit_ibm_runtime import Sampler from qiskit_aer import AerSimulator from qiskit import QuantumCircuit from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): result = candidate() assert isinstance(result, dict) assert (result["00"] + result["11"]) != sum(result.values()) check(noisy_bell)
noisy_bell
basic
qiskitHumanEval/16
For the given Quantum Circuit, return the transpiled circuit for the Fake Cairo V2 backend using pass manager with optimization level as 1. You must implement this using a function named `transpile_circuit` with the following arguments: circuit.
from qiskit_ibm_runtime.fake_provider import FakeCairoV2 from qiskit.transpiler import CouplingMap from qiskit import QuantumCircuit from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def transpile_circuit(circuit): backend = FakeCairoV2() coupling_map = CouplingMap(backend.configuration().coupling_map) pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend, coupling_map=coupling_map) return pass_manager.run(circuit)
from qiskit_ibm_runtime.fake_provider import FakeCairoV2 from qiskit.transpiler import CouplingMap from qiskit import QuantumCircuit from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): backend = FakeCairoV2() circuit = QuantumCircuit(4, 3) circuit.cx([0, 1, 2, 3], [1, 2, 3, 0]) t_circuit = candidate(circuit) assert t_circuit.num_qubits == backend.num_qubits for inst in t_circuit.data: assert inst.operation.name in backend.configuration().basis_gates check(transpile_circuit)
transpile_circuit
basic
qiskitHumanEval/17
Unroll circuit for the gateset: CX, ID, RZ, SX, X, U. You must implement this using a function named `unroll_circuit` with the following arguments: circuit.
from qiskit import QuantumCircuit from qiskit.circuit.library.standard_gates.equivalence_library import StandardEquivalenceLibrary as std_eqlib from qiskit.transpiler.passes import BasisTranslator from qiskit.transpiler import PassManager import numpy as np def unroll_circuit(circuit): pass_ = BasisTranslator(std_eqlib, ["cx", "id", "rz", "sx", "x", "u"]) pm = PassManager(pass_) return pm.run(circuit)
from qiskit import QuantumCircuit from qiskit.circuit.library.standard_gates.equivalence_library import StandardEquivalenceLibrary as std_eqlib from qiskit.transpiler.passes import BasisTranslator from qiskit.transpiler import PassManager import numpy as np def check(candidate): from qiskit.quantum_info import Operator trial_circuit = QuantumCircuit(2) trial_circuit.h(0) trial_circuit.u(0.3, 0.1, 0.1, 1) trial_circuit.cp(np.pi / 4, 0, 1) trial_circuit.h(0) output = candidate(trial_circuit) assert Operator(output).equiv(Operator(trial_circuit)) for inst in output.data: assert inst.operation.name in ["cx", "id", "rz", "sx", "x", "u"] check(unroll_circuit)
unroll_circuit
basic
qiskitHumanEval/18
Transpile a 10-qubit GHZ circuit for the Fake Sydney V2 backend using pass manager with no optimization. You must implement this using a function named `transpile_circuit_noopt` with no arguments.
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeSydneyV2 from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def transpile_circuit_noopt(): backend = FakeSydneyV2() ghz = QuantumCircuit(10) ghz.h(0) ghz.cx(0, range(1, 10)) ghz.measure_all() pass_manager = generate_preset_pass_manager(optimization_level=0, backend=backend) return pass_manager.run(ghz)
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeSydneyV2 from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): result = candidate() backend = FakeSydneyV2() # Optimization level 0 should use trivial qubit mapping # i.e. circuit qubit 'i' => device qubit 'i'. # This is very unlikely with higher optimization levels assert result.layout.initial_index_layout() == list(range(backend.num_qubits)) check(transpile_circuit_noopt)
transpile_circuit_noopt
basic
qiskitHumanEval/19
Transpile and map an 11-qubit GHZ circuit for the Fake Toronto V2 backend using pass manager with maximum transpiler optimization. You must implement this using a function named `transpile_circuit_maxopt` with no arguments.
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeTorontoV2 from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def transpile_circuit_maxopt(): backend = FakeTorontoV2() ghz = QuantumCircuit(11, 11) ghz.h(0) ghz.cx(0, range(1, 11)) ghz.barrier() pass_manager = generate_preset_pass_manager(optimization_level=3, backend=backend) return pass_manager.run(ghz)
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeTorontoV2 from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): result = candidate() result.remove_final_measurements() backend = FakeTorontoV2() # Check initial layout is not the trivial layout (this is very unlikely # if transpiled with optimization level 3) assert result.layout.initial_index_layout() != list(range(backend.num_qubits)) # Optimization level 3 should easily find circuits with depth < 200 assert result.depth() < 150 check(transpile_circuit_maxopt)
transpile_circuit_maxopt
intermediate
qiskitHumanEval/20
Using a pass manager with optimization level as 1, transpile and map a three-qubit GHZ circuit for the Fake Perth backend using custom initial layout: [2,4,6]. You must implement this using a function named `transpile_ghz_customlayout` with no arguments.
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakePerth from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def transpile_ghz_customlayout(): backend = FakePerth() ghz = QuantumCircuit(3) ghz.h(0) ghz.cx(0, [1, 2]) ghz.barrier() pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend, initial_layout=[2, 4, 6]) return pass_manager.run(ghz)
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakePerth from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): result = candidate() result.remove_final_measurements() backend = FakePerth() assert result.num_qubits == backend.num_qubits assert result.layout.initial_index_layout()[:3] == [2, 4, 6] check(transpile_ghz_customlayout)
transpile_ghz_customlayout
intermediate
qiskitHumanEval/21
Using a pass manager with optimization level as 1 and dense layout method, transpile and map a bell circuit for the Fake Oslo backend. You must implement this using a function named `transpile_circuit_dense` with no arguments.
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeOslo from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def transpile_circuit_dense(): backend = FakeOslo() bell = QuantumCircuit(2) bell.h(0) bell.cx(0, 1) pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend, layout_method="dense") solution_circ = pass_manager.run(bell) return solution_circ
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeOslo from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): result = candidate() backend = FakeOslo() assert result.num_qubits == backend.num_qubits check(transpile_circuit_dense)
transpile_circuit_dense
basic
qiskitHumanEval/22
Using a pass manager with optimization level as 1 and as-late-as-possible scheduling method, transpile and map a bell circuit for the Fake Auckland backend. Return the circuit. You must implement this using a function named `transpile_circuit_alap` with no arguments.
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeAuckland from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def transpile_circuit_alap(): backend = FakeAuckland() bell = QuantumCircuit(2) bell.h(0) bell.cx(0, 1) pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend, scheduling_method="alap") return pass_manager.run(bell)
from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeAuckland from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): result = candidate() backend = FakeAuckland() assert result.num_qubits == backend.num_qubits check(transpile_circuit_alap)
transpile_circuit_alap
basic
qiskitHumanEval/23
Create a constant oracle for use in a Deutsch-Jozsa experiment. The oracle takes two input bits (qubits 0 and 1) and writes to one output bit (qubit 2). You must implement this using a function named `dj_constant_oracle` with no arguments.
from qiskit import QuantumCircuit def dj_constant_oracle(): oracle = QuantumCircuit(3) oracle.x(2) return oracle
from qiskit import QuantumCircuit def check(candidate): from qiskit.quantum_info import Operator qc = QuantumCircuit(3) constant_0_oracle = Operator(qc) qc.x(2) constant_1_oracle = Operator(qc) result = Operator(candidate()) assert result.equiv(constant_0_oracle) or result.equiv(constant_1_oracle) check(dj_constant_oracle)
dj_constant_oracle
basic
qiskitHumanEval/24
Given a Deutsch-Jozsa oracle in which the final qubit is the "output" qubit, return True if the oracle is constant or False otherwise. You must implement this using a function named `dj_algorithm` with the following arguments: oracle.
from qiskit import QuantumCircuit from qiskit.primitives import StatevectorSampler from numpy import isclose def dj_algorithm(oracle): n = oracle.num_qubits qc = QuantumCircuit(n, n - 1) qc.x(n - 1) qc.h(range(n)) qc.compose(oracle, inplace=True) qc.h(range(n)) qc.measure(range(n - 1), range(n - 1)) counts = StatevectorSampler().run([qc]).result()[0].data.c.get_counts() return isclose(counts.get('00000000', 0), 1024)
from qiskit import QuantumCircuit from qiskit.primitives import StatevectorSampler from numpy import isclose def check(candidate): balanced = QuantumCircuit(5) balanced.cx(3, 4) assert candidate(balanced) == False constant = QuantumCircuit(9) constant.x(8) assert candidate(constant) == True check(dj_algorithm)
dj_algorithm
intermediate
qiskitHumanEval/25
Transpile a 7-qubit GHZ circuit using LookaheadSwap pass and the input custom coupling map. You must implement this using a function named `passmanager_Lookahead` with the following arguments: coupling.
from qiskit import QuantumCircuit from qiskit.transpiler import CouplingMap from qiskit.transpiler.passes import LookaheadSwap from qiskit.transpiler.passmanager import PassManager def passmanager_Lookahead(coupling): ghz = QuantumCircuit(7) ghz.h(0) ghz.cx(0, range(1, 7)) coupling_map = CouplingMap(couplinglist=coupling) ls = LookaheadSwap(coupling_map=coupling_map) pass_manager = PassManager(ls) lookahead_circ = pass_manager.run(ghz) return lookahead_circ
from qiskit import QuantumCircuit from qiskit.transpiler import CouplingMap from qiskit.transpiler.passes import LookaheadSwap from qiskit.transpiler.passmanager import PassManager def check(candidate): from qiskit.quantum_info import Statevector from qiskit.transpiler.passes import CheckMap from qiskit.converters import circuit_to_dag coupling = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]] coupling_map = CouplingMap(couplinglist=coupling) result = candidate(coupling) chkmp = CheckMap(coupling_map) chkmp.run(circuit_to_dag(result)) assert chkmp.property_set["is_swap_mapped"] == True solution = QuantumCircuit(7) solution.h(0) solution.cx(0, range(1, 7)) ls = LookaheadSwap(coupling_map=coupling_map) pass_manager = PassManager(ls) lookahead_circ = pass_manager.run(solution) assert Statevector.from_instruction(lookahead_circ).equiv(Statevector.from_instruction(result)) check(passmanager_Lookahead)
passmanager_Lookahead
intermediate
qiskitHumanEval/26
Construct a DAG circuit for a 3-qubit Quantum Circuit with the bell state applied on qubit 0 and 1. Finally return the DAG Circuit object. You must implement this using a function named `bell_dag` with no arguments.
from qiskit.dagcircuit import DAGCircuit from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.converters import circuit_to_dag def bell_dag(): q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) dag = circuit_to_dag(circ) return dag
from qiskit.dagcircuit import DAGCircuit from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.converters import circuit_to_dag def check(candidate): result = candidate() assert type(result) == DAGCircuit assert result.num_qubits() == 3 assert result.depth() == 3 assert dict(result.count_ops()) == {'h': 1, 'cx': 1, 'measure':1} check(bell_dag)
bell_dag
basic
qiskitHumanEval/27
Generate a DAG circuit for 3-qubit Quantum Circuit which consists of H gate on qubit 0 and CX gate on qubit 0 and 1. After converting the circuit to DAG, apply a Hadamard operation to the back of qubit 0 and return the DAGCircuit. You must implement this using a function named `apply_op_back` with no arguments.
from qiskit.dagcircuit import DAGCircuit from qiskit.converters import circuit_to_dag from qiskit.circuit.library import HGate from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit def apply_op_back(): q = QuantumRegister(3, "q") c = ClassicalRegister(3, "c") circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) dag = circuit_to_dag(circ) dag.apply_operation_back(HGate(), qargs=[q[0]]) return dag
from qiskit.dagcircuit import DAGCircuit from qiskit.converters import circuit_to_dag from qiskit.circuit.library import HGate from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit def check(candidate): from qiskit.quantum_info import Statevector from qiskit.converters import dag_to_circuit result = candidate() assert type(result) == DAGCircuit assert result.num_qubits() == 3 last_node = result.op_nodes()[-1] assert last_node.name == "h" assert len(result.descendants(last_node)) == 1 q = QuantumRegister(3, "q") c = ClassicalRegister(3, "c") circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.h(0) candidate_circ = dag_to_circuit(result) assert Statevector.from_instruction(circ).equiv(Statevector.from_instruction(candidate_circ)) check(apply_op_back)
apply_op_back
intermediate
qiskitHumanEval/28
Prepare phi plus and phi minus bell states and visualize their results in a histogram and return the histogram. You must implement this using a function named `visualize_bell_states` with no arguments.
from matplotlib.figure import Figure from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.visualization import plot_histogram def visualize_bell_states(): phi_plus = QuantumCircuit(2) phi_minus = QuantumCircuit(2) phi_plus.h(0) phi_plus.cx(0,1) phi_minus.x(0) phi_minus.h(0) phi_minus.cx(0,1) phi_plus.measure_all() phi_minus.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result_phi_plus = sampler.run([phi_plus], shots=1000).result() result_phi_minus = sampler.run([phi_minus], shots=1000).result() phi_plus_counts = result_phi_plus[0].data.meas.get_counts() phi_minus_counts = result_phi_minus[0].data.meas.get_counts() return plot_histogram([phi_plus_counts, phi_minus_counts], legend = ['|Φ+⟩ Count', '|Φ-⟩ Count'])
from matplotlib.figure import Figure from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.visualization import plot_histogram def check(candidate): from matplotlib.patches import Rectangle result = candidate() assert isinstance(result, Figure) gca = result.gca() assert {xlabel.get_text() for xlabel in gca.get_xticklabels()} == {"00", "11"} objs = gca.findobj(Rectangle) assert len(objs) >= 4 counts = [obj.get_height() for obj in objs[:4]] shots = counts[0] + counts[1] for i in range(4): assert round(counts[i]/shots, 1) == 0.5 check(visualize_bell_states)
visualize_bell_states
basic
qiskitHumanEval/29
Plot a circuit layout visualization for a transpiled bell circuit using a pass manager with optimization level as 1 for the Fake Athens V2 backend. You must implement this using a function named `plot_circuit_layout_bell` with no arguments.
from matplotlib.figure import Figure from qiskit.visualization import plot_circuit_layout from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeAthensV2 from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def plot_circuit_layout_bell(): backend = FakeAthensV2() bell = QuantumCircuit(2) bell.h(0) bell.cx(0,1) pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) brisbane_bell = pass_manager.run(bell) return (plot_circuit_layout(brisbane_bell, backend))
from matplotlib.figure import Figure from qiskit.visualization import plot_circuit_layout from qiskit import QuantumCircuit from qiskit_ibm_runtime.fake_provider import FakeAthensV2 from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): result = candidate() assert type(result) == Figure check(plot_circuit_layout_bell)
plot_circuit_layout_bell
intermediate
qiskitHumanEval/30
Plot a city_state for a bell circuit. You must implement this using a function named `plot_circuit_layout_bell` with no arguments.
from qiskit import QuantumCircuit from matplotlib.figure import Figure from qiskit.visualization import plot_state_city from qiskit.quantum_info import Statevector def plot_circuit_layout_bell(): bell = QuantumCircuit(2) bell.h(0) bell.cx(0,1) bell_state = Statevector(bell) plot_state_city(bell_state) return plot_state_city(bell_state)
from qiskit import QuantumCircuit from matplotlib.figure import Figure from qiskit.visualization import plot_state_city from qiskit.quantum_info import Statevector def check(candidate): result = candidate() assert type(result) == Figure assert len(result.axes) == 2 check(plot_circuit_layout_bell)
plot_circuit_layout_bell
basic
qiskitHumanEval/31
Run a Bell circuit on Qiskit Sampler and run the circuit on the Aer simulator with the seed set as 42. Return the resulting counts dictionary. You must implement this using a function named `sampler_qiskit` with no arguments.
from typing import Dict from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit_ibm_runtime.options import SamplerOptions def sampler_qiskit(): qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc.measure_all() options = SamplerOptions() options.simulator.seed_simulator=42 sampler = Sampler(mode=AerSimulator(), options=options) job = sampler.run([qc]) result = job.result()[0].data.meas.get_counts() return result
from typing import Dict from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit_ibm_runtime.options import SamplerOptions def check(candidate): result = candidate() assert result == {"00": 521, "11": 503} check(sampler_qiskit)
sampler_qiskit
intermediate
qiskitHumanEval/32
Run a Bell circuit on Qiskit Estimator and return expectation values for the bases II, XX, YY, ZZ. You must implement this using a function named `estimator_qiskit` with no arguments.
from numpy import float64 from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Estimator from qiskit.quantum_info import SparsePauliOp def estimator_qiskit(): observable = SparsePauliOp(["II","XX","YY","ZZ"], coeffs=[1, 1, -1, 1]) qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) estimator = Estimator(mode=AerSimulator()) job = estimator.run([(qc, observable)]) result = job.result()[0].data.evs.item() return result
from numpy import float64 from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Estimator from qiskit.quantum_info import SparsePauliOp def check(candidate): result = candidate() assert result == 4.0 check(estimator_qiskit)
estimator_qiskit
intermediate
qiskitHumanEval/33
Generate two random quantum circuits, each with 2 qubits and a depth of 2, using seed values of 0 and 1 respectively. Run the circuits using the Sampler on the Aer simulator with the seed set as 42 and return the counts for both circuits. You must implement this using a function named `run_multiple_sampler` with no arguments.
from typing import List from qiskit.circuit.random import random_circuit from qiskit_ibm_runtime import Sampler, SamplerOptions from qiskit_aer import AerSimulator def run_multiple_sampler(): circuits = ( random_circuit(2, 2, seed=0, measure=True).decompose(reps=1), random_circuit(2, 2, seed=1, measure=True).decompose(reps=1), ) options = SamplerOptions() options.simulator.seed_simulator=42 sampler = Sampler(mode=AerSimulator(), options=options) job = sampler.run(circuits) results = job.result() statevectors = [result.data.c.get_counts() for result in results] return statevectors
from typing import List from qiskit.circuit.random import random_circuit from qiskit_ibm_runtime import Sampler, SamplerOptions from qiskit_aer import AerSimulator def check(candidate): result = candidate() assert isinstance(result, list) assert result == [{"01": 1024}, {"00": 552, "01": 472}] check(run_multiple_sampler)
run_multiple_sampler
intermediate
qiskitHumanEval/34
Generate all four Bell states and execute them on the FakeAlgiers backend using SamplerV2 with batch mode. Each Bell state circuit will be transpiled with an optimization level of 3, with the seed 123 for the transpiler. Returns a dictionary where the keys are the Bell state names ['phi_plus', 'phi_minus', 'psi_plus', 'psi_minus'] and the values are the corresponding RuntimeJob objects and the batch id. You must implement this using a function named `run_jobs_on_batch` with no arguments.
from typing import Dict, Optional, Tuple from qiskit_ibm_runtime import Batch, Sampler from qiskit.primitives.primitive_job import PrimitiveJob from qiskit_ibm_runtime.fake_provider import FakeAlgiers from qiskit.transpiler import CouplingMap from qiskit import QuantumCircuit from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def run_jobs_on_batch(): def create_bell_circuit(state): "Helper function to create bell state" qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) if state == "phi_minus": qc.z(0) elif state == "psi_plus": qc.x(1) elif state == "psi_minus'": qc.x(1) qc.z(0) qc.measure_all() return qc # Create bell states bell_states = ["phi_plus", "phi_minus", "psi_plus", "psi_minus"] circuits = [create_bell_circuit(state) for state in bell_states] # Setting backend and pass managers backend = FakeAlgiers() coupling_map = CouplingMap(backend.configuration().coupling_map) pm = generate_preset_pass_manager(optimization_level = 3, backend=backend, seed_transpiler=123, coupling_map=coupling_map) # Running jobs using batch with Batch(backend=backend) as batch: jobs = {} sampler = Sampler(mode=batch) for bell_state, bell_circuit in zip(bell_states, circuits): isa_bell_circuit = pm.run(bell_circuit) jobs[bell_state] = sampler.run([(isa_bell_circuit)]) return jobs
from typing import Dict, Optional, Tuple from qiskit_ibm_runtime import Batch, Sampler from qiskit.primitives.primitive_job import PrimitiveJob from qiskit_ibm_runtime.fake_provider import FakeAlgiers from qiskit.transpiler import CouplingMap from qiskit import QuantumCircuit from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): from numpy import isclose jobs = candidate() reference_data = { 'phi_plus': {'00': 0.10, '11': 0.10}, 'phi_minus': {'00': 0.10, '11': 0.10}, 'psi_plus': {'01': 0.10, '10': 0.10}, 'psi_minus': {'01': 0.1, '10': 0.10} } assert isinstance(jobs, dict) assert set(jobs.keys()) == set(reference_data.keys()) for state, job in jobs.items(): assert isinstance(job, PrimitiveJob) assert job.job_id() is not None counts = job.result()[0].data.meas.get_counts() shots = 4096 normalized_counts = {k: v/shots for k, v in counts.items()} for key, value in reference_data[state].items(): assert isclose(normalized_counts[key], value, atol=1e-01) check(run_jobs_on_batch)
run_jobs_on_batch
difficult
qiskitHumanEval/35
Run an EfficientSU2 circuit with 5 qubits, 2 repetitions, and pairwise entanglement on the FakeAuckland backend. The circuit should be transpiled with an optimization level of 1 and a transpiler seed of 789. Use 1*Z_-1 observable to calculate the expectation value. You must implement this using a function named `run_circuit_with_dd_trex` with no arguments.
from qiskit.circuit.library import EfficientSU2 from qiskit.quantum_info import SparsePauliOp from qiskit.transpiler import CouplingMap import numpy as np from qiskit_ibm_runtime import QiskitRuntimeService, Estimator, EstimatorOptions from qiskit.primitives.primitive_job import PrimitiveJob from qiskit_ibm_runtime.fake_provider import FakeAuckland from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def run_circuit_with_dd_trex(): n_qubits = 5 reps = 2 circuit = EfficientSU2(n_qubits, entanglement="pairwise", reps=reps) observable = SparsePauliOp.from_sparse_list([("Z", [-1], 1.0)], num_qubits=n_qubits) # Generate random parameters rng = np.random.default_rng(1234) params = rng.uniform(-np.pi, np.pi, size=circuit.num_parameters) backend = FakeAuckland() coupling_map = CouplingMap(backend.configuration().coupling_map) pm = generate_preset_pass_manager(optimization_level = 1, backend=backend, seed_transpiler=789, coupling_map=coupling_map) isa_circuit = pm.run(circuit) isa_observable = observable.apply_layout(isa_circuit.layout) options = EstimatorOptions() options.environment.job_tags = ["run_circ_dd_trex"] estimator = Estimator(mode=backend, options=options) job = estimator.run([(isa_circuit, isa_observable, params)]) return job
from qiskit.circuit.library import EfficientSU2 from qiskit.quantum_info import SparsePauliOp from qiskit.transpiler import CouplingMap import numpy as np from qiskit_ibm_runtime import QiskitRuntimeService, Estimator, EstimatorOptions from qiskit.primitives.primitive_job import PrimitiveJob from qiskit_ibm_runtime.fake_provider import FakeAuckland from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): from numpy import isclose job = candidate() assert isinstance(job, PrimitiveJob) assert job.job_id() is not None result = job.result() assert isclose(result[0].data.evs.item(), 0.33, atol=0.06) check(run_circuit_with_dd_trex)
run_circuit_with_dd_trex
difficult
qiskitHumanEval/36
Write a function to design a Bernstein-Vazirani oracle from a bitstring and return it. You must implement this using a function named `bv_function` with the following arguments: s.
from qiskit import QuantumCircuit def bv_function(s): n = len(s) qc = QuantumCircuit(n + 1) for index, bit in enumerate(reversed(s)): if bit == "1": qc.cx(index, n) return qc
from qiskit import QuantumCircuit def check(candidate): from qiskit.quantum_info.operators import Operator s = "1111" result = candidate(s) assert isinstance(result, QuantumCircuit) assert result.num_qubits == 5 solution = QuantumCircuit(5) for i in range(4): solution.cx(i, 4) assert Operator(result).equiv(Operator(solution)) check(bv_function)
bv_function
intermediate
qiskitHumanEval/37
Illustrate a Bernstein-Vazirani algorithm routine on Qiskit and run it using Qiskit Sampler with Aer simulator as backend for a string of 0s and 1s. Return the bit strings of the result and the result itself. You must implement this using a function named `bv_algorithm` with the following arguments: s.
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.primitives.containers.primitive_result import PrimitiveResult def bv_algorithm(s): qc = QuantumCircuit(len(s) + 1) for index, bit in enumerate(reversed(s)): if bit == "1": qc.cx(index, len(s)) qc.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result= sampler.run([qc], shots=1).result() bitstrings = result[0].data.meas.get_bitstrings() return [bitstrings, result]
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.primitives.containers.primitive_result import PrimitiveResult def check(candidate): s = "1111" result = candidate(s) assert (type(result[0]) == list) assert (len(result[0]) == result[1][0].data.meas.num_shots) assert (type(result[1]) == PrimitiveResult) check(bv_algorithm)
bv_algorithm
intermediate
qiskitHumanEval/38
Build a 2-qubit Quantum Circuit composed by H gate in Quantum register 0, Controlled-RZ gate in quantum register 0 1 with given input theta value, H gate in quantum register 1 and Controlled-RY gate in quantum register 1 0 with given input theta value. You must implement this using a function named `create_quantum_circuit_based_h0_crz01_h1_cry10` with the following arguments: theta.
from qiskit import QuantumCircuit def create_quantum_circuit_based_h0_crz01_h1_cry10(theta): qc = QuantumCircuit(2) qc.h(0) qc.crz(theta,0,1) qc.h(1) qc.cry(theta,1,0) return qc
from qiskit import QuantumCircuit def check(candidate): from qiskit import QuantumRegister from qiskit.circuit import CircuitInstruction from math import pi from qiskit.circuit.library import HGate, CRZGate, CRYGate qr = QuantumRegister(2, name="q") theta = pi/2 data = candidate(theta).data assert data[0]==CircuitInstruction(HGate(), [qr[0]], []) assert data[1]==CircuitInstruction(CRZGate(theta), [qr[0], qr[1]], []) assert data[2]==CircuitInstruction(HGate(), [qr[1]], []) assert data[3]==CircuitInstruction(CRYGate(theta), [qr[1], qr[0]], []) check(create_quantum_circuit_based_h0_crz01_h1_cry10)
create_quantum_circuit_based_h0_crz01_h1_cry10
basic
qiskitHumanEval/39
Initialize a uniform superposition on n qubits and return statevector. You must implement this using a function named `create_uniform_superposition` with the following arguments: n.
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector def create_uniform_superposition(n): qc = QuantumCircuit(n) qc.h(range(n)) return Statevector(qc)
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector def check(candidate): from qiskit.quantum_info import state_fidelity from math import sqrt assert round(state_fidelity(candidate(1), [1/sqrt(2)]*2),3)==1 assert round(state_fidelity(candidate(2), [0.5]*4),3)==1 assert round(state_fidelity(candidate(3), [1/sqrt(8)]*8),3)==1 check(create_uniform_superposition)
create_uniform_superposition
basic
qiskitHumanEval/40
Initialize a non-trivial 3-qubit state for a given desired vector state and return counts after running it using Qiskit Sampler with the Aer simulator as backend and ser=t seed as 42. You must implement this using a function named `init_random_3qubit` with the following arguments: desired_vector.
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit_ibm_runtime.options import SamplerOptions def init_random_3qubit(desired_vector): qc = QuantumCircuit(3) qc.initialize(desired_vector, range(3)) qc.measure_all() backend = AerSimulator() options = SamplerOptions() options.simulator.seed_simulator=42 sampler = Sampler(mode=backend,options=options) result = sampler.run([qc]).result() return result[0].data.meas.get_counts()
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit_ibm_runtime.options import SamplerOptions def check(candidate): from math import sqrt from qiskit.quantum_info import state_fidelity desired_vector = [0.25j, 1 /sqrt(8)+0j, 0.25+0.25j, 0, 0,1 / sqrt(8) * (1+2j), 0.25+0j, 0] result = candidate(desired_vector) assert isinstance(result, dict) assert result == {"101": 665, "010": 118, "000": 49, "110": 51, "001": 141} check(init_random_3qubit)
init_random_3qubit
basic
qiskitHumanEval/41
Compose XZ with a 3-qubit identity operator using the Operator and the Pauli 'YX' class in Qiskit. Return the operator instance. You must implement this using a function named `compose_op` with no arguments.
from qiskit.quantum_info.operators import Operator, Pauli import numpy as np def compose_op(): op = Operator(np.eye(2 ** 3)) YX = Operator(Pauli('YX')) op.compose(YX, qargs=[0, 2], front=True) return op
from qiskit.quantum_info.operators import Operator, Pauli import numpy as np def check(candidate): result = candidate() op = Operator(np.eye(2 ** 3)) YX = Operator(Pauli('YX')) op.compose(YX, qargs=[0, 2], front=True) assert(result == op) check(compose_op)
compose_op
basic
qiskitHumanEval/42
Combine the following three operators XX YY ZZ as: 0.5 * (XX + YY - 3 * ZZ). You must implement this using a function named `combine_op` with no arguments.
from qiskit.quantum_info.operators import Operator, Pauli def combine_op(): XX = Operator(Pauli('XX')) YY = Operator(Pauli('YY')) ZZ = Operator(Pauli('ZZ')) op = 0.5 * (XX + YY - 3 * ZZ) return op
from qiskit.quantum_info.operators import Operator, Pauli def check(candidate): result = candidate() XX = Operator(Pauli('XX')) YY = Operator(Pauli('YY')) ZZ = Operator(Pauli('ZZ')) op = 0.5 * (XX + YY - 3 * ZZ) assert (result == op) check(combine_op)
combine_op
basic
qiskitHumanEval/43
Instantiate a preset_passmanager using Qiskit using the least busy device available and optimzation level 3. Return the resulting passmanager instance. You must implement this using a function named `generate_pass_manager_obj` with no arguments.
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_ibm_runtime import QiskitRuntimeService from qiskit import QuantumCircuit def generate_pass_manager_obj(): provider = QiskitRuntimeService() backend = provider.least_busy() pass_manager = generate_preset_pass_manager(optimization_level=3, backend=backend) return pass_manager
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_ibm_runtime import QiskitRuntimeService from qiskit import QuantumCircuit def check(candidate): from qiskit.transpiler.passmanager import StagedPassManager result = candidate() assert(type(result) == StagedPassManager) check(generate_pass_manager_obj)
generate_pass_manager_obj
basic
qiskitHumanEval/44
Write an example using Qiskit that performs tensor operation on a 1-qubit quantum circuit with an X gate and a 2-qubit quantum circuit with a CRY gate, where the CRY gate has an angle of 0.2 radians and is controlled by qubit 0. You must implement this using a function named `tensor_circuits` with no arguments.
from qiskit import QuantumCircuit def tensor_circuits(): top = QuantumCircuit(1) top.x(0) bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1) tensored = bottom.tensor(top) return tensored
from qiskit import QuantumCircuit def check(candidate): from qiskit.quantum_info import Statevector result = candidate() top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1) tensored = bottom.tensor(top) assert Statevector.from_instruction(result).equiv(Statevector.from_instruction(tensored)) check(tensor_circuits)
tensor_circuits
basic
qiskitHumanEval/45
Generate a random clifford circuit using the input n_qubit as number of qubits. You must implement this using a function named `get_random_clifford` with the following arguments: n_qubits.
from qiskit.quantum_info.random import random_clifford def get_random_clifford(n_qubits): return random_clifford(num_qubits=n_qubits)
from qiskit.quantum_info.random import random_clifford def check(candidate): from qiskit.quantum_info import Clifford result = candidate(3) assert result.num_qubits == 3 assert isinstance(result, Clifford) check(get_random_clifford)
get_random_clifford
basic
qiskitHumanEval/46
Generate a random linear function circuit using the input parameters n_qubits and seed, and the random_invertible_binary_matrix method. You must implement this using a function named `get_random_linear_function` with the following arguments: n_qubits, seed.
from qiskit.circuit.library import LinearFunction from qiskit.synthesis.linear.linear_matrix_utils import random_invertible_binary_matrix def get_random_linear_function(n_qubits, seed): return LinearFunction(random_invertible_binary_matrix(num_qubits=n_qubits, seed=seed))
from qiskit.circuit.library import LinearFunction from qiskit.synthesis.linear.linear_matrix_utils import random_invertible_binary_matrix def check(candidate): result = candidate(3,3) assert result.num_qubits == 3 assert isinstance(result, LinearFunction) check(get_random_linear_function)
get_random_linear_function
basic
qiskitHumanEval/47
Design a Quantum Circuit that simulates random coin flips for the given samples using Qiskit Sampler with the Aer simulator as backend and outputs the count of heads and tails in a dictionary. The heads should be stored in the dict as 'Heads' and tails as 'Tails'. For example random_coin_flip(10) == {'Heads' : 5, 'Tails : 5} random_coin_flip(20) == {'Heads' : 9, 'Tails : 11}. You must implement this using a function named `random_coin_flip` with the following arguments: samples.
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def random_coin_flip(samples): circuit = QuantumCircuit(1,1) circuit.h(0) circuit.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit], shots=samples).result() counts = result[0].data.meas.get_counts() return {'Heads' : counts['0'], 'Tails': counts['1']}
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def check(candidate): samples = 2000 result = candidate(samples) assert result.keys() == {'Heads', 'Tails'} assert round(result['Heads']/samples, 1) == 0.5 assert round(result['Tails']/samples, 1) == 0.5 check(random_coin_flip)
random_coin_flip
intermediate
qiskitHumanEval/48
Write a function that generates n number of random 8-bit unsigned integers using a Quantum Circuit and outputs a list of integers. You must implement this using a function named `random_number_generator_unsigned_8bit` with the following arguments: n.
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def random_number_generator_unsigned_8bit(n): circuit = QuantumCircuit(8) circuit.h(range(8)) circuit.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit], shots=n).result() samples = result[0].data.meas.get_bitstrings() return [int(sample, 2) for sample in samples]
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def check(candidate): result = candidate(10) assert isinstance(result, list) assert len(result) == 10 for i in range(10): assert result[i] >= 0 and result[i] < 256 check(random_number_generator_unsigned_8bit)
random_number_generator_unsigned_8bit
intermediate
qiskitHumanEval/49
Return a simple Elitzur Vaidman bomb tester circuit. You must implement this using a function named `simple_elitzur_vaidman` with no arguments.
from qiskit import QuantumCircuit def simple_elitzur_vaidman(): circuit = QuantumCircuit(2) circuit.h(0) circuit.cx(0,1) circuit.h(0) return circuit
from qiskit import QuantumCircuit def check(candidate): from qiskit.quantum_info import Statevector result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 circuit = QuantumCircuit(2) circuit.h(0) circuit.cx(0,1) circuit.h(0) assert Statevector.from_instruction(result).equiv(Statevector.from_instruction(circuit)) check(simple_elitzur_vaidman)
simple_elitzur_vaidman
intermediate
qiskitHumanEval/50
Remove the gate in the input position for the given Quantum Circuit. You must implement this using a function named `remove_gate_in_position` with the following arguments: circuit, position.
from qiskit import QuantumCircuit def remove_gate_in_position(circuit, position): del circuit.data[position] return circuit
from qiskit import QuantumCircuit def check(candidate): qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.h(1) qc.h(0) expected_qc = QuantumCircuit(2) expected_qc.cx(0, 1) expected_qc.h(1) expected_qc.h(0) assert candidate(qc, 0)==expected_qc check(remove_gate_in_position)
remove_gate_in_position
basic
qiskitHumanEval/51
Write a function to build a quantum teleportation circuit that takes a list of instructions as an argument to transfer the data from the sender to the receiver while taking advantage of dynamic circuits. You must implement this using a function named `quantum_teleportation_circuit` with the following arguments: data.
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.circuit import Instruction def quantum_teleportation_circuit(data): sender = QuantumRegister(1, "sender") receiver = QuantumRegister(1, "receiver") ancillary = QuantumRegister(1, "ancillary") c_sender = ClassicalRegister(1, "c_sender") c_receiver = ClassicalRegister(1, "c_receiver") c_ancillary = ClassicalRegister(1, "c_ancillary") circuit = QuantumCircuit(sender, ancillary, receiver, c_sender, c_ancillary, c_receiver) for gate in data: circuit.append(gate, [0]) circuit.barrier() circuit.h(ancillary) circuit.cx(ancillary, receiver) circuit.barrier() circuit.cx(sender, ancillary) circuit.h(sender) circuit.measure(sender, c_sender) circuit.measure(ancillary, c_ancillary) circuit.barrier() with circuit.if_test((c_ancillary, 1)): circuit.x(receiver) with circuit.if_test((c_sender, 1)): circuit.z(receiver) circuit.barrier() circuit.measure(receiver, c_receiver) return circuit
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.circuit import Instruction def check(candidate): from qiskit.circuit.library import XGate, HGate from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.result import marginal_distribution result_x = candidate([XGate()]) backend = AerSimulator() sampler = Sampler(mode=backend) assert isinstance(result_x, QuantumCircuit) assert result_x.num_qubits == 3 assert result_x.count_ops()['x'] == 1 and result_x.count_ops()['if_else'] == 2 assert marginal_distribution(sampler.run([result_x]).result()[0].data.c_receiver.get_counts()) == {'1': 1024} result_h = candidate([HGate()]) assert result_h.count_ops()['h'] == 3 and result_h.count_ops()['if_else'] == 2 assert round(marginal_distribution(sampler.run([result_h]).result()[0].data.c_receiver.get_counts())['0']/1024, 1) == 0.5 check(quantum_teleportation_circuit)
quantum_teleportation_circuit
intermediate
qiskitHumanEval/52
Provide a quantum circuit that enables the transmission of two classical bits from the sender to the receiver through a single qubit of quantum communication, given that the sender and receiver have access to entangled qubits. You must implement this using a function named `send_bits` with the following arguments: bitstring.
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit def send_bits(bitstring): sender = QuantumRegister(1, "sender") receiver = QuantumRegister(1, "receiver") measure = ClassicalRegister(2, "measure") circuit = QuantumCircuit(sender, receiver, measure) # Prepare ebit used for superdense coding circuit.h(sender) circuit.cx(sender, receiver) circuit.barrier() # sender's operations if bitstring[1] == "1": circuit.z(sender) if bitstring[0] == "1": circuit.x(sender) circuit.barrier() # receiver's actions circuit.cx(sender, receiver) circuit.h(sender) circuit.measure(sender, measure[0]) circuit.measure(receiver, measure[1]) return circuit
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit def check(candidate): from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler result_1 = candidate("10") backend = AerSimulator() sampler = Sampler(mode=backend) assert isinstance(result_1, QuantumCircuit) assert result_1.num_qubits == 2 assert result_1.count_ops()["x"] == 1 assert sampler.run([result_1]).result()[0].data.measure.get_counts() == {"10": 1024} result_2 = candidate("01") assert result_2.depth() == 6 assert result_2.count_ops()["z"] == 1 assert sampler.run([result_2]).result()[0].data.measure.get_counts() == {"01": 1024} check(send_bits)
send_bits
intermediate
qiskitHumanEval/53
Given two 8-bit integers a and b design a Quantum Circuit that acts as a classical XOR gate. Simulate the circuit using Qiskit Sampler with the Aer simulator as backend and return the counts of the result. You must implement this using a function named `xor_gate` with the following arguments: a, b.
from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.circuit.library import XOR def xor_gate(a, b): circuit = XOR(8, a).compose(XOR(8, b)) circuit.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit.decompose()]).result() return result[0].data.meas.get_counts()
from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from qiskit.circuit.library import XOR def check(candidate): assert candidate(10, 20) == {"00011110": 1024} assert candidate(61, 9) == {"00110100": 1024} assert candidate(47, 8) == {"00100111": 1024} check(xor_gate)
xor_gate
intermediate
qiskitHumanEval/54
Given two 3-bit integers a and b, design a quantum circuit that acts as a classical AND gate. Simulate the circuit on using Qiskit Sampler with the Aer simulator as backend and return the counts of the result. You must implement this using a function named `and_gate` with the following arguments: a, b.
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def and_gate(a, b): qr_a = QuantumRegister(3, "qr_a") qr_b = QuantumRegister(3, "qr_b") ancillary = QuantumRegister(3, "ancillary") measure = ClassicalRegister(3, "measure") circuit = QuantumCircuit(qr_a, qr_b, ancillary, measure) a = format(a, '03b') b = format(b, '03b') for i in range(3): if a[2-i] == '1': circuit.x(qr_a[i]) if b[2-i] == '1': circuit.x(qr_b[i]) for i in range(3): circuit.ccx(qr_a[i], qr_b[i], ancillary[i]) circuit.measure(ancillary, measure) backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit]).result() return result[0].data.measure.get_counts()
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def check(candidate): assert candidate(1, 2) == {'000': 1024} assert candidate(6, 7) == {'110': 1024} assert candidate(3, 5) == {'001': 1024} check(and_gate)
and_gate
intermediate
qiskitHumanEval/55
Given two 3-bit integers a and b, design a quantum circuit that acts as a classical OR gate. Simulate the circuit using Qiskit Sampler with the Aer simulator as backend and return the counts of the result. You must implement this using a function named `or_gate` with the following arguments: a, b.
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def or_gate(a, b): qr_a = QuantumRegister(3, "qr_a") qr_b = QuantumRegister(3, "qr_b") ancillary = QuantumRegister(3, "ancillary") measure = ClassicalRegister(3, "measure") circuit = QuantumCircuit(qr_a, qr_b, ancillary, measure) a = format(a, '03b') b = format(b, '03b') for i in range(3): if a[2-i] == '0': circuit.x(qr_a[i]) if b[2-i] == '0': circuit.x(qr_b[i]) for i in range(3): circuit.ccx(qr_a[i], qr_b[i], ancillary[i]) circuit.x(ancillary) circuit.measure(ancillary, measure) backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit]).result() return result[0].data.measure.get_counts()
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def check(candidate): assert candidate(1, 2) == {"011": 1024} assert candidate(6, 7) == {"111": 1024} assert candidate(0, 5) == {"101": 1024} check(or_gate)
or_gate
intermediate
qiskitHumanEval/56
Given two 8-bit integers, design a quantum circuit that acts as a classical NOT gate. Simulate the circuit Qiskit Sampler with the Aer simulator as backend and return the counts of the result. You must implement this using a function named `not_gate` with the following arguments: a.
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def not_gate(a): circuit = QuantumCircuit(8) a = format(a, "08b") for i in range(8): if a[7-i] == "0": circuit.x(i) circuit.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit]).result() return result[0].data.meas.get_counts()
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler def check(candidate): assert candidate(0) == {"11111111": 1024} assert candidate(238) == {"00010001": 1024} assert candidate(59) == {"11000100": 1024} check(not_gate)
not_gate
intermediate
qiskitHumanEval/57
Design a SWAP gate using only CX gates. You must implement this using a function named `create_swap_gate` with no arguments.
from qiskit import QuantumCircuit def create_swap_gate(): circuit = QuantumCircuit(2) circuit.cx(0,1) circuit.cx(1,0) circuit.cx(0,1) return circuit
from qiskit import QuantumCircuit def check(candidate): from qiskit.circuit.library import SwapGate from qiskit.quantum_info.operators import Operator result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 assert dict(result.count_ops()) == {'cx': 3} assert Operator(result) == Operator(SwapGate()) check(create_swap_gate)
create_swap_gate
intermediate
qiskitHumanEval/58
Design a CH gate using CX and RY gates. You must implement this using a function named `create_ch_gate` with no arguments.
from qiskit import QuantumCircuit from numpy import pi def create_ch_gate(): circuit = QuantumCircuit(2) circuit.ry(pi/4, 1) circuit.cx(0,1) circuit.ry(-pi/4, 1) return circuit
from qiskit import QuantumCircuit from numpy import pi def check(candidate): from qiskit.circuit.library import CHGate from qiskit.quantum_info.operators import Operator result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 assert dict(result.count_ops()) == {'ry': 2, 'cx': 1} assert Operator(result) == Operator(CHGate()) check(create_ch_gate)
create_ch_gate
intermediate
qiskitHumanEval/59
Design a CZ gate using only H and CNOT gates and return the quantum circuit. You must implement this using a function named `create_cz_gate` with no arguments.
from qiskit import QuantumCircuit def create_cz_gate(): circuit = QuantumCircuit(2) circuit.h(1) circuit.cx(0,1) circuit.h(1) return circuit
from qiskit import QuantumCircuit def check(candidate): from qiskit.circuit.library import CZGate from qiskit.quantum_info.operators import Operator result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 assert dict(result.count_ops()) == {'h': 2, 'cx': 1} assert Operator(result) == Operator(CZGate()) check(create_cz_gate)
create_cz_gate
intermediate
qiskitHumanEval/60
Design a CY gate using only one CX gate and any other single qubit gates. You must implement this using a function named `create_cy_gate` with no arguments.
from qiskit import QuantumCircuit def create_cy_gate(): circuit = QuantumCircuit(2) circuit.sdg(1) circuit.cx(0,1) circuit.s(1) return circuit
from qiskit import QuantumCircuit def check(candidate): from qiskit.circuit.library import CYGate from qiskit.quantum_info.operators import Operator result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 assert 'cx' in result.count_ops() for gate in result.data: op = gate.operation assert op.num_qubits == 1 or op.name == 'cx' or op.name == 'barrier' assert Operator(result) == Operator(CYGate()) check(create_cy_gate)
create_cy_gate
intermediate
qiskitHumanEval/61
Build a Quantum Circuit by first creating one Quantum Register and one Classical Register and then perform measurement on it. You must implement this using a function named `create_quantum_circuit_with_one_qubit_and_measure` with no arguments.
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister def create_quantum_circuit_with_one_qubit_and_measure(): q = QuantumRegister(1, 'q') c = ClassicalRegister(1, 'c') qc = QuantumCircuit(q, c) qc.measure(q, c) return qc
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister def check(candidate): result = candidate() assert result.depth() == 1 assert result.width() == 2 assert dict(result.count_ops()) == {'measure': 1} check(create_quantum_circuit_with_one_qubit_and_measure)
create_quantum_circuit_with_one_qubit_and_measure
basic
qiskitHumanEval/62
Construct a BB84 protocol circuit for the sender, inputting both the states and the measured bases. You must implement this using a function named `bb84_senders_circuit` with the following arguments: state, basis.
from qiskit import QuantumCircuit def bb84_senders_circuit(state, basis): num_qubits = len(state) circuit = QuantumCircuit(num_qubits) for i in range(len(basis)): if state[i] == 1: circuit.x(i) if basis[i] == 1: circuit.h(i) return circuit
from qiskit import QuantumCircuit def check(candidate): from qiskit.quantum_info import Statevector from numpy.random import randint, seed seed(12345) qubits = 5 state = randint(2, size=qubits) basis = randint(2, size=qubits) result = candidate(state, basis) assert isinstance(result, QuantumCircuit) assert result.num_qubits == qubits assert result.count_ops()['h'] == sum(basis) assert result.count_ops()['x'] == sum(state) solution = QuantumCircuit(5) solution.x([1,2,3]) solution.h([0,3]) assert Statevector.from_instruction(result).equiv(Statevector.from_instruction(solution)) check(bb84_senders_circuit)
bb84_senders_circuit
intermediate
qiskitHumanEval/63
Write a function to generate the key from the circuit and the sender's basis generated by the sender using BB84 protocol. You must implement this using a function named `bb84_circuit_generate_key` with the following arguments: senders_basis, circuit.
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from numpy.random import randint def bb84_circuit_generate_key(senders_basis, circuit): n = len(senders_basis) receivers_basis = randint(2, size=n) for i in range(n): if receivers_basis[i]: circuit.h(i) circuit.measure_all() backend = AerSimulator() sampler = Sampler(mode=backend) result = sampler.run([circuit.reverse_bits()], shots=1).result() count= result[0].data.meas.get_counts() key = next(iter(count)) encryption_key = '' for i in range(n): if senders_basis[i] == receivers_basis[i]: encryption_key += str(key[i]) return encryption_key
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from numpy.random import randint def check(candidate): from numpy.random import seed seed(12345) basis = [1, 0, 0, 1, 1] circuit = QuantumCircuit(5) circuit.x([3, 4]) circuit.h([0, 3, 4]) result = candidate(basis, circuit) assert result == "1" check(bb84_circuit_generate_key)
bb84_circuit_generate_key
difficult
qiskitHumanEval/64
Write a function that takes the bitstring 's' as the input and builds a Quantum Circuit such that the output when xor-ed with the input 's' is same as the 's'. When building the quantum circuit make sure the classical registers is named 'c'. You must implement this using a function named `simons_algorithm` with the following arguments: s.
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister def simons_algorithm(s): n = len(s) s = s[::-1] q_reg1 = QuantumRegister(n,"reg1") q_reg2 = QuantumRegister(n,"reg2") c_reg = ClassicalRegister(n, "c") circuit = QuantumCircuit (q_reg1, q_reg2, c_reg) circuit.h(q_reg1) circuit.barrier() circuit.cx(q_reg1, q_reg2) if "1" in s: i = s.find("1") for j in range(n): if s[j] == "1": circuit.cx(i, q_reg2[j]) circuit.barrier() circuit.h(q_reg1) circuit.measure(q_reg1, c_reg) return circuit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister def check(candidate): from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler result = candidate('1010') assert isinstance(result, QuantumCircuit) assert result.num_qubits == 8 def dpm2(vec1, vec2): return sum(int(a) * int(b) for a, b in zip(vec1, vec2)) % 2 backend = AerSimulator() sampler = Sampler(mode=backend) job = sampler.run([result]).result() data = job[0].data counts= data.c.get_counts() for key in counts: assert dpm2(key, "1010") == 0 check(simons_algorithm)
simons_algorithm
intermediate
qiskitHumanEval/65
Design a Quantum Fourier Transform circuit for n qubits using basic Quantum gates. You must implement this using a function named `QFT` with the following arguments: n.
from qiskit import QuantumCircuit from numpy import pi def QFT(n): circuit = QuantumCircuit(n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft_rotations(circuit, n): """Performs qft on the first n qubits in circuit (without swaps)""" if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cp(pi/2**(n-qubit), qubit, n) qft_rotations(circuit, n) qft_rotations(circuit, n) swap_registers(circuit, n) return circuit
from qiskit import QuantumCircuit from numpy import pi def check(candidate): from qiskit.circuit.library import QFT as QiskitQFT from qiskit.quantum_info.operators import Operator result = candidate(3) assert isinstance(result, QuantumCircuit) assert result.num_qubits == 3 for gate in result.data: op = gate.operation assert op.num_qubits <= 2 or op.name == 'barrier' solution = QiskitQFT(3) assert Operator(result).equiv(Operator(solution)) check(QFT)
QFT
intermediate
qiskitHumanEval/66
Generate a Quantum Circuit for a W state and measure it. You must implement this using a function named `w_state` with no arguments.
from qiskit import QuantumCircuit from numpy import arccos, sqrt def w_state(): circuit = QuantumCircuit(3) circuit.ry(2*arccos(1/sqrt(3)), 0) circuit.ch(0,1) circuit.cx(1,2) circuit.cx(0,1) circuit.x(0) circuit.measure_all() return circuit
from qiskit import QuantumCircuit from numpy import arccos, sqrt def check(candidate): from qiskit_aer import AerSimulator from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_ibm_runtime import Sampler result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 3 backend = AerSimulator() sampler = Sampler(mode=backend) pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) isa_circuit = pass_manager.run(result) job = sampler.run([isa_circuit]).result() counts= job[0].data.meas.get_counts() assert counts.keys() == {'001', '010' , '100'} assert counts['001'] >= 300 and counts['001'] <= 400 assert counts['010'] >= 300 and counts['010'] <= 400 assert counts['100'] >= 300 and counts['100'] <= 400 assert counts['001'] + counts['010'] + counts['100'] == 1024 check(w_state)
w_state
intermediate
qiskitHumanEval/67
Design a CHSH circuit that takes bits of Alice and Bob as input and return the Quantum Circuit after measuring. You must implement this using a function named `chsh_circuit` with the following arguments: alice, bob.
from qiskit import QuantumCircuit from numpy import pi def chsh_circuit(alice, bob): qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.barrier() if alice == 0: qc.ry(0, 0) else: qc.ry(-pi / 2, 0) qc.measure(0, 0) if bob == 0: qc.ry(-pi / 4, 1) else: qc.ry(pi / 4, 1) qc.measure(1, 1) return qc
from qiskit import QuantumCircuit from numpy import pi def check(candidate): result = candidate(0,1) assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 assert result.width() == 4 assert result.depth() == 4 assert set({'ry': 2, 'measure': 2, 'h': 1, 'cx': 1}.items()).issubset(set(result.count_ops().items())) check(chsh_circuit)
chsh_circuit
intermediate
qiskitHumanEval/68
Design a Zeno Elitzur Vaidman Bomb Tester circuit which takes the boolean if the bomb is live and outputs the percentage of successful live bomb predictions, dud bomb predictions and bombs that detonated. Use 25 cycles to increase the efficiency of the circuit. You must implement this using a function named `zeno_elitzur_vaidman_bomb_tester` with the following arguments: bomb_live.
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from numpy import pi def zeno_elitzur_vaidman_bomb_tester(bomb_live): live_predictions = dud_predictions = detonations = 0 shots = 1024 cycles = 25 e = pi/cycles measurements = cycles + 1 if bomb_live else 1 circuit = QuantumCircuit(1, measurements) for i in range(cycles): circuit.ry(e, 0) if bomb_live: circuit.measure(0, i) circuit.measure(0, measurements - 1) backend = AerSimulator() sampler = Sampler(mode=backend) job = sampler.run([circuit],shots=shots).result() counts= job[0].data.c.get_counts() if bomb_live: for key, value in counts.items(): if key[0] == '1': detonations += value elif '1' in key[1:]: dud_predictions += value else: live_predictions += value else: live_predictions = counts['0'] if '0' in counts else 0 dud_predictions = counts['1'] detonations = 0 return (live_predictions/shots, dud_predictions/shots, detonations/shots)
from qiskit import QuantumCircuit from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler from numpy import pi import numpy as np def check(candidate): # Check output structure result_live = candidate(True) result_dud = candidate(False) assert isinstance(result_live, tuple) and len(result_live) == 3, "Output format incorrect" assert isinstance(result_dud, tuple) and len(result_dud) == 3, "Output format incorrect" # Live bomb case (probabilities should sum to ~1) assert 0.85 <= result_live[0] <= 1.0, "Live bomb predictions should be high" assert 0.0 <= result_live[1] <= 0.05, "Dud predictions should be minimal" assert 0.0 <= result_live[2] <= 0.15, "Detonations should be low" # Dud bomb case assert np.isclose(result_dud, (0.0, 1.0, 0.0), atol=0.01).all(), "Dud bomb should always return (0.0, 1.0, 0.0)" # Consistency check (running multiple times should yield similar results) results = [candidate(True) for _ in range(5)] means = np.mean(results, axis=0) assert 0.85 <= means[0] <= 1.0, "Average live prediction should be high" assert 0.0 <= means[1] <= 0.05, "Average dud prediction should be minimal" assert 0.0 <= means[2] <= 0.15, "Average detonation rate should be low" print("All tests passed successfully!") check(zeno_elitzur_vaidman_bomb_tester)
zeno_elitzur_vaidman_bomb_tester
difficult
qiskitHumanEval/69
Build a Quantum Circuit composed by the gates H in Quantum register 0, Controlled-S gate in quantum register 0 1, H gate in quantum register 1 and Controlled-S dagger gate in quantum register 1 0. You must implement this using a function named `create_quantum_circuit_based_h0_cs01_h1_csdg10` with no arguments.
from qiskit import QuantumCircuit def create_quantum_circuit_based_h0_cs01_h1_csdg10(): qc = QuantumCircuit(2) qc.h(0) qc.cs(0,1) qc.h(1) qc.csdg(1,0) return qc
from qiskit import QuantumCircuit def check(candidate): result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 2 assert result.depth() == 4 assert dict(result.count_ops()) == {'h': 2, 'cs': 1, 'csdg': 1} check(create_quantum_circuit_based_h0_cs01_h1_csdg10)
create_quantum_circuit_based_h0_cs01_h1_csdg10
basic
qiskitHumanEval/70
Build a Quantum Circuit composed by the gates H in Quantum register 0, Controlled-SWAP gate, also known as the Fredkin gate in quantum register 0 1 2, H gate in quantum register 1 and Controlled-S dagger gate in quantum register 1 0. You must implement this using a function named `create_quantum_circuit_based_h0_cswap012_h1_csdg10` with no arguments.
from qiskit import QuantumCircuit def create_quantum_circuit_based_h0_cswap012_h1_csdg10(): qc = QuantumCircuit(3) qc.h(0) qc.cswap(0,1,2) qc.h(1) qc.csdg(1,0) return qc
from qiskit import QuantumCircuit def check(candidate): result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 3 assert result.depth() == 4 assert dict(result.count_ops()) == {"h": 2, "cswap": 1, "csdg": 1} check(create_quantum_circuit_based_h0_cswap012_h1_csdg10)
create_quantum_circuit_based_h0_cswap012_h1_csdg10
basic
qiskitHumanEval/71
Build a Quantum Circuit composed by the gates H in Quantum register 0, Controlled-√X gate in quantum register 0 1, and H gate in quantum register 1. You must implement this using a function named `create_quantum_circuit_based_h0_csx01_h1` with no arguments.
from qiskit import QuantumCircuit def create_quantum_circuit_based_h0_csx01_h1(): qc = QuantumCircuit(3) qc.h(0) qc.csx(0,1) qc.h(1) return qc
from qiskit import QuantumCircuit def check(candidate): result = candidate() assert isinstance(result, QuantumCircuit) assert result.num_qubits == 3 assert result.depth() == 3 assert dict(result.count_ops()) == {"h": 2, "csx": 1} check(create_quantum_circuit_based_h0_csx01_h1)
create_quantum_circuit_based_h0_csx01_h1
basic
qiskitHumanEval/72
Apply `gate` to qubits with indices `qubits`, conditioned on all `condition_clbits` being 1. You must implement this using a function named `gate_if_clbits` with the following arguments: circuit, gate, qubits, condition_clbits.
import contextlib from qiskit import QuantumCircuit from qiskit.circuit import Gate def gate_if_clbits(circuit, gate, qubits, condition_clbits): with contextlib.ExitStack() as stack: for index in condition_clbits: stack.enter_context(circuit.if_test((index, 1))) circuit.append(gate, qubits)
import contextlib from qiskit import QuantumCircuit from qiskit.circuit import Gate def check(candidate): from qiskit.circuit.library import CXGate from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler qc = QuantumCircuit(2, 3) qc.x(0) candidate(qc, CXGate(), [0, 1], [0, 2]) qc.measure_all() sampler = Sampler(mode=AerSimulator()) result = sampler.run([qc]).result()[0].data.meas.get_counts() assert result.get("01") == 1024 qc = QuantumCircuit(2, 3) qc.x([0, 1]) qc.measure([0, 1], [0, 2]) qc.x(1) candidate(qc, CXGate(), [0, 1], [0, 2]) qc.measure_all() result = sampler.run([qc]).result()[0].data.meas.get_counts() assert result.get("11") == 1024 check(gate_if_clbits)
gate_if_clbits
intermediate
qiskitHumanEval/73
Add an X-basis measurement on qubit at index `qubit`, storing the result to classical bit `clbit`. You must implement this using a function named `x_measurement` with the following arguments: circuit, qubit, clbit.
from qiskit import QuantumCircuit def x_measurement(circuit, qubit, clbit): circuit.h(qubit) circuit.measure(qubit, clbit)
from qiskit import QuantumCircuit def check(candidate): from qiskit.primitives import StatevectorSampler qc = QuantumCircuit(3, 2) qc.x(1) qc.h(1) candidate(qc, 1, 0) result = StatevectorSampler().run([qc]).result()[0].data.c.get_counts() assert result.get('01') == 1024 check(x_measurement)
x_measurement
basic
qiskitHumanEval/74
Split `circuit` at each barrier operation. Do not include barriers in the output circuits. You must implement this using a function named `split_circuit_at_barriers` with the following arguments: circuit.
from qiskit import QuantumCircuit from qiskit.circuit.library import Barrier def split_circuit_at_barriers(circuit): output = [] new_circuit = circuit.copy_empty_like() for inst in circuit.data: if isinstance(inst.operation, Barrier): output.append(new_circuit) new_circuit = circuit.copy_empty_like() continue new_circuit.data.append(inst) output.append(new_circuit) return output
from qiskit import QuantumCircuit from qiskit.circuit.library import Barrier def check(candidate): qc = QuantumCircuit(3) qc.x(0) qc.barrier() qc.cx(0, 1) qc.h([0, 1]) qc.z(1) qc.barrier() qc.barrier() qc.tdg(0) circuits = candidate(qc) assert len(circuits) == 4 for circuit, expected_length in zip(circuits, [1, 4, 0, 1]): assert len(circuit.data) == expected_length check(split_circuit_at_barriers)
split_circuit_at_barriers
intermediate
qiskitHumanEval/75
Given a QuantumCircuit, sample it once and convert the measurement result to a list of bools, where the 0th bool is the result of the 0th classical bit. You must implement this using a function named `circuit_to_bools` with the following arguments: circuit.
from qiskit import QuantumCircuit from qiskit.primitives import StatevectorSampler def circuit_to_bools(circuit): result = StatevectorSampler().run([circuit], shots=1).result()[0].data.meas.get_counts() measurement_int = int(list(result.keys())[0], 2) output = [] for bit_index in range(circuit.num_clbits): # Use bit-masking to get bits from `int` bit = bool(2 ** (bit_index) & measurement_int) output.append(bit) return output
from qiskit import QuantumCircuit from qiskit.primitives import StatevectorSampler def check(candidate): # 101 qc = QuantumCircuit(3) qc.x([0, 2]) qc.measure_all() assert candidate(qc) == [True, False, True] # 00011 qc = QuantumCircuit(5) qc.x([3, 4]) qc.measure_all() assert candidate(qc) == [False] * 3 + [True] * 2 # 111011111 qc = QuantumCircuit(9) qc.x(range(9)) qc.x(3) qc.measure_all() assert candidate(qc) == [True] * 3 + [False] + [True] * 5 check(circuit_to_bools)
circuit_to_bools
intermediate
qiskitHumanEval/76
Return a transpiler pass that replaces all non-controlled Z-gates with H-X-H-gate sequences. You must implement this using a function named `create_hxh_pass` with no arguments.
from qiskit import QuantumRegister from qiskit.transpiler.basepasses import TransformationPass from qiskit.dagcircuit import DAGCircuit from qiskit.circuit.library import ZGate, HGate, XGate def create_hxh_pass(): class HXHPass(TransformationPass): def run( self, dag: DAGCircuit, ) -> DAGCircuit: for node in dag.op_nodes(): if not isinstance(node.op, ZGate): continue # Create HXH gate sequence hxh_dag = DAGCircuit() register = QuantumRegister(1) hxh_dag.add_qreg(register) hxh_dag.apply_operation_back(HGate(), [register[0]]) hxh_dag.apply_operation_back(XGate(), [register[0]]) hxh_dag.apply_operation_back(HGate(), [register[0]]) dag.substitute_node_with_dag(node, hxh_dag) return dag return HXHPass()
from qiskit import QuantumRegister from qiskit.transpiler.basepasses import TransformationPass from qiskit.dagcircuit import DAGCircuit from qiskit.circuit.library import ZGate, HGate, XGate def check(candidate): from qiskit.transpiler import PassManager from qiskit import QuantumCircuit hxh_pass = candidate() # Be lenient and accept both class and instance of class if not isinstance(hxh_pass, TransformationPass): hxh_pass = hxh_pass() assert isinstance(hxh_pass, TransformationPass) passmanager = PassManager(hxh_pass) qc = QuantumCircuit(1) qc.x(0) qc.z(0) result = passmanager.run(qc) result_op_strings = list( map(lambda circuit_inst: circuit_inst.operation.name, result.data) ) assert result_op_strings == ["x", "h", "x", "h"] qc = QuantumCircuit(3) qc.h(1) qc.z(1) qc.cz(0, 1) qc.cx(1, 2) result = passmanager.run(qc) result_op_strings = list( map(lambda circuit_inst: circuit_inst.operation.name, result.data) ) assert result_op_strings == ["h", "h", "x", "h", "cz", "cx"] check(create_hxh_pass)
create_hxh_pass
intermediate
qiskitHumanEval/77
Given a distribution as a dictionary of the form { measurement: probability }, return a quantum circuit that produces that distribution. You must implement this using a function named `circuit_from_probability_dist` with the following arguments: probability_dist.
import math from qiskit import QuantumCircuit def circuit_from_probability_dist(probability_dist): num_qubits = math.ceil(math.log2(max(probability_dist.keys()) + 1)) or 1 amplitudes = [] for basis_state in range(2**num_qubits): prob = probability_dist.get(basis_state, 0) amplitudes.append(math.sqrt(prob)) qc = QuantumCircuit(num_qubits) qc.prepare_state(amplitudes, range(num_qubits)) return qc
import math from qiskit import QuantumCircuit def check(candidate): from qiskit.quantum_info import Statevector def _check(input_dist): circuit = candidate(input_dist) # allow circuits with or without final measurements circuit.remove_final_measurements() probability_dist = Statevector(circuit).probabilities() for basis_state, target_probability in input_dist.items(): assert math.isclose( target_probability, probability_dist[basis_state], abs_tol=0.05 ) for input_dist in [ {0: 1}, {0: 0.1, 1: 0.1, 2: 0.7, 3: 0.1}, {0: 0.5, 3: 0.5}, {1: 0.5, 2: 0.5}, ]: _check(input_dist) check(circuit_from_probability_dist)
circuit_from_probability_dist
intermediate
qiskitHumanEval/78
Return an inverse quantum Fourier transform circuit without the swap gates. You must implement this using a function named `qft_no_swaps` with the following arguments: num_qubits.
from qiskit import QuantumCircuit from qiskit.circuit.library import QFT def qft_no_swaps(num_qubits): qft = QFT(num_qubits=num_qubits, do_swaps=False, inverse=True) return qft
from qiskit import QuantumCircuit from qiskit.circuit.library import QFT def check(candidate): from qiskit.quantum_info import Operator for num_qubits in [1, 3, 8]: qft = QFT(num_qubits=num_qubits, do_swaps=False, inverse=True) response = candidate(num_qubits) assert Operator(qft) == Operator(response) check(qft_no_swaps)
qft_no_swaps
intermediate
qiskitHumanEval/79
Return the total number of instructions in the circuit. You must implement this using a function named `count_instructions` with the following arguments: circuit.
from qiskit import QuantumCircuit def count_instructions(circuit): return len(circuit.data)
from qiskit import QuantumCircuit def check(candidate): qc = QuantumCircuit(4) qc.x(0) assert candidate(qc) == 1 qc.cx(0, [1, 2]) assert candidate(qc) == 3 qc.measure_all() assert candidate(qc) == 8 check(count_instructions)
count_instructions
basic
qiskitHumanEval/80
Return the total number of unitary gates in the circuit. You must implement this using a function named `count_gates` with the following arguments: circuit.
from qiskit import QuantumCircuit from qiskit.circuit import Gate def count_gates(circuit): count = 0 for inst in circuit.data: if isinstance(inst.operation, Gate): count += 1 return count
from qiskit import QuantumCircuit from qiskit.circuit import Gate def check(candidate): qc = QuantumCircuit(4) qc.reset(0) qc.tdg(0) assert candidate(qc) == 1 qc.cx(0, [1, 2]) assert candidate(qc) == 3 qc.measure_all() assert candidate(qc) == 3 check(count_gates)
count_gates
basic
qiskitHumanEval/81
Generate a QASM 2 string representing a Phi plus Bell state quantum circuit. Then, convert this QASM 2 string into a Quantum Circuit object and return the resulting circuit. You must implement this using a function named `convert_qasm_string_to_quantum_circuit` with no arguments.
from qiskit import QuantumCircuit def convert_qasm_string_to_quantum_circuit(): qasm_string="""OPENQASM 2.0; include "qelib1.inc"; qreg q[2]; creg c[2]; h q[0]; cx q[0],q[1];""" qc = QuantumCircuit.from_qasm_str(qasm_string) return qc
from qiskit import QuantumCircuit def check(candidate): from qiskit.quantum_info import Statevector from math import sqrt data = candidate() bell_state = (Statevector.from_label("11") + Statevector.from_label("00"))/sqrt(2) assert Statevector.from_instruction(data) == bell_state check(convert_qasm_string_to_quantum_circuit)
convert_qasm_string_to_quantum_circuit
basic
qiskitHumanEval/82
Create a file containing the binary serialization of a Phi plus Bell state quantum circuit and write it as 'bell.qpy' in binary mode. You must implement this using a function named `create_binary_serialization` with no arguments.
from qiskit import QuantumCircuit from qiskit import qpy def create_binary_serialization(): qc = QuantumCircuit(2, name='Bell', metadata={'test': True}) qc.h(0) qc.cx(0, 1) with open('bell.qpy', 'wb') as fd: qpy.dump(qc, fd)
from qiskit import QuantumCircuit from qiskit import qpy def check(candidate): from qiskit.quantum_info import Statevector from math import sqrt candidate() with open('bell.qpy', 'rb') as fd: data = qpy.load(fd)[0] bell_state = (Statevector.from_label("11") + Statevector.from_label("00"))/sqrt(2) assert Statevector.from_instruction(data) == bell_state check(create_binary_serialization)
create_binary_serialization
basic
qiskitHumanEval/83
Construct a Phi plus Bell state quantum circuit, compute its Density Matrix and Concurrence, and return these results in a tuple in the same order. You must implement this using a function named `calculate_bell_state_properties` with no arguments.
from qiskit import QuantumCircuit from qiskit.quantum_info import DensityMatrix, concurrence def calculate_bell_state_properties(): qc = QuantumCircuit(2, name='Bell') qc.h(0) qc.cx(0, 1) rho = DensityMatrix.from_instruction(qc) concur = concurrence(rho) return rho, concur
from qiskit import QuantumCircuit from qiskit.quantum_info import DensityMatrix, concurrence def check(candidate): import numpy as np DensityMatrix, concurrence = candidate() assert round(concurrence,1) == 1 expected_rho = np.array([[0.5, 0, 0, 0.5], [0, 0, 0, 0], [0, 0, 0, 0], [0.5, 0, 0, 0.5]]) np.testing.assert_array_almost_equal(DensityMatrix, expected_rho, decimal=5, err_msg='Density matrix does not match the expected Bell state density matrix') check(calculate_bell_state_properties)
calculate_bell_state_properties
basic
qiskitHumanEval/84
Create a 2-qubit quantum circuit where you define a custom 1-qubit unitary gate (e.g., U3) and apply it as a controlled gate with qubit 0 as control and qubit 1 as target. Return the final circuit. You must implement this using a function named `controlled_custom_unitary_circuit` with no arguments.
from qiskit import QuantumCircuit from qiskit.circuit.library import U3Gate def controlled_custom_unitary_circuit(): qc = QuantumCircuit(2) custom_gate = U3Gate(0.3, 0.2, 0.1).control() qc.append(custom_gate, [0, 1]) return qc
from qiskit import QuantumCircuit from qiskit.circuit.library import U3Gate def check(candidate): qc = candidate() assert isinstance(qc, QuantumCircuit) assert qc.num_qubits == 2 assert any(instr[0].name.startswith('cu3') or 'u3' in instr[0].name for instr in qc.data) check(controlled_custom_unitary_circuit)
controlled_custom_unitary_circuit
basic
qiskitHumanEval/85
Given a QuantumCircuit, convert it into qasm2 string and return it. You must implement this using a function named `convert_quantum_circuit_to_qasm_string` with the following arguments: circuit.
from qiskit import QuantumCircuit import qiskit.qasm2 def convert_quantum_circuit_to_qasm_string(circuit): qasm_str = qiskit.qasm2.dumps(circuit) return qasm_str
from qiskit import QuantumCircuit import qiskit.qasm2 def check(candidate): from qiskit.quantum_info import Statevector qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0,1) qasm_str = candidate(qc) circuit = QuantumCircuit.from_qasm_str(qasm_str) assert Statevector.from_instruction(circuit) == Statevector.from_instruction(qc) check(convert_quantum_circuit_to_qasm_string)
convert_quantum_circuit_to_qasm_string
basic
qiskitHumanEval/86
Create a 5-qubit quantum circuit with a chain of CX gates and apply Qiskit's CollectLinearFunctions transpiler pass. Return two circuits: 1. One with no block width restriction. 2. One with a max_block_width of 3. Use PassManager to apply the pass and return both circuits. You must implement this using a function named `collect_linear_blocks_with_and_without_limit` with no arguments.
from qiskit import QuantumCircuit from qiskit.transpiler.passes import CollectLinearFunctions from qiskit.transpiler import PassManager def collect_linear_blocks_with_and_without_limit(): qc = QuantumCircuit(5) qc.h(0) qc.cx(0, 1) qc.cx(1, 2) qc.cx(2, 3) qc.cx(3, 4) pm_full = PassManager([CollectLinearFunctions()]) full_block = pm_full.run(qc) pm_limited = PassManager([CollectLinearFunctions(max_block_width=3)]) limited_block = pm_limited.run(qc) return full_block, limited_block
from qiskit import QuantumCircuit from qiskit.transpiler.passes import CollectLinearFunctions from qiskit.transpiler import PassManager def check(candidate): from qiskit.circuit.library import LinearFunction full, limited = candidate() full_linear_count = sum(1 for instr in full.data if isinstance(instr.operation, LinearFunction)) limited_linear_count = sum(1 for instr in limited.data if isinstance(instr.operation, LinearFunction)) assert full_linear_count == 1 assert limited_linear_count > 1 check(collect_linear_blocks_with_and_without_limit)
collect_linear_blocks_with_and_without_limit
intermediate
qiskitHumanEval/87
Create a one-qubit quantum circuit, apply hadamard gate, then add a delay of 100 and then again apply hadamard gate and return the circuit. You must implement this using a function named `quantum_circuit_with_delay` with no arguments.
from qiskit import QuantumCircuit def quantum_circuit_with_delay(): qc = QuantumCircuit(1) qc.h(0) delay_duration = 100 qc.delay(delay_duration, 0, unit="dt") qc.h(0) return qc
from qiskit import QuantumCircuit def check(candidate): from qiskit import QuantumRegister from qiskit.circuit import CircuitInstruction from qiskit.circuit.library import HGate from qiskit.circuit import Delay qr = QuantumRegister(1, name="q") data = candidate().data assert data[0]==CircuitInstruction(HGate(), [qr[0]], []) assert data[1]==CircuitInstruction(Delay(100), [qr[0]], []) assert data[2]==CircuitInstruction(HGate(), [qr[0]], []) check(quantum_circuit_with_delay)
quantum_circuit_with_delay
intermediate
qiskitHumanEval/88
Create a one-qubit quantum circuit, apply a Hadamard gate, and then measure it. Based on the classical output, use an IfElseOp operation: if the output is 1, append a one-qubit quantum circuit with a Z gate; if the output is 0, append a one-qubit quantum circuit with an X gate. Finally, add a measurement to the appended circuit and return the complete quantum circuit. You must implement this using a function named `create_conditional_circuit` with no arguments.
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit.circuit import IfElseOp def create_conditional_circuit(): qr = QuantumRegister(1, 'q') cr = ClassicalRegister(1, 'c') circuit = QuantumCircuit(qr, cr) circuit.h(qr[0]) circuit.measure(qr[0], cr[0]) true_body = QuantumCircuit(qr, cr) true_body.z(qr[0]) false_body = QuantumCircuit(qr, cr) false_body.x(qr[0]) if_else_gate = IfElseOp((cr, 1), true_body, false_body) circuit.append(if_else_gate, [qr[0]], [cr[0]]) circuit.measure(qr[0], cr[0]) return circuit
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit.circuit import IfElseOp def check(candidate): from qiskit import QuantumRegister from qiskit.circuit import CircuitInstruction from qiskit.circuit.library import HGate from qiskit_aer import AerSimulator from qiskit_ibm_runtime import Sampler qr = QuantumRegister(1, name="q") circuit = candidate() data = circuit.data assert data[0]==CircuitInstruction(HGate(), [qr[0]], []) assert data[2].operation.name == "if_else" backend = AerSimulator() sampler = Sampler(mode=backend) results = sampler.run([circuit],shots=1024).result() counts= results[0].data.c.get_counts() assert counts == {'1': 1024} assert sum(counts.values()) == 1024 check(create_conditional_circuit)
create_conditional_circuit
intermediate
qiskitHumanEval/89
Construct a quantum circuit with a three-qubit controlled-Hadamard gate, using qubit 0 and qubit 1 as the control bits and qubit 2 as the target bit. Return the circuit. You must implement this using a function named `create_controlled_hgate` with no arguments.
from qiskit.circuit.library import HGate from qiskit import QuantumCircuit, QuantumRegister def create_controlled_hgate(): qr = QuantumRegister(3) qc = QuantumCircuit(qr) c3h_gate = HGate().control(2) qc.append(c3h_gate, qr) return qc
from qiskit.circuit.library import HGate from qiskit import QuantumCircuit, QuantumRegister def check(candidate): from qiskit.quantum_info import Operator solution_register = QuantumRegister(3) solution_circuit = QuantumCircuit(solution_register) c3h_gate = HGate().control(2) solution_circuit.append(c3h_gate, solution_register) qc = candidate() assert Operator(qc).equiv(solution_circuit) check(create_controlled_hgate)
create_controlled_hgate
basic
qiskitHumanEval/90
Create a custom 2-qubit gate with an X gate on qubit 0 and an H gate on qubit 1. Then, add two control qubits to this gate. Apply this controlled gate to a 4-qubit circuit, using qubits 0 and 3 as controls and qubits 1 and 2 as targets. Return the final circuit. You must implement this using a function named `create_custom_controlled` with no arguments.
from qiskit import QuantumCircuit def create_custom_controlled(): qc1 = QuantumCircuit(2) qc1.x(0) qc1.h(1) custom = qc1.to_gate().control(2) qc2 = QuantumCircuit(4) qc2.append(custom, [0, 3, 1, 2]) return qc2
from qiskit import QuantumCircuit def check(candidate): from qiskit.quantum_info import Operator qc1 = QuantumCircuit(2) qc1.x(0) qc1.h(1) custom = qc1.to_gate().control(2) qc2 = QuantumCircuit(4) qc2.append(custom, [0, 3, 1, 2]) candidate_circuit = candidate() assert Operator(qc2).equiv(candidate_circuit) check(create_custom_controlled)
create_custom_controlled
basic
qiskitHumanEval/91
Create a circuit that produces a phi plus bell state with name bell_instruction and convert it into a quantum instruction. You must implement this using a function named `convert_circuit_to_instruction` with no arguments.
from qiskit import QuantumCircuit from qiskit.converters import circuit_to_instruction def convert_circuit_to_instruction(): circ = QuantumCircuit(2, 2, name="bell_instruction") circ.h(0) circ.cx(0,1) circ.measure([0, 1], [0, 1]) instruction = circuit_to_instruction(circ) return instruction
from qiskit import QuantumCircuit from qiskit.converters import circuit_to_instruction def check(candidate): instruction = candidate() assert instruction.name == "bell_instruction" assert instruction.num_qubits == 2 circ = QuantumCircuit(2, 2) circ.h(0) circ.cx(0,1) circ.measure([0, 1], [0, 1]) assert instruction.definition == circ check(convert_circuit_to_instruction)
convert_circuit_to_instruction
basic
qiskitHumanEval/92
Construct a Phi plus Bell state quantum circuit, compute its stabilizer state, and return both the stabilizer state and a dictionary of the stabilizer state measurement probabilities. You must implement this using a function named `calculate_stabilizer_state_info` with no arguments.
from qiskit import QuantumCircuit from qiskit.quantum_info import StabilizerState def calculate_stabilizer_state_info(): qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) stab = StabilizerState(qc) probabilities_dict = stab.probabilities_dict() return stab, probabilities_dict
from qiskit import QuantumCircuit from qiskit.quantum_info import StabilizerState def check(candidate): stab, probabilities_dict = candidate() assert isinstance(stab, StabilizerState) assert isinstance(probabilities_dict, dict) assert probabilities_dict == {"00": 0.5, "11": 0.5} qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) new_stab = StabilizerState(qc) assert stab.equiv(new_stab) check(calculate_stabilizer_state_info)
calculate_stabilizer_state_info
basic
qiskitHumanEval/93
Create a random clifford circuit using the random_clifford function for a given n qubits with seed 1234 and synthesize it using synth_clifford_full method and return. You must implement this using a function named `synthesize_clifford_circuit` with the following arguments: n_qubits.
from qiskit.synthesis import synth_clifford_full from qiskit.quantum_info.random import random_clifford def synthesize_clifford_circuit(n_qubits): qc = random_clifford(n_qubits, seed=1234) synthesized_qc = synth_clifford_full(qc) return synthesized_qc
from qiskit.synthesis import synth_clifford_full from qiskit.quantum_info.random import random_clifford def check(candidate): from qiskit.quantum_info import Operator n_qubits = 6 synthesized_qc = candidate(n_qubits) qc = random_clifford(n_qubits) synthesized_qc = synth_clifford_full(qc) assert Operator(synthesized_qc) == Operator(qc) check(synthesize_clifford_circuit)
synthesize_clifford_circuit
basic
qiskitHumanEval/94
Given a Quantum Circuit as the argument, convert it into qasm3 string and return it. You must implement this using a function named `convert_quantum_circuit_to_qasm_string` with the following arguments: circuit.
from qiskit import QuantumCircuit import qiskit.qasm3 def convert_quantum_circuit_to_qasm_string(circuit): qasm_str = qiskit.qasm3.dumps(circuit) return qasm_str
from qiskit import QuantumCircuit import qiskit.qasm3 def check(candidate): from qiskit.quantum_info import Operator qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0,1) qasm_str = candidate(qc) circuit = qiskit.qasm3.loads(qasm_str) assert Operator(circuit).equiv(Operator(qc)), "Loaded QASM does not match circuit" check(convert_quantum_circuit_to_qasm_string)
convert_quantum_circuit_to_qasm_string
basic
qiskitHumanEval/95
For a given Quantum Circuit remove all the barriers from it and return. You must implement this using a function named `remove_barrier` with the following arguments: circuit.
from qiskit import QuantumCircuit from qiskit.transpiler.passes import RemoveBarriers def remove_barrier(circuit): return RemoveBarriers()(circuit)
from qiskit import QuantumCircuit from qiskit.transpiler.passes import RemoveBarriers def check(candidate): from qiskit.quantum_info import Operator circuit = QuantumCircuit(1) circuit.h(0) circuit.barrier() circuit.x(0) candidate_circuit = candidate(circuit) for inst in candidate_circuit.data: assert inst.operation.name != 'barrier' assert Operator(circuit).equiv(candidate_circuit) check(remove_barrier)
remove_barrier
basic
qiskitHumanEval/96
Create the phi+ Bell state, run it in the FakeKyoto backend and return the counts. Use seed 42 for the sampler. You must implement this using a function named `bell_state_noisy` with no arguments.
from qiskit_ibm_runtime.fake_provider import FakeKyoto from qiskit.circuit import QuantumCircuit from qiskit_ibm_runtime import Sampler from qiskit_ibm_runtime.options import SamplerOptions from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def bell_state_noisy(): backend = FakeKyoto() qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) isa_circuit = pass_manager.run(qc) options = SamplerOptions() options.simulator.seed_simulator=42 sampler = Sampler(backend, options=options) result = sampler.run([isa_circuit]).result() counts = result[0].data.meas.get_counts() return counts
from qiskit_ibm_runtime.fake_provider import FakeKyoto from qiskit.circuit import QuantumCircuit from qiskit_ibm_runtime import Sampler from qiskit_ibm_runtime.options import SamplerOptions from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager def check(candidate): from qiskit.quantum_info import hellinger_fidelity counts_can = candidate() backend = FakeKyoto() qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.measure_all() pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) isa_circuit = pass_manager.run(qc) sampler = Sampler(backend) result = sampler.run([isa_circuit]).result() counts_exp = result[0].data.meas.get_counts() assert isinstance(counts_can, dict), "Return the counts" assert 0.7 < hellinger_fidelity(counts_can, counts_exp) < 1, "Output doesn't match with the results from Fake Kyoto" check(bell_state_noisy)
bell_state_noisy
basic
qiskitHumanEval/97
Return the two qubit connections for any input backend of type FakeBackendV2, IBMBackend. You must implement this using a function named `two_qubit_conections` with the following arguments: backend.
from qiskit_ibm_runtime.fake_provider.fake_backend import FakeBackendV2 from qiskit_ibm_runtime import IBMBackend from typing import Union def two_qubit_conections(backend): if isinstance(backend, FakeBackendV2): return backend.coupling_map return backend.configuration().coupling_map
from qiskit_ibm_runtime.fake_provider.fake_backend import FakeBackendV2 from qiskit_ibm_runtime import IBMBackend from typing import Union def check(candidate): from qiskit_ibm_runtime.fake_provider import FakeKyoto from qiskit_ibm_runtime import QiskitRuntimeService backend_v2 = FakeKyoto() backend_ser = QiskitRuntimeService().least_busy() connections_can_v2 = candidate(backend_v2) connections_exp_v2 = backend_v2.coupling_map assert connections_exp_v2 == connections_can_v2, "The list of connections doesn't match the two qubit connections from the backend" connections_can_ser = candidate(backend_ser) connections_exp_ser = backend_ser.configuration().coupling_map assert connections_exp_ser == connections_can_ser, "The list of connections doesn't match the two qubit connections from the backend" check(two_qubit_conections)
two_qubit_conections
intermediate
qiskitHumanEval/98
Return the minimum readout error of any input backend of type FakeBackendV2, IBMBackend. You must implement this using a function named `qubit_with_least_readout_error` with the following arguments: backend.
import numpy as np from typing import Union from qiskit_ibm_runtime.fake_provider.fake_backend import FakeBackendV2 from qiskit_ibm_runtime import IBMBackend def qubit_with_least_readout_error(backend): error_list = [] if issubclass(type(backend), FakeBackendV2): for qubits in range(backend.num_qubits): error_list.append(backend.target["measure"][(qubits,)].error) else: for qubits in range(backend.configuration().num_qubits): error_list.append(backend.properties().readout_error(qubits)) return np.min(error_list)
import numpy as np from typing import Union from qiskit_ibm_runtime.fake_provider.fake_backend import FakeBackendV2 from qiskit_ibm_runtime import IBMBackend def check(candidate): from qiskit_ibm_runtime.fake_provider import FakeKyoto from qiskit_ibm_runtime import QiskitRuntimeService backend_v2 = FakeKyoto() error_can_v2 = candidate(backend_v2) error_list_v2 = [] for qubits in range(backend_v2.num_qubits): error_list_v2.append(backend_v2.target["measure"][(qubits,)].error) error_exp_v2 = np.min(error_list_v2) assert error_can_v2 == error_exp_v2, "The qubit returned doesn't have the least readout error" backend_ser = QiskitRuntimeService().least_busy() error_can_ser = candidate(backend_ser) error_list_ser = [] for qubits in range(backend_ser.configuration().num_qubits): error_list_ser.append(backend_ser.properties().readout_error(qubits)) error_exp_ser = np.min(error_list_ser) assert error_can_ser == error_exp_ser, "The qubit returned doesn't have the least readout error" check(qubit_with_least_readout_error)
qubit_with_least_readout_error
basic
qiskitHumanEval/99
Remove all the gates with unassigned parameters from the given circuit. You must implement this using a function named `remove_unassigned_parameterized_gates` with the following arguments: circuit.
from qiskit.circuit import Parameter, QuantumCircuit def remove_unassigned_parameterized_gates(circuit): circuit_data = circuit.data.copy() circuit_without_params = QuantumCircuit(circuit.num_qubits, circuit.num_clbits) #for instr, qargs, cargs in circuit_data: for instruction in circuit_data: instr, qargs, cargs = instruction.operation, instruction.qubits, instruction.clbits if not (isinstance(instr.params, Parameter) or isinstance(instr.params[0], Parameter)): circuit_without_params.append(instr, qargs, cargs) return circuit_without_params
from qiskit.circuit import Parameter, QuantumCircuit def check(candidate): from qiskit.circuit.library import RXGate, RZGate circ = QuantumCircuit(2) theta = Parameter("θ") circ.rx(0.1, 1) circ.ry(theta, 1) circ.rx(theta, 0) circ.cp(theta, 0, 1) circ.rz(0.4, 0) circ_can = candidate(circ) assert isinstance(circ_can, QuantumCircuit), "Not a quantum circuit" assert len(circ_can.parameters) == 0, "Circuit consists of gates with unassigned parameters." has_rx = False has_rz = False for instruction in circ_can: instr, qargs, cargs = instruction.operation, instruction.qubits, instruction.clbits if isinstance(instr, RXGate): has_rx = True if isinstance(instr, RZGate): has_rz = True assert has_rx is True, "Removed rx gates with assigned parameters from the circuit" assert has_rz is True, "Removed rz gates with assigned parameters from the circuit" check(remove_unassigned_parameterized_gates)
remove_unassigned_parameterized_gates
basic
End of preview. Expand in Data Studio

image/png

qiskit_humaneval_hard

qiskit_humaneval_hard is a dataset for evaluating LLM's at writing Qiskit code. It contains the same problems as in Qiskit/qiskit_humaneval but is not formatted as a completion exercise. Compared with Qiskit/qiskit_humaneval the benchmark is more challenging as the LLM needs to decide which python modules to use for solving the problems.

Terms of use

License

Apache License 2.0

Downloads last month
100