task_id
stringlengths 17
19
| prompt
stringlengths 122
728
| canonical_solution
stringlengths 97
1.53k
| test
stringlengths 192
1.54k
| entry_point
stringlengths 3
50
| difficulty_scale
stringclasses 3
values |
---|---|---|---|---|---|
qiskitHumanEval/100
|
Create a pass manager to decompose the single qubit gates into gates of the dense subset ['t', 'tdg', 'h'] in the given circuit.
You must implement this using a function named `sol_kit_decomp` with the following arguments: circuit.
|
from qiskit.transpiler.passes import SolovayKitaev
from qiskit.transpiler import PassManager
from qiskit.circuit import QuantumCircuit
def sol_kit_decomp(circuit):
pm = PassManager([SolovayKitaev()])
circ_dec = pm.run(circuit)
return circ_dec
|
from qiskit.transpiler.passes import SolovayKitaev
from qiskit.transpiler import PassManager
from qiskit.circuit import QuantumCircuit
def check(candidate):
import numpy as np
from qiskit.circuit.library import EfficientSU2
from qiskit.quantum_info import Operator
circ = EfficientSU2(3).decompose()
circ = circ.assign_parameters(np.random.random(circ.num_parameters))
circ_can = candidate(circ)
op_or = Operator(circ)
op_can = Operator(circ_can)
assert Operator.equiv(op_or, op_can, rtol=0.1, atol=0.1), "Operators are not the same"
assert isinstance(circ_can, QuantumCircuit), "Not a quantum circuit"
for instruction in circ_can.data:
instr, qargs, cargs = instruction.operation, instruction.qubits, instruction.clbits
if instr.num_qubits == 1 and instr.name not in {"h", "tdg", "t"}:
raise AssertionError("Circuit contains gates outside the given dense subset")
check(sol_kit_decomp)
|
sol_kit_decomp
|
basic
|
qiskitHumanEval/101
|
Return the circuit for the graph state of the coupling map of the Fake Kyoto backend. Hint: Use the networkx library to convert the coupling map to a dense adjacency matrix.
You must implement this using a function named `get_graph_state` with no arguments.
|
from qiskit_ibm_runtime.fake_provider import FakeKyoto
from qiskit.circuit.library import GraphState
import networkx as nx
from qiskit.circuit import QuantumCircuit
def get_graph_state():
backend = FakeKyoto()
coupling_map = backend.coupling_map
G = nx.Graph()
G.add_edges_from(coupling_map)
adj_matrix = nx.adjacency_matrix(G).todense()
gr_state_circ = GraphState(adjacency_matrix=adj_matrix)
return gr_state_circ
|
from qiskit_ibm_runtime.fake_provider import FakeKyoto
from qiskit.circuit.library import GraphState
import networkx as nx
from qiskit.circuit import QuantumCircuit
def check(candidate):
from collections import OrderedDict
from qiskit.transpiler.passes import UnitarySynthesis
from qiskit.transpiler import PassManager
gr_state_circ_can = candidate()
assert isinstance(gr_state_circ_can, QuantumCircuit)
gr_state_circ_exp_ops = OrderedDict([("cz", 144), ("h", 127)])
basis_gates = ["cz", "h"]
pm = PassManager([UnitarySynthesis(basis_gates)])
gr_state_circ_can_ops = pm.run(gr_state_circ_can.decompose()).count_ops()
assert gr_state_circ_can_ops == gr_state_circ_exp_ops
check(get_graph_state)
|
get_graph_state
|
intermediate
|
qiskitHumanEval/102
|
Transpile the circuit for the phi plus bell state for FakeKyoto, FakeKyiv and FakeAuckland using the level 1 preset pass manager and return the backend name with the lowest number of instructions.
You must implement this using a function named `backend_with_least_instructions` with no arguments.
|
from qiskit.circuit import QuantumCircuit
from qiskit_ibm_runtime.fake_provider import FakeKyoto, FakeKyiv, FakeAuckland
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
def backend_with_least_instructions():
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
backends = [FakeKyiv(), FakeKyoto(), FakeAuckland()]
qc_isa_num_intruc = {}
for backend in backends:
pm = generate_preset_pass_manager(optimization_level=0, backend=backend)
qc_isa_num_intruc[backend.name] = len(pm.run(qc).data)
return min(qc_isa_num_intruc, key=qc_isa_num_intruc.get)
|
from qiskit.circuit import QuantumCircuit
from qiskit_ibm_runtime.fake_provider import FakeKyoto, FakeKyiv, FakeAuckland
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
def check(candidate):
backend_can = candidate()
assert backend_can in "fake_auckland" or "auckland" in backend_can
check(backend_with_least_instructions)
|
backend_with_least_instructions
|
basic
|
qiskitHumanEval/103
|
Return the list of names of all the fake providers of type FakeBackendV2 which contains ecr gates in its available operations.
You must implement this using a function named `fake_providers_v2_with_ecr` with no arguments.
|
import importlib
import inspect
from qiskit_ibm_runtime.fake_provider import fake_backend
def fake_providers_v2_with_ecr():
fake_provider_module = importlib.import_module("qiskit_ibm_runtime.fake_provider")
fake_providers = {}
for name, obj in inspect.getmembers(fake_provider_module):
if inspect.isclass(obj) and issubclass(obj, fake_backend.FakeBackendV2):
fake_providers[name] = obj
fake_providers_ecr = []
for name, provider in fake_providers.items():
backend = provider()
if "ecr" in backend.operation_names:
fake_providers_ecr.append(name)
return fake_providers_ecr
|
import importlib
import inspect
from qiskit_ibm_runtime.fake_provider import fake_backend
def check(candidate):
providers_can = candidate()
providers_exp = [
"FakeCusco",
"FakeKawasaki",
"FakeKyiv",
"FakeKyoto",
"FakeOsaka",
"FakePeekskill",
"FakeQuebec",
"FakeSherbrooke",
"FakeBrisbane",
"FakeCairoV2",
]
for providers in providers_can:
assert providers in providers_exp
for providers in providers_exp:
assert providers in providers_can
check(fake_providers_v2_with_ecr)
|
fake_providers_v2_with_ecr
|
basic
|
qiskitHumanEval/104
|
Transpile the 4-qubit QFT circuit using preset passmanager with optimization level 3 and seed transpiler = 1234 in FakeOsaka, FakeSherbrooke and FakeBrisbane. Compute the cost of the instructions by penalizing the two qubit gate with a cost of 5, rz gates with a cost 1 and other gates with a cost 2 and return the value of the highest cost among these backends.
You must implement this using a function named `backend_with_lowest_complexity` with no arguments.
|
from qiskit_ibm_runtime.fake_provider import FakeOsaka, FakeSherbrooke, FakeBrisbane
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.circuit.library import QFT
def backend_with_lowest_complexity():
qc = QFT(4)
backends = [FakeOsaka(), FakeSherbrooke(), FakeBrisbane()]
complexity_dict = {}
for backend in backends:
pm = generate_preset_pass_manager(
optimization_level=3, seed_transpiler=1234, backend=backend
)
data = pm.run(qc).data
complexity = 0
for instruc in data:
if instruc.operation.num_qubits == 2:
complexity += 5
elif instruc.operation.name == "rz":
complexity += 1
else:
complexity += 2
complexity_dict[backend.name] = complexity
return complexity_dict[max(complexity_dict, key=complexity_dict.get)]
|
from qiskit_ibm_runtime.fake_provider import FakeOsaka, FakeSherbrooke, FakeBrisbane
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit.circuit.library import QFT
def check(candidate):
complexity_can = candidate()
complexity_exp = 194
assert complexity_can == complexity_exp
check(backend_with_lowest_complexity)
|
backend_with_lowest_complexity
|
intermediate
|
qiskitHumanEval/105
|
Initialize a CNOTDihedral element from a QuantumCircuit consist of 2-qubits with cx gate on qubit 0 and 1 and t gate on qubit 0 and return.
You must implement this using a function named `initialize_cnot_dihedral` with no arguments.
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import CNOTDihedral
def initialize_cnot_dihedral():
circ = QuantumCircuit(2)
# Apply gates
circ.cx(0, 1)
circ.t(0)
elem = CNOTDihedral(circ)
return elem
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import CNOTDihedral
def check(candidate):
result = candidate()
assert isinstance(result, CNOTDihedral), f'Expected result to be CNOTDihedral, but got {type(result)}'
assert result.linear.tolist() == [[1, 0], [1, 1]]
assert str(result.poly) == "0 + x_0"
assert result.shift.tolist() == [0, 0]
check(initialize_cnot_dihedral)
|
initialize_cnot_dihedral
|
basic
|
qiskitHumanEval/106
|
Create two Quantum Circuits of 2 qubits. First quantum circuit should have a cx gate on qubits 0 and 1 and a T gate on qubit 0. The second one is the same but with an additional X gate on qubit 1. Convert the two quantum circuits into CNOTDihedral elements and return the composed circuit.
You must implement this using a function named `compose_cnot_dihedral` with no arguments.
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import CNOTDihedral
def compose_cnot_dihedral():
circ1 = QuantumCircuit(2)
# Apply gates
circ1.cx(0, 1)
circ1.t(0)
elem1 = CNOTDihedral(circ1)
circ2 = circ1.copy()
circ2.x(1)
elem2 = CNOTDihedral(circ2)
composed_elem = elem1.compose(elem2)
return composed_elem
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import CNOTDihedral
def check(candidate):
result = candidate()
assert isinstance(result, CNOTDihedral), f'Expected result to be CNOTDihedral, but got {type(result)}'
assert result.linear.tolist() == [[1, 0], [0, 1]]
assert str(result.poly) == "0 + 2*x_0"
assert list(result.shift) == [0, 1]
check(compose_cnot_dihedral)
|
compose_cnot_dihedral
|
intermediate
|
qiskitHumanEval/107
|
Create two ScalarOp objects with dimension 2 and coefficient 2, compose them together, and return the resulting ScalarOp.
You must implement this using a function named `compose_scalar_ops` with no arguments.
|
from qiskit.quantum_info import ScalarOp
def compose_scalar_ops():
op1 = ScalarOp(2, 2)
op2 = ScalarOp(2, 2)
composed_op = op1.compose(op2)
return composed_op
|
from qiskit.quantum_info import ScalarOp
def check(candidate):
result = candidate()
assert isinstance(result, ScalarOp), f'Expected result to be ScalarOp, but got {type(result)}'
assert result.coeff == 4
assert result.input_dims() == (2,)
check(compose_scalar_ops)
|
compose_scalar_ops
|
basic
|
qiskitHumanEval/108
|
Initialize Choi matrices for the given data1 and data2 as inputs. Compute data1 adjoint, and then return the data1 Choi matrix, its adjoint and the composed choi matrices in order.
You must implement this using a function named `initialize_adjoint_and_compose` with the following arguments: data1, data2.
|
from qiskit.quantum_info import Choi
import numpy as np
def initialize_adjoint_and_compose(data1, data2):
choi1 = Choi(data1)
choi2 = Choi(data2)
adjoint_choi1 = choi1.adjoint()
composed_choi = choi1.compose(choi2)
return choi1, adjoint_choi1, composed_choi
|
from qiskit.quantum_info import Choi
import numpy as np
def check(candidate):
data = np.eye(4)
choi, adjoint_choi, composed_choi = candidate(data, data)
assert isinstance(choi, Choi), f'Expected choi to be Choi, but got {type(choi)}'
assert choi.dim == (2, 2), f'Expected dimensions to be (2, 2), but got {choi.dim}'
assert isinstance(adjoint_choi, Choi), f'Expected adjoint_choi to be Choi, but got {type(adjoint_choi)}'
assert isinstance(composed_choi, Choi), f'Expected composed_choi to be Choi, but got {type(composed_choi)}'
expected_adjoint_data = data.conj().T
assert np.allclose(adjoint_choi.data, expected_adjoint_data), f'Expected adjoint data to be {expected_adjoint_data}, but got {adjoint_choi.data}'
check(initialize_adjoint_and_compose)
|
initialize_adjoint_and_compose
|
basic
|
qiskitHumanEval/109
|
Create a parameterized quantum circuit using minimum resources whose statevector output cover the equatorial plane of the surface of the bloch sphere.
You must implement this using a function named `circuit` with no arguments.
|
from qiskit.circuit import QuantumCircuit, Parameter
def circuit():
qc = QuantumCircuit(1)
qc.h(0)
theta = Parameter('th')
qc.rz(theta,0)
return qc
|
from qiskit.circuit import QuantumCircuit, Parameter
def check(candidate):
import numpy as np
from qiskit.quantum_info import Statevector
def statevector_to_bloch_angles(state_vector):
alpha = state_vector[0]
beta = state_vector[1]
norm = np.sqrt(np.abs(alpha)**2 + np.abs(beta)**2)
alpha = alpha / norm
beta = beta / norm
theta = 2 * np.arccos(np.abs(alpha))
phi = np.angle(beta) - np.angle(alpha)
phi = (phi + 2 * np.pi) % (2 * np.pi)
return theta, phi
error = 0.000001
for i in range(1000):
qc = candidate()
num_params = qc.num_parameters
qc.assign_parameters(np.random.randn(num_params), inplace=True)
sv = Statevector(qc)
theta, phi = statevector_to_bloch_angles(sv)
assert np.pi/2 - error <= theta <= np.pi/2 + error
check(circuit)
|
circuit
|
intermediate
|
qiskitHumanEval/110
|
Given a clifford circuit return a list of n random clifford circuits which are equivalent to the given circuit up to a relative and absolute tolerance of 0.4.
You must implement this using a function named `equivalent_clifford_circuit` with the following arguments: circuit, n.
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import random_clifford, Operator
def equivalent_clifford_circuit(circuit, n):
op_or = Operator(circuit)
num_qubits = circuit.num_qubits
qc_list = []
counter = 0
while counter< n:
qc = random_clifford(num_qubits).to_circuit()
op_qc = Operator(qc)
if op_qc.equiv(op_or, rtol = 0.4, atol = 0.4) == True:
counter += 1
qc_list.append(qc)
return qc_list
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import random_clifford, Operator
def check(candidate):
from qiskit.quantum_info import Clifford
qc_comp = random_clifford(5).to_circuit()
op_comp = Operator(qc_comp)
can_circ_list = candidate(qc_comp, 10)
for item in can_circ_list:
assert Operator(item).equiv(op_comp, rtol = 0.4, atol = 0.4)
try:
Clifford(item)
except Exception as err:
raise AssertionError("The circuit is not a Clifford circuit.") from err
check(equivalent_clifford_circuit)
|
equivalent_clifford_circuit
|
intermediate
|
qiskitHumanEval/111
|
Return an ansatz to create a quantum dataset of pure states distributed equally across the bloch sphere. Use minimum number of gates in the ansatz.
You must implement this using a function named `circuit` with no arguments.
|
from qiskit.circuit import QuantumCircuit, Parameter
def circuit():
qc = QuantumCircuit(1)
p1 = Parameter("p1")
p2 = Parameter("p2")
qc.rx(p1,0)
qc.ry(p2,0)
return qc
|
from qiskit.circuit import QuantumCircuit, Parameter
def check(candidate):
assert candidate().num_parameters >= 2 , "The circuit doesn't cover the bloch sphere."
assert candidate().num_parameters <= 5 , "The circuit is too long"
check(circuit)
|
circuit
|
intermediate
|
qiskitHumanEval/112
|
Create a quantum circuit using LieTrotter for a list of Pauli strings and times. Each Pauli string is associated with a corresponding time in the 'times' list. The function should return the resulting QuantumCircuit.
You must implement this using a function named `create_product_formula_circuit` with the following arguments: pauli_strings, times, order, reps.
|
from qiskit.quantum_info import Operator
from qiskit.circuit.library import PauliEvolutionGate
from qiskit.synthesis import LieTrotter
from qiskit import QuantumCircuit
from qiskit.quantum_info import Pauli, SparsePauliOp
def create_product_formula_circuit(pauli_strings, times, order, reps):
qc = QuantumCircuit(len(pauli_strings[0]))
synthesizer = LieTrotter(reps=reps)
for pauli_string, time in zip(pauli_strings, times):
pauli = Pauli(pauli_string)
hamiltonian = SparsePauliOp(pauli)
evolution_gate = PauliEvolutionGate(hamiltonian, time)
synthesized_circuit = synthesizer.synthesize(evolution_gate)
qc.append(synthesized_circuit.to_gate(), range(len(pauli_string)))
return qc
|
from qiskit.quantum_info import Operator
from qiskit.circuit.library import PauliEvolutionGate
from qiskit.synthesis import LieTrotter
from qiskit import QuantumCircuit
from qiskit.quantum_info import Pauli, SparsePauliOp
def check(candidate):
pauli_strings = ["X", "Y", "Z"]
times = [1.0, 2.0, 3.0]
order = 2
reps = 1
def create_solution_circuit(pauli_strings, times, order, reps):
qc = QuantumCircuit(len(pauli_strings[0]))
synthesizer = LieTrotter(reps=reps)
for pauli_string, time in zip(pauli_strings, times):
pauli = Pauli(pauli_string)
hamiltonian = SparsePauliOp(pauli)
evolution_gate = PauliEvolutionGate(hamiltonian, time)
synthesized_circuit = synthesizer.synthesize(evolution_gate)
qc.append(synthesized_circuit.to_gate(), range(len(pauli_string)))
return qc
solution_circuit = create_solution_circuit(pauli_strings, times, order, reps)
candidate_circuit = candidate(pauli_strings, times, order, reps)
assert Operator(solution_circuit) == Operator(candidate_circuit), "The candidate circuit does not match the expected solution."
assert isinstance(candidate_circuit, QuantumCircuit), "The returned object is not a QuantumCircuit."
check(create_product_formula_circuit)
|
create_product_formula_circuit
|
intermediate
|
qiskitHumanEval/113
|
Remove barriers from the given quantum circuit and calculate the depth before and after removal.
Return a PropertySet with 'depth_before', 'depth_after', and 'width' properties.
The function should only remove barriers and not perform any other optimizations.
You must implement this using a function named `calculate_depth_after_barrier_removal` with the following arguments: qc.
|
from qiskit import QuantumCircuit
from qiskit.transpiler import PassManager, PropertySet
from qiskit.transpiler.passes import RemoveBarriers
def calculate_depth_after_barrier_removal(qc):
property_set = PropertySet()
property_set["depth_before"] = qc.depth()
property_set["width"] = qc.width()
pass_manager = PassManager(RemoveBarriers())
optimized_qc = pass_manager.run(qc)
property_set['depth_after'] = optimized_qc.depth()
return property_set
|
from qiskit import QuantumCircuit
from qiskit.transpiler import PassManager, PropertySet
from qiskit.transpiler.passes import RemoveBarriers
def check(candidate):
qc = QuantumCircuit(3)
qc.h(0)
qc.barrier()
qc.cx(0, 1)
qc.barrier()
qc.cx(1, 2)
qc.measure_all()
property_set = candidate(qc)
assert property_set["depth_before"] == qc.depth(), "'depth_before' should match the original circuit depth"
assert property_set["width"] == qc.width(), "'width' should match the circuit width"
optimized_qc = PassManager(RemoveBarriers()).run(qc)
assert property_set["depth_after"] == optimized_qc.depth(), "'depth_after' should match the depth of a barrier-free circuit"
check(calculate_depth_after_barrier_removal)
|
calculate_depth_after_barrier_removal
|
intermediate
|
qiskitHumanEval/114
|
Create a CouplingMap with a specific coupling list, then modify it by adding an edge and a physical qubit.
The initial coupling list is [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]].
Add an edge (5, 6), and add a physical qubit "7".
You must implement this using a function named `create_and_modify_coupling_map` with no arguments.
|
from qiskit.transpiler import CouplingMap
def create_and_modify_coupling_map():
coupling_list = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]
cmap = CouplingMap(couplinglist=coupling_list)
cmap.add_edge(5, 6)
cmap.add_physical_qubit(7)
return cmap
|
from qiskit.transpiler import CouplingMap
def check(candidate):
cmap = candidate()
edges = set(cmap.get_edges())
assert edges == { (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5,6) }
assert len(cmap.physical_qubits) == 8
check(create_and_modify_coupling_map)
|
create_and_modify_coupling_map
|
intermediate
|
qiskitHumanEval/115
|
Create a Target object for a 2-qubit system and add UGate and CXGate instructions with specific properties.
- Add UGate for both qubits (0 and 1) with parameters 'theta', 'phi', and 'lambda'.
- Add CXGate for qubit pairs (0,1) and (1,0).
- All instructions should have nonzero 'duration' and 'error' properties set.
You must implement this using a function named `create_target` with no arguments.
|
from qiskit.transpiler import Target, InstructionProperties
from qiskit.circuit.library import UGate, CXGate
from qiskit.circuit import Parameter
def create_target():
gmap = Target()
theta, phi, lam = [Parameter(p) for p in ("theta", "phi", "lambda")]
u_props = {
(0,): InstructionProperties(duration=5.23e-8, error=0.00038115),
(1,): InstructionProperties(duration=4.52e-8, error=0.00032115),
}
gmap.add_instruction(UGate(theta, phi, lam), u_props)
cx_props = {
(0,1): InstructionProperties(duration=5.23e-7, error=0.00098115),
(1,0): InstructionProperties(duration=4.52e-7, error=0.00132115),
}
gmap.add_instruction(CXGate(), cx_props)
return gmap
|
from qiskit.transpiler import Target, InstructionProperties
from qiskit.circuit.library import UGate, CXGate
from qiskit.circuit import Parameter
def check(candidate):
target = candidate()
assert isinstance(target, Target)
instructions = target.instructions
u_gate_instructions = [inst for inst in instructions if inst[0].name == "u"]
cx_gate_instructions = [inst for inst in instructions if inst[0].name == 'cx']
assert len(u_gate_instructions) == 2
assert len(cx_gate_instructions) == 2
for inst in u_gate_instructions + cx_gate_instructions:
props = target[inst[0].name][inst[1]]
assert isinstance(props, InstructionProperties)
assert props.duration > 0
assert props.error >= 0
assert set(inst[1] for inst in u_gate_instructions) == {(0,), (1,)}
assert set(inst[1] for inst in cx_gate_instructions) == {(0, 1), (1, 0)}
check(create_target)
|
create_target
|
intermediate
|
qiskitHumanEval/116
|
Synthesize an evolution gate using MatrixExponential for a given Pauli string and time.
The Pauli string can be any combination of 'I', 'X', 'Y', and 'Z'.
Return the resulting QuantumCircuit.
You must implement this using a function named `synthesize_evolution_gate` with the following arguments: pauli_string, time.
|
from qiskit.circuit.library import PauliEvolutionGate
from qiskit.synthesis import MatrixExponential
from qiskit import QuantumCircuit
from qiskit.quantum_info import Pauli, Operator
import numpy as np
def synthesize_evolution_gate(pauli_string, time):
pauli = Pauli(pauli_string)
evolution_gate = PauliEvolutionGate(pauli, time)
synthesizer = MatrixExponential()
qc = synthesizer.synthesize(evolution_gate)
return qc
|
from qiskit.circuit.library import PauliEvolutionGate
from qiskit.synthesis import MatrixExponential
from qiskit import QuantumCircuit
from qiskit.quantum_info import Pauli, Operator
import numpy as np
def check(candidate):
pauli_string = "X"
time = 1.0
qc = candidate(pauli_string, time)
assert isinstance(qc, QuantumCircuit), "The function should return a QuantumCircuit"
assert qc.size() > 0, "The circuit should not be empty"
ideal_solution = QuantumCircuit(1)
ideal_solution.rx(2 * time, 0)
assert np.allclose(Operator(qc), Operator(ideal_solution)), "The synthesized circuit does not match the expected evolution"
check(synthesize_evolution_gate)
|
synthesize_evolution_gate
|
intermediate
|
qiskitHumanEval/117
|
Decompose a 4x4 unitary using the TwoQubitBasisDecomposer with CXGate as the basis gate.
Return the resulting QuantumCircuit.
You must implement this using a function named `decompose_unitary` with the following arguments: unitary.
|
from qiskit.synthesis import TwoQubitBasisDecomposer
from qiskit.quantum_info import Operator, random_unitary
from qiskit.circuit.library import CXGate
from qiskit import QuantumCircuit
import numpy as np
def decompose_unitary(unitary):
decomposer = TwoQubitBasisDecomposer(CXGate())
return decomposer(unitary)
|
from qiskit.synthesis import TwoQubitBasisDecomposer
from qiskit.quantum_info import Operator, random_unitary
from qiskit.circuit.library import CXGate
from qiskit import QuantumCircuit
import numpy as np
def check(candidate):
unitary = random_unitary(4)
try:
qc = candidate(unitary)
assert isinstance(qc, QuantumCircuit)
assert qc.num_qubits == 2
assert qc.size() > 0
cx_count = sum(1 for inst in qc.data if inst.operation.name == "cx")
assert cx_count > 0
except (ValueError, np.linalg.LinAlgError) as e:
raise e
check(decompose_unitary)
|
decompose_unitary
|
intermediate
|
qiskitHumanEval/118
|
Create a QuantumCircuit with a C3SXGate applied to the first four qubits.
You must implement this using a function named `create_c3sx_circuit` with no arguments.
|
from qiskit import QuantumCircuit
from qiskit.circuit.library import C3SXGate
def create_c3sx_circuit():
qc = QuantumCircuit(4)
c3sx_gate = C3SXGate()
qc.append(c3sx_gate, [0, 1, 2, 3])
return qc
|
from qiskit import QuantumCircuit
from qiskit.circuit.library import C3SXGate
def check(candidate):
qc = candidate()
assert isinstance(qc, QuantumCircuit)
c3sx_instructions = [inst for inst in qc.data if isinstance(inst.operation, C3SXGate)]
assert len(c3sx_instructions) == 1
assert c3sx_instructions[0].qubits == tuple([qc.qubits[i] for i in range(4)])
check(create_c3sx_circuit)
|
create_c3sx_circuit
|
intermediate
|
qiskitHumanEval/119
|
Create a QuantumCircuit with a CDKMRippleCarryAdder applied to the qubits.
The kind of adder can be 'full', 'half', or 'fixed'.
You must implement this using a function named `create_ripple_carry_adder_circuit` with the following arguments: num_state_qubits, kind.
|
from qiskit.circuit.library import CDKMRippleCarryAdder
from qiskit import QuantumCircuit
from qiskit.quantum_info import Operator
def create_ripple_carry_adder_circuit(num_state_qubits, kind):
adder = CDKMRippleCarryAdder(num_state_qubits, kind)
qc = QuantumCircuit(adder.num_qubits)
qc.append(adder.to_instruction(), range(adder.num_qubits))
return qc
|
from qiskit.circuit.library import CDKMRippleCarryAdder
from qiskit import QuantumCircuit
from qiskit.quantum_info import Operator
def check(candidate):
qc_full = candidate(3, "full")
assert isinstance(qc_full, QuantumCircuit), "The function should return a QuantumCircuit"
op_full = Operator(qc_full)
expected_full = Operator(CDKMRippleCarryAdder(3, "full"))
assert op_full.equiv(expected_full), "The circuit does not match the expected CDKMRippleCarryAdder for full kind"
qc_fixed = candidate(3, "fixed")
assert isinstance(qc_fixed, QuantumCircuit), "The function should return a QuantumCircuit"
op_fixed = Operator(qc_fixed)
expected_fixed = Operator(CDKMRippleCarryAdder(3, "fixed"))
assert op_fixed.equiv(expected_fixed), "The circuit does not match the expected CDKMRippleCarryAdder for fixed kind"
check(create_ripple_carry_adder_circuit)
|
create_ripple_carry_adder_circuit
|
intermediate
|
qiskitHumanEval/120
|
Create a QuantumCircuit with a Diagonal gate applied to the qubits.
The diagonal elements are provided in the list 'diag'.
You must implement this using a function named `create_diagonal_circuit` with the following arguments: diag.
|
from qiskit.circuit.library import Diagonal
from qiskit import QuantumCircuit
from qiskit.quantum_info import Operator
def create_diagonal_circuit(diag):
diagonal_gate = Diagonal(diag)
qc = QuantumCircuit(diagonal_gate.num_qubits)
qc.append(diagonal_gate.to_instruction(), range(diagonal_gate.num_qubits))
return qc
|
from qiskit.circuit.library import Diagonal
from qiskit import QuantumCircuit
from qiskit.quantum_info import Operator
def check(candidate):
diag = [1, 1j, -1, -1j]
qc = candidate(diag)
assert isinstance(qc, QuantumCircuit), "The function should return a QuantumCircuit"
op_circuit = Operator(qc)
expected_diagonal = Diagonal(diag)
op_expected = Operator(expected_diagonal)
assert op_circuit.equiv(op_expected), "The circuit does not match the expected Diagonal gate"
check(create_diagonal_circuit)
|
create_diagonal_circuit
|
intermediate
|
qiskitHumanEval/121
|
Create a quantum circuit with one qubit and two classical bits. The qubit's operation depends on its measurement outcome: if it measures to 1 (|1> state), it flips the qubit's state back to |0> using an X gate. The qubit's initial state is randomized using a Hadamard gate. When building the quantum circuit make sure the classical registers is named 'c'.
You must implement this using a function named `conditional_two_qubit_circuit` with no arguments.
|
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
def conditional_two_qubit_circuit():
qr = QuantumRegister(1)
cr = ClassicalRegister(2, 'c')
qc = QuantumCircuit(qr, cr)
qc.h(qr[0])
qc.measure(qr[0], cr[0])
with qc.if_test((cr[0], 1)):
qc.x(qr[0])
qc.measure(qr[0], cr[1])
return qc
|
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
def check(candidate):
from qiskit_aer import AerSimulator
from qiskit_ibm_runtime import Sampler
from qiskit_ibm_runtime.options import SamplerOptions
qc = candidate()
assert isinstance(qc, QuantumCircuit)
assert qc.num_qubits == 1
assert qc.num_clbits == 2
ops = dict(qc.count_ops())
assert "h" in ops and "if_else" in ops
backend = AerSimulator()
options = SamplerOptions()
options.simulator.seed_simulator=42
sampler = Sampler(mode=backend, options=options)
result = sampler.run([qc]).result()
counts = result[0].data.c.get_counts()
assert "10" not in counts and "11" not in counts
check(conditional_two_qubit_circuit)
|
conditional_two_qubit_circuit
|
basic
|
qiskitHumanEval/122
|
Generate an EfficientSU2 circuit with the given number of qubits, 1 reps and make entanglement circular.
Then use the Qiskit Transpiler service with the AI flag turned on, use the ibm_brisbane backend and an optimization level of 3 and transpile the generated circuit.
You must implement this using a function named `ai_transpiling` with the following arguments: num_qubits.
|
from qiskit.circuit.library import EfficientSU2
from qiskit_ibm_transpiler.transpiler_service import TranspilerService
def ai_transpiling(num_qubits):
circuit = EfficientSU2(num_qubits, entanglement="circular", reps=1)
transpiler_ai_true = TranspilerService(
backend_name="ibm_brisbane",
ai=True,
optimization_level=3
)
transpiled_circuit = transpiler_ai_true.run(circuit)
return transpiled_circuit
|
from qiskit.circuit.library import EfficientSU2
from qiskit_ibm_transpiler.transpiler_service import TranspilerService
def check(candidate):
import qiskit
num_qubits = 3
backend_name = "ibm_brisbane"
ai_flag = True
optimization_level = 3
og_circuit = EfficientSU2(num_qubits, entanglement="circular", reps=1)
gen_transpiled_circuit = candidate(num_qubits)
assert isinstance(gen_transpiled_circuit, qiskit.circuit.QuantumCircuit)
transpiler_service = TranspilerService(
backend_name=backend_name,
ai=ai_flag,
optimization_level=optimization_level
)
expected_transpiled_circuit = transpiler_service.run(og_circuit)
# We can add the following check once we have the random_state/seed feature in the transpiler service
# assert gen_transpiled_circuit == expected_transpiled_circuit
check(ai_transpiling)
|
ai_transpiling
|
basic
|
qiskitHumanEval/123
|
Instantiate a FakeBelemV2 backend and return the plot of its error_map.
You must implement this using a function named `backend_error_map` with no arguments.
|
from qiskit.visualization import plot_error_map
from qiskit_ibm_runtime.fake_provider import FakeBelemV2
def backend_error_map():
backend = FakeBelemV2()
return plot_error_map(backend)
|
from qiskit.visualization import plot_error_map
from qiskit_ibm_runtime.fake_provider import FakeBelemV2
def check(candidate):
from matplotlib.figure import Figure
result = candidate()
assert type(result) == Figure
assert len(result.axes) == 5
assert result.get_suptitle() == "fake_belem Error Map"
check(backend_error_map)
|
backend_error_map
|
basic
|
qiskitHumanEval/124
|
Generate a noise model from the Fake Cairo V2 backend.
You must implement this using a function named `gen_noise_model` with no arguments.
|
from qiskit_ibm_runtime.fake_provider import FakeCairoV2
from qiskit_aer.noise import NoiseModel
def gen_noise_model():
backend = FakeCairoV2()
noise_model = NoiseModel.from_backend(backend)
return noise_model
|
from qiskit_ibm_runtime.fake_provider import FakeCairoV2
from qiskit_aer.noise import NoiseModel
def check(candidate):
backend = FakeCairoV2()
expected_nm = NoiseModel.from_backend(backend)
noise_model = candidate()
assert type(noise_model) == NoiseModel
assert noise_model == expected_nm
check(gen_noise_model)
|
gen_noise_model
|
basic
|
qiskitHumanEval/125
|
Given a QuantumCircuit, convert it into a gate equivalent to the action of the input circuit and return it.
You must implement this using a function named `circ_to_gate` with the following arguments: circ.
|
from qiskit.converters import circuit_to_gate
def circ_to_gate(circ):
circ_gate = circuit_to_gate(circ)
return circ_gate
|
from qiskit.converters import circuit_to_gate
def check(candidate):
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.circuit.gate import Gate
from qiskit.quantum_info import Operator
from qiskit.circuit.library import ZGate
q = QuantumRegister(3, "q")
circ = QuantumCircuit(q)
circ.h(q[0])
circ.cx(q[0], q[1])
custom_gate = candidate(circ)
assert type(custom_gate) == Gate
assert custom_gate.num_qubits == 3
assert custom_gate.num_clbits == 0
q = QuantumRegister(1, "q")
circ = QuantumCircuit(q)
circ.h(q)
circ.x(q)
circ.h(q)
hxh_gate = circ_to_gate(circ)
hxh_op = Operator(hxh_gate)
z_op = Operator(ZGate())
assert hxh_op.equiv(z_op)
check(circ_to_gate)
|
circ_to_gate
|
basic
|
qiskitHumanEval/126
|
Create two quantum operators using Hadamard gate that differ only by a global phase. Calculate the process fidelity between these two operators and return the process fidelity value.
You must implement this using a function named `calculate_phase_difference_fidelity` with no arguments.
|
from qiskit.circuit.library import HGate
from qiskit.quantum_info import Operator, process_fidelity
import numpy as np
def calculate_phase_difference_fidelity():
op_a = Operator(HGate())
op_b = np.exp(1j * 0.5) * Operator(HGate())
fidelity = process_fidelity(op_a, op_b)
return fidelity
|
from qiskit.circuit.library import HGate
from qiskit.quantum_info import Operator, process_fidelity
import numpy as np
def check(candidate):
result = candidate()
assert isinstance(result, float)
assert abs(result - 1.0) < 1e-6
check(calculate_phase_difference_fidelity)
|
calculate_phase_difference_fidelity
|
basic
|
qiskitHumanEval/127
|
Using qiskit's random_circuit function, generate a circuit with 4 qubits and a depth of 3 that measures all qubits at the end. Use the seed value 17 and return the generated circuit.
You must implement this using a function named `random_circuit_depth` with no arguments.
|
from qiskit.circuit.random import random_circuit
from qiskit import QuantumCircuit
def random_circuit_depth():
circuit = random_circuit(4, 3, measure=True, seed = 17)
return circuit
|
from qiskit.circuit.random import random_circuit
from qiskit import QuantumCircuit
def check(candidate):
from qiskit.circuit.random import random_circuit
from qiskit import QuantumCircuit
# Run the candidate function
result = candidate()
# Check if the output is a QuantumCircuit
assert isinstance(result, QuantumCircuit), "Output should be a QuantumCircuit"
# Generate the expected circuit using the same parameters
expected_qc = random_circuit(4, 3, measure=True, seed=17)
# Ensure the circuit has 4 qubits
assert result.num_qubits == 4, f"Expected 4 qubits, but got {result.num_qubits}"
# Ensure the circuit depth is within an acceptable range (allowing small variations)
expected_depth = expected_qc.depth()
assert abs(result.depth() - expected_depth) <= 1, f"Expected depth around {expected_depth}, but got {result.depth()}"
# Check if all qubits are measured at the end
measured_qubits = [op for op, qargs, _ in result.data if op.name == "measure"]
assert len(measured_qubits) == 4, "All qubits should be measured at the end"
# Ensure the generated circuit matches the expected circuit structure
assert result == expected_qc, "Generated circuit does not match expected circuit"
check(random_circuit_depth)
|
random_circuit_depth
|
basic
|
qiskitHumanEval/128
|
Create a quantum circuit with 4 qubits and 4 classical bits. Apply Hadamard gates to the first three qubits, measure them with three classical registers,
and conditionally apply an X gate to the fourth qubit based on the XOR of the three classical bits. Finally, measure the fourth qubit into another classical register.
You must implement this using a function named `conditional_quantum_circuit` with no arguments.
|
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit.classical import expr
def conditional_quantum_circuit():
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(4, "c")
circ = QuantumCircuit(qr, cr)
circ.h(qr[0:3])
circ.measure(qr[0:3], cr[0:3])
_condition = expr.bit_xor(expr.bit_xor(cr[0], cr[1]), cr[2])
with circ.if_test(_condition):
circ.x(qr[3])
circ.measure(qr[3], cr[3])
return circ
|
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit.classical import expr
def check(candidate):
from qiskit_aer import AerSimulator
from qiskit_ibm_runtime import Sampler, SamplerOptions
from qiskit_ibm_runtime.options import SamplerOptions
circ_res = candidate()
assert type(circ_res) == QuantumCircuit
assert circ_res.num_qubits == 4
assert circ_res.num_clbits == 4
assert any(instr.operation.name == "if_else" and instr.operation.num_qubits == 1 and instr.operation.num_clbits == 3 for instr in circ_res.data)
sim = AerSimulator()
options = SamplerOptions()
options.simulator.seed_simulator=17
sampler = Sampler(mode=sim, options=options)
counts = sampler.run([circ_res], shots=1024).result()[0].data.c.get_counts()
for outcome, _ in counts.items():
qubit_states = outcome[::-1]
q3_state = int(qubit_states[3])
q0 = int(qubit_states[0])
q1 = int(qubit_states[1])
q2 = int(qubit_states[2])
expected_q3_state = (q0 ^ q1 ^ q2)
assert q3_state == expected_q3_state
check(conditional_quantum_circuit)
|
conditional_quantum_circuit
|
basic
|
qiskitHumanEval/129
|
Given the name of a quantum backend, retrieve the properties of the specified backend and identify the qubit pair with the highest error rate among its RZ gates.
Return this qubit pair along with the corresponding error rate as a tuple. If the backend doesn't support the RZ gate, return None.
You must implement this using a function named `find_highest_rz_error_rate` with the following arguments: backend_name.
|
from qiskit_ibm_runtime import QiskitRuntimeService
def find_highest_rz_error_rate(backend_name):
service = QiskitRuntimeService(channel="ibm_quantum")
backend = service.backend(backend_name)
backend_properties = backend.properties()
try:
rz_props = backend_properties.gate_property("rz")
except:
return None
qubit_pair = max(rz_props, key=lambda x: rz_props[x]["gate_error"][0])
max_rz_error = rz_props[qubit_pair]["gate_error"][0]
return (qubit_pair, max_rz_error)
|
from qiskit_ibm_runtime import QiskitRuntimeService
def check(candidate):
service = QiskitRuntimeService(channel="ibm_quantum")
backend = service.least_busy(filters=lambda b : ("rz" in b.basis_gates))
max_rz_error_pair, max_rz_error_rate = candidate(backend.name)
assert isinstance(max_rz_error_pair, (tuple, list))
assert len(max_rz_error_pair) == 1
assert all(isinstance(qubit, int) for qubit in max_rz_error_pair)
assert max_rz_error_rate >= 0 and max_rz_error_rate <= 1
backend_properties = backend.properties()
rz_props = backend_properties.gate_property("rz")
expected_max_rz_error_pair = max(rz_props, key=lambda x: rz_props[x]["gate_error"][0])
expected_max_rz_error_rate = rz_props[expected_max_rz_error_pair]["gate_error"][0]
assert (expected_max_rz_error_pair, expected_max_rz_error_rate) == (max_rz_error_pair, max_rz_error_rate)
check(find_highest_rz_error_rate)
|
find_highest_rz_error_rate
|
intermediate
|
qiskitHumanEval/130
|
Create a quantum circuit with 'n' qubits. Apply Hadamard gates to the second and third qubits.
Then apply CNOT gates between the second and fourth qubits, and between the third and fifth qubits.
Finally give the inverse of the quantum circuit.
You must implement this using a function named `inv_circuit` with the following arguments: n.
|
from qiskit.circuit import QuantumCircuit
def inv_circuit(n):
qc = QuantumCircuit(n)
for i in range(2):
qc.h(i+1)
for i in range(2):
qc.cx(i+1, i+2+1)
return qc.inverse()
|
from qiskit.circuit import QuantumCircuit
def check(candidate):
n = 5
qc_inv = candidate(n)
expected_qc = QuantumCircuit(n)
for i in range(2):
expected_qc.h(i+1)
for i in range(2):
expected_qc.cx(i+1, i+2+1)
expected_qc_inv = expected_qc.inverse()
assert qc_inv, QuantumCircuit
assert qc_inv == expected_qc_inv
check(inv_circuit)
|
inv_circuit
|
basic
|
qiskitHumanEval/131
|
Given the fake backend name, retrieve information about the backend's number of qubits, coupling map, and supported instructions using the Qiskit Runtime Fake Provider,
and create a dictionary containing the info. The dictionary must have the following keys: 'num_qubits' (the number of qubits), 'coupling_map'
(the coupling map of the backend), and 'supported_instructions' (the supported instructions of the backend).
You must implement this using a function named `backend_info` with the following arguments: backend_name.
|
from qiskit_ibm_runtime.fake_provider import FakeCairoV2
def backend_info(backend_name):
backend = FakeCairoV2()
config = backend.configuration()
dict_result = {"num_qubits": config.num_qubits, "coupling_map": config.coupling_map, "supported_instructions": config.supported_instructions}
return dict_result
|
from qiskit_ibm_runtime.fake_provider import FakeCairoV2
def check(candidate):
backend = FakeCairoV2()
binfo_dict = candidate(backend.name)
backend_config = backend.configuration()
assert isinstance(binfo_dict, dict)
assert binfo_dict["num_qubits"] == backend_config.num_qubits
assert binfo_dict["coupling_map"] == backend_config.coupling_map
assert binfo_dict["supported_instructions"] == backend_config.supported_instructions
check(backend_info)
|
backend_info
|
basic
|
qiskitHumanEval/132
|
Generate 6 random quantum circuits, each with 3 qubits, depth of 2 and measure set to True; using the random_circuit Qiskit function, with seed 17. Then use a
preset pass manager to optimize these circuits with an optimization level of 1, the backend for the pass manager should be FakeManilaV2, and set the seed value
to 1. Partition these optimized circuits into batches of 3 circuits each, and execute these batches using Qiskit Runtime's Batch mode, and return a list containing
the measurement outcome for each batch. For the execution of each batch set the seed to 42 for the sampler primitive.
You must implement this using a function named `run_batched_random_circuits` with no arguments.
|
from qiskit.circuit.random import random_circuit
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import Batch, Sampler
from qiskit_ibm_runtime.fake_provider import FakeManilaV2
def run_batched_random_circuits():
fake_manila = FakeManilaV2()
pm = generate_preset_pass_manager(backend=fake_manila, optimization_level=1, seed_transpiler = 1)
circuits = [pm.run(random_circuit(3, 2, measure=True, seed=17)) for _ in range(6)]
batch_size = 3
partitions = [circuits[i : i + batch_size] for i in range(0, len(circuits), batch_size)]
sampler_options = {"simulator": {"seed_simulator": 42}}
with Batch(backend=fake_manila):
sampler = Sampler(mode=fake_manila, options=sampler_options)
results = []
for partition in partitions:
job = sampler.run(partition)
results.append(job.result()[0].data.c.get_counts())
return results
|
from qiskit.circuit.random import random_circuit
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import Batch, Sampler
from qiskit_ibm_runtime.fake_provider import FakeManilaV2
def check(candidate):
result = candidate()
assert isinstance(result, list)
assert len(result) == 2
for counts in result:
assert isinstance(counts, dict)
assert counts == {"110": 423, "100": 474, "000": 58, "010": 52, "101": 8, "111": 8, "011": 1}
check(run_batched_random_circuits)
|
run_batched_random_circuits
|
basic
|
qiskitHumanEval/133
|
Find and return jobs submitted in the last three months using QiskitRuntimeService.
You must implement this using a function named `find_recent_jobs` with no arguments.
|
import datetime
from qiskit_ibm_runtime import QiskitRuntimeService
def find_recent_jobs():
three_months_ago = datetime.datetime.now() - datetime.timedelta(days=90)
service = QiskitRuntimeService()
jobs_in_last_three_months = service.jobs(created_after=three_months_ago)
return jobs_in_last_three_months
|
import datetime
from qiskit_ibm_runtime import QiskitRuntimeService
def check(candidate):
result = candidate()
assert isinstance(result, list)
for job in result:
assert hasattr(job, "job_id")
assert hasattr(job, "creation_date")
assert job.creation_date.replace(tzinfo=None) >= (datetime.datetime.now() - datetime.timedelta(days=90)).replace(tzinfo=None)
check(find_recent_jobs)
|
find_recent_jobs
|
basic
|
qiskitHumanEval/134
|
Using the QiskitRuntimeService, retrieve the backends that meet the following criteria: they are real quantum devices, they are operational, and they have a
minimum of 20 qubits. Then, return a list of dictionaries, each containing the backend's name, number of qubits, and the list of supported instruction names.
Ensure that the list of dictionaries is sorted by the backend name.
You must implement this using a function named `backend_info` with no arguments.
|
from qiskit_ibm_runtime import QiskitRuntimeService
def backend_info():
service = QiskitRuntimeService()
backends = service.backends(simulator=False, operational=True, min_num_qubits=20)
backend_info = []
for b in backends:
backend_info.append({"backend_name": b.name, "num_qubits": b.num_qubits, "instructions": b.operation_names})
sorted_backend_info = sorted(backend_info, key=lambda x: x["backend_name"])
return sorted_backend_info
|
from qiskit_ibm_runtime import QiskitRuntimeService
def check(candidate):
result = candidate()
assert isinstance(result, list)
service = QiskitRuntimeService()
backends = service.backends(simulator=False, operational=True, min_num_qubits=20)
backend_info = []
for b in backends:
backend_info.append({"backend_name": b.name, "num_qubits": b.num_qubits, "instructions": b.operation_names})
sorted_backend_info_expected = sorted(backend_info, key=lambda x: x["backend_name"])
assert sorted_backend_info_expected == result
check(backend_info)
|
backend_info
|
basic
|
qiskitHumanEval/135
|
Construct a noise model with specific readout error properties for different qubits. For qubit 0, a readout of 1 has a 20% probability
of being erroneously read as 0, and a readout of 0 has a 30% probability of being erroneously read as 1. For all other qubits, a readout of 1 has a 3%
probability of being erroneously read as 0, and a readout of 0 has a 2% probability of being erroneously read as 1.
You must implement this using a function named `noise_model_with_readouterror` with no arguments.
|
from qiskit_aer.noise import NoiseModel, ReadoutError
def noise_model_with_readouterror():
noise_model = NoiseModel()
p0given1_other = 0.03
p1given0_other = 0.02
readout_error_other = ReadoutError(
[
[1 - p1given0_other, p1given0_other],
[p0given1_other, 1 - p0given1_other],
]
)
noise_model.add_all_qubit_readout_error(readout_error_other)
p0given1_q0 = 0.2
p1given0_q0 = 0.3
readout_error_q0 = ReadoutError(
[
[1 - p1given0_q0, p1given0_q0],
[p0given1_q0, 1 - p0given1_q0],
]
)
noise_model.add_readout_error(readout_error_q0, [0])
return noise_model
|
from qiskit_aer.noise import NoiseModel, ReadoutError
def check(candidate):
result = candidate()
assert isinstance(result, NoiseModel), "Result should be a NoiseModel instance"
global_error = result.to_dict()["errors"][0]['probabilities']
assert global_error == [[0.98, 0.02], [0.03, 0.97]]
qubit0_error = result.to_dict()["errors"][1]
assert qubit0_error["gate_qubits"][0][0] == 0
assert qubit0_error["probabilities"] == [[0.7, 0.3], [0.2, 0.8]]
assert len(result.to_dict()["errors"]) == 2
check(noise_model_with_readouterror)
|
noise_model_with_readouterror
|
intermediate
|
qiskitHumanEval/136
|
Return a list of ten density matrices which are pure up to a tolerance of ε.
You must implement this using a function named `pure_states` with the following arguments: ε.
|
from qiskit.quantum_info import entropy, random_density_matrix, DensityMatrix
def pure_states(ε):
entropy_list = []
while len(entropy_list) <= 9:
density_matrix = random_density_matrix(dims = 2)
if entropy(density_matrix) < ε:
entropy_list.append(density_matrix)
return entropy_list
|
from qiskit.quantum_info import entropy, random_density_matrix, DensityMatrix
def check(candidate):
tol = 0.01
list_can = candidate(tol)
assert len(list_can) == 10," Length of the list is not 10"
for _, item in enumerate(list_can):
assert isinstance(item, DensityMatrix), "The list doesn't contain density matrices"
assert entropy(item) < tol, "Entropy of density matrix is not within tolerance"
check(pure_states)
|
pure_states
|
intermediate
|
qiskitHumanEval/137
|
Return a dataset of density matrices whose 2-qubit entanglement of formation is within given tolerance.
You must implement this using a function named `entanglement_dataset` with the following arguments: ε.
|
from qiskit.quantum_info import random_density_matrix, entanglement_of_formation
def entanglement_dataset(ε):
entanglement_data = []
while len(entanglement_data) <= 9:
density_matrix = random_density_matrix(dims = 4)
if entanglement_of_formation(density_matrix)>=ε:
entanglement_data.append(density_matrix)
return entanglement_data
|
from qiskit.quantum_info import random_density_matrix, entanglement_of_formation
def check(candidate):
from qiskit.quantum_info import DensityMatrix
tol = 0.1
can_list = candidate(tol)
assert len(can_list) == 10, "Length of list is not 10"
for _, item in enumerate(can_list):
assert isinstance(item, DensityMatrix), "The list doesn't contain density matrices"
assert entanglement_of_formation(item) >= tol , " The entanglement of formation is not within tolerance"
check(entanglement_dataset)
|
entanglement_dataset
|
intermediate
|
qiskitHumanEval/138
|
Return a list of density matrices whose mutual information is greater than the given tolerance.
You must implement this using a function named `mutual_information_dataset` with the following arguments: ε.
|
from qiskit.quantum_info import mutual_information, random_density_matrix
def mutual_information_dataset(ε):
mutual_information_list = []
while len(mutual_information_list)<= 9:
density_matrix = random_density_matrix(dims = 4)
if mutual_information(density_matrix) >= ε:
mutual_information_list.append(density_matrix)
return mutual_information_list
|
from qiskit.quantum_info import mutual_information, random_density_matrix
def check(candidate):
from qiskit.quantum_info import mutual_information, DensityMatrix, random_density_matrix
import numpy as np
tolerances = [0.1, 0.5, 1.0] # Different values of ε to test
num_matrices = 10
for tol in tolerances:
can_list = candidate(tol)
# Check output type
assert isinstance(can_list, list), "Output should be a list"
assert len(can_list) == num_matrices, f"Expected {num_matrices} density matrices, but got {len(can_list)}"
for i, item in enumerate(can_list):
# Check if each item is a DensityMatrix
assert isinstance(item, DensityMatrix), f"Item {i} is not a DensityMatrix"
# Ensure mutual information is above ε
assert mutual_information(item) >= tol, f"Mutual information of matrix {i} is less than {tol}"
# Validate that the density matrix is properly normalized (trace = 1)
assert np.isclose(item.trace(), 1, atol=1e-3), f"Density matrix {i} trace is not 1"
# Ensure the density matrix is Hermitian
assert np.allclose(item.data, item.data.conj().T), f"Density matrix {i} is not Hermitian"
# Ensure the density matrix is positive semidefinite
eigenvalues = np.linalg.eigvalsh(item.data)
assert np.all(eigenvalues >= -1e-10), f"Density matrix {i} has negative eigenvalues (not positive semidefinite)"
check(mutual_information_dataset)
|
mutual_information_dataset
|
intermediate
|
qiskitHumanEval/139
|
Return the schmidt decomposition coefficients and the subsystem vectors for the given density matrix and partition.
You must implement this using a function named `schmidt_test` with the following arguments: data, qargs_B.
|
from qiskit.quantum_info import schmidt_decomposition
def schmidt_test(data, qargs_B):
return schmidt_decomposition(data, qargs_B)
|
from qiskit.quantum_info import schmidt_decomposition
def check(candidate):
from qiskit.quantum_info import random_statevector
rs = random_statevector(dims = 16)
qargs = [0,1]
schmidt_decomp = candidate(rs, qargs)
for _, item in enumerate(schmidt_decomp):
assert item[0]>=0, "Schmidt coefficients must be real"
assert item[1].dims() == (2,2), "The dimension of the first subsystem doesn't match"
assert item[2].dims() == (2,2), "The dimension of the second subsystem doesn't match"
check(schmidt_test)
|
schmidt_test
|
basic
|
qiskitHumanEval/140
|
Return a list of ten probability vectors each of length 16 whose shannon entropy is greater than a given value.
You must implement this using a function named `shannon_entropy_data` with the following arguments: ε.
|
from qiskit.quantum_info import shannon_entropy
import numpy as np
def shannon_entropy_data(ε):
shannon_data = []
while len(shannon_data) <= 9:
rand_prob = np.random.randn(16)
if shannon_entropy(rand_prob) >= ε:
shannon_data.append(rand_prob)
return shannon_data
|
from qiskit.quantum_info import shannon_entropy
import numpy as np
def check(candidate):
tol = 1
can_list = candidate(tol)
assert len(can_list) == 10, " The length of the list is not 10"
for _, item in enumerate(can_list):
assert shannon_entropy(item)>= tol, "Shannon entropy not greater than given value"
assert len(item) == 16, "The length of the probability vector is not 16"
check(shannon_entropy_data)
|
shannon_entropy_data
|
basic
|
qiskitHumanEval/141
|
Return a list of ten anticommutators for the given pauli.
You must implement this using a function named `anticommutators` with the following arguments: pauli.
|
from qiskit.quantum_info import anti_commutator, SparsePauliOp
from qiskit.quantum_info import random_pauli
import numpy as np
def anticommutators(pauli):
def is_multiple_of_identity(matrix):
identity_matrix = np.eye(matrix.shape[0])
scalar = matrix[0,0]
return np.allclose(matrix, scalar*identity_matrix)
num_qubits = pauli.num_qubits
anticommutator_list = []
while len(anticommutator_list) <= 9:
random_pauli_value = SparsePauliOp(random_pauli(num_qubits))
anti_commutator_value = anti_commutator(pauli, random_pauli_value)
if is_multiple_of_identity(anti_commutator_value.to_matrix()):
anticommutator_list.append(random_pauli_value)
return anticommutator_list
|
from qiskit.quantum_info import anti_commutator, SparsePauliOp
from qiskit.quantum_info import random_pauli
import numpy as np
def check(candidate):
def is_multiple_of_identity(matrix):
if matrix.shape[0] != matrix.shape[1]:
return False # Not a square matrix
identity_matrix = np.eye(matrix.shape[0])
scalar = matrix[0,0]
return np.allclose(matrix, scalar*identity_matrix)
test_pauli = SparsePauliOp(["XI"])
can_anticommutators = candidate(test_pauli)
assert len(can_anticommutators) == 10, "The number of anticommutators is not 10"
for _,item in enumerate(can_anticommutators):
assert is_multiple_of_identity(anti_commutator(item, test_pauli).to_matrix()), "The operator doesn't anticommute with the given pauli operator"
check(anticommutators)
|
anticommutators
|
intermediate
|
qiskitHumanEval/142
|
Return a list of 10 single qubit density matrices whose purity is greater than 0.5.
You must implement this using a function named `purity_dataset` with no arguments.
|
from qiskit.quantum_info import random_density_matrix, purity, DensityMatrix
import numpy as np
def purity_dataset():
purity_dataset_list = []
while len(purity_dataset_list)<=9:
rand_density_matrix = random_density_matrix(dims=2)
if np.abs(purity(rand_density_matrix))>=0.5:
purity_dataset_list.append(rand_density_matrix)
return purity_dataset_list
|
from qiskit.quantum_info import random_density_matrix, purity, DensityMatrix
import numpy as np
def check(candidate):
can_list = candidate()
assert len(can_list) == 10, "Number of density matrices is not 10"
for _, item in enumerate(can_list):
assert isinstance(item, DensityMatrix)
assert np.abs(purity(item))>=0.5, "Purity of the denisty matrices is not less than 0.5"
check(purity_dataset)
|
purity_dataset
|
intermediate
|
qiskitHumanEval/143
|
Return a list of ten pairs of one qubit state vectors whose state fidelity is greater than 0.9.
You must implement this using a function named `fidelity_dataset` with no arguments.
|
from qiskit.quantum_info import random_statevector, state_fidelity, Statevector
def fidelity_dataset():
fidelity_dataset_list = []
while len(fidelity_dataset_list)<=9:
sv_1 = random_statevector(2)
sv_2 = random_statevector(2)
if state_fidelity(sv_1, sv_2) >= 0.9:
fidelity_dataset_list.append((sv_1,sv_2))
return fidelity_dataset_list
|
from qiskit.quantum_info import random_statevector, state_fidelity, Statevector
def check(candidate):
can_list = candidate()
assert len(can_list) == 10, "Length of returned list is not 10"
for _, item in enumerate(can_list):
assert isinstance(item[0], Statevector)
assert isinstance(item[1], Statevector)
assert(state_fidelity(item[0], item[1]))>=0.9, "State fidelity of the returned pairs is less than 0.9"
check(fidelity_dataset)
|
fidelity_dataset
|
intermediate
|
qiskitHumanEval/144
|
Return a list of 10 density matrices whose concurrence is 0.
You must implement this using a function named `concurrence_dataset` with no arguments.
|
from qiskit.quantum_info import random_density_matrix, concurrence, DensityMatrix
def concurrence_dataset():
concurrence_dataset_list = []
while len(concurrence_dataset_list) <= 9:
rand_mat = random_density_matrix(dims = 4)
if concurrence(rand_mat) == 0:
concurrence_dataset_list.append(rand_mat)
return concurrence_dataset_list
|
from qiskit.quantum_info import random_density_matrix, concurrence, DensityMatrix
def check(candidate):
can_mat_list = candidate()
assert len(can_mat_list) == 10, "The list doesn't contain 10 elements"
for _, item in enumerate(can_mat_list):
assert isinstance(item, DensityMatrix)
assert concurrence(item) == 0, "The concurrence of the density matrix is not 0"
check(concurrence_dataset)
|
concurrence_dataset
|
intermediate
|
qiskitHumanEval/145
|
Return the inverse qft circuit for n qubits.
You must implement this using a function named `qft_inverse` with the following arguments: n.
|
from qiskit.circuit.library import QFT
from qiskit import QuantumCircuit
from qiskit.quantum_info import Operator
def qft_inverse(n):
return QFT(num_qubits=n, approximation_degree=0, inverse=True)
|
from qiskit.circuit.library import QFT
from qiskit import QuantumCircuit
from qiskit.quantum_info import Operator
def check(candidate):
from qiskit.circuit.library import QFT
from qiskit import QuantumCircuit
from qiskit.quantum_info import Operator
# Test multiple values of n
for n in [1, 2, 3, 5, 8, 10]:
candidate_circ = candidate(n)
# Ensure the result is a QuantumCircuit
assert isinstance(candidate_circ, QuantumCircuit), "Returned object is not a QuantumCircuit"
# Ensure the circuit has the correct number of qubits
assert candidate_circ.num_qubits == n, f"Expected {n} qubits, but got {candidate_circ.num_qubits}"
# Verify that the returned circuit is equivalent to the expected inverse QFT circuit
candidate_op = Operator(candidate_circ)
test_circ = QFT(n, approximation_degree=0, inverse=True)
test_op = Operator(test_circ)
assert test_op.equiv(candidate_op), "The circuit doesn't match the expected inverse QFT circuit"
# Edge case: n=0 (should raise an error or return an empty circuit)
try:
candidate_circ = candidate(0)
assert candidate_circ.num_qubits == 0, "For n=0, circuit should have 0 qubits"
except Exception:
pass # Allow exception if function correctly handles invalid input
check(qft_inverse)
|
qft_inverse
|
intermediate
|
qiskitHumanEval/146
|
Generate Qiskit code that sets up a StagedPassManager with a trivial layout using PassManager for the least busy backend available.
You must implement this using a function named `trivial_layout` with no arguments.
|
from qiskit.transpiler import PassManager, StagedPassManager
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit.transpiler.passes.layout.trivial_layout import TrivialLayout
def trivial_layout():
pm_opt = StagedPassManager()
pm_opt.layout = PassManager()
backend = QiskitRuntimeService().least_busy()
cm = backend.coupling_map
pm_opt.layout += TrivialLayout(cm)
return pm_opt
|
from qiskit.transpiler import PassManager, StagedPassManager
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit.transpiler.passes.layout.trivial_layout import TrivialLayout
def check(candidate):
from qiskit.transpiler import PassManager, StagedPassManager
from qiskit.transpiler.passes.layout.trivial_layout import TrivialLayout
from qiskit_ibm_runtime import QiskitRuntimeService
# Run the candidate function
pm_opt = candidate()
# Check if the result is a StagedPassManager
assert isinstance(pm_opt, StagedPassManager), "Output should be a StagedPassManager"
# Check if the layout attribute exists and is an instance of PassManager
assert hasattr(pm_opt, "layout"), "pm_opt should have a layout attribute"
assert isinstance(pm_opt.layout, PassManager), "layout should be an instance of PassManager"
# Ensure the first task in layout uses TrivialLayout
assert len(pm_opt.layout._tasks) > 0, "PassManager should have tasks"
assert isinstance(pm_opt.layout._tasks[0][0], TrivialLayout), "First task should be a TrivialLayout"
# Verify backend is retrieved
service = QiskitRuntimeService()
backend = service.least_busy()
assert backend is not None, "A valid backend should be retrieved"
# Ensure coupling map is used in the layout
cm = backend.coupling_map
assert cm is not None, "Coupling map should be retrieved from the backend"
check(trivial_layout)
|
trivial_layout
|
basic
|
qiskitHumanEval/147
|
Add a multi-controlled-Y operation to qubit 4, controlled by qubits 0-3.
You must implement this using a function named `mcy` with the following arguments: qc.
|
from qiskit import QuantumCircuit
from qiskit.circuit.library import YGate
def mcy(qc):
mcy_gate = YGate().control(num_ctrl_qubits=4)
qc.append(mcy_gate, range(5))
return qc
|
from qiskit import QuantumCircuit
from qiskit.circuit.library import YGate
from qiskit.quantum_info import Operator
def check(candidate):
expected = QuantumCircuit(6)
expected.h([0, 4, 5])
mcy_gate = YGate().control(num_ctrl_qubits=4)
expected.append(mcy_gate, range(5))
solution = QuantumCircuit(6)
solution.h([0, 4, 5])
solution = candidate(solution)
assert Operator(solution) == Operator(expected)
check(mcy)
|
mcy
|
intermediate
|
qiskitHumanEval/148
|
Add SWAPs to route `qc` for the `backend` object's coupling map, but don't transform any gates.
You must implement this using a function named `swap_map` with the following arguments: qc, backend.
|
from qiskit import QuantumCircuit
from qiskit.transpiler.passes import BasicSwap
from qiskit.converters import circuit_to_dag, dag_to_circuit
from qiskit_ibm_runtime import IBMBackend
def swap_map(qc, backend):
swap_pass = BasicSwap(coupling_map=backend.coupling_map)
dag = circuit_to_dag(qc)
mapped_dag = swap_pass.run(dag)
return dag_to_circuit(mapped_dag)
|
from qiskit import QuantumCircuit
from qiskit.transpiler.passes import BasicSwap
from qiskit.converters import circuit_to_dag, dag_to_circuit
from qiskit_ibm_runtime import IBMBackend
def check(candidate):
from qiskit_ibm_runtime.fake_provider import FakeKyiv
from qiskit.circuit.random import random_circuit
from qiskit.transpiler.passes import CheckMap
backend = FakeKyiv()
for _ in range(3):
qc = random_circuit(5,5)
original_ops = qc.count_ops()
original_ops.pop("swap", None)
mapped_qc = candidate(qc, backend)
check_map = CheckMap(coupling_map=backend.coupling_map)
dag = circuit_to_dag(mapped_qc)
check_map.run(dag)
assert check_map.property_set["is_swap_mapped"]
mapped_ops = mapped_qc.count_ops()
mapped_ops.pop("swap", None)
# We convert to set for comparison to ignore dictionary ordering
assert set(original_ops.items()) == set(mapped_ops.items())
check(swap_map)
|
swap_map
|
intermediate
|
qiskitHumanEval/149
|
Return the most common result as a string of `1`s and `0`s.
You must implement this using a function named `most_common_result` with the following arguments: bits.
|
from statistics import mode
from qiskit.primitives import BitArray
def most_common_result(bits):
return mode(bits.get_bitstrings())
|
from statistics import mode
from qiskit.primitives import BitArray
def check(candidate):
test_inputs = [
{"001": 50, "101": 3},
{"1": 1},
{"01101": 302, "10010": 10, "101": 209},
]
for counts in test_inputs:
bit_array = BitArray.from_counts(counts)
expected = max(counts.items(), key=lambda x: x[1])[0]
assert candidate(bit_array) == expected
check(most_common_result)
|
most_common_result
|
intermediate
|
qiskitHumanEval/150
|
Add a sub-circuit to the quantum circuit `qc` that applies a series of operations for `n` iterations using the `for_loop`.
In each iteration `i`, perform the following:
1. Apply a `RY` rotation on qubit 0 with an angle of `pi/n * i`.
2. Apply a Hadamard gate to qubit 0 and a CNOT gate between qubits 0 and 1 to create a phi plus Bell state.
3. Measure qubit 0 and store the result in the corresponding classical register.
4. Break the loop if the classical register for qubit 0 measures the value 1.
Use the `for_loop` control flow structure to implement the loop and include conditional breaking based on the measurement.
You must implement this using a function named `for_loop_circuit` with the following arguments: qc, n.
|
from qiskit import QuantumCircuit
from numpy import pi
def for_loop_circuit(qc, n):
with qc.for_loop(range(n)) as i:
qc.ry(pi/n*i, 0)
qc.h(0)
qc.cx(0, 1)
qc.measure(0, 0)
with qc.if_test((qc.clbits[0], 1)):
qc.break_loop()
return qc
|
from qiskit import QuantumCircuit
from numpy import pi
def check(candidate):
from qiskit.circuit.library import RYGate, HGate, CXGate, Measure
from qiskit.circuit.controlflow import IfElseOp
from qiskit.circuit import CircuitInstruction
qc = QuantumCircuit(2,1)
solution = candidate(qc, 2)
assert len(solution.data) > 0, "Circuit should have operations added"
op = solution.data[0].operation
assert op.name == "for_loop"
assert op.num_qubits == 2 and op.num_clbits == 1
indexset, loop_param, sub_qc = op.params
assert indexset == range(2)
# Test sub circuit
data = sub_qc.data
qr = qc.qregs[0]
cr = qc.cregs[0]
assert data[0] == CircuitInstruction(RYGate(pi/2*loop_param), [qr[0]], [])
assert data[1] == CircuitInstruction(HGate(), [qr[0]], [])
assert data[2] == CircuitInstruction(CXGate(), [qr[0], qr[1]], [])
assert data[3] == CircuitInstruction(Measure(), [qr[0]],[cr[0]])
assert isinstance(data[4].operation, IfElseOp)
assert set(data[4].qubits) == {qr[0], qr[1]} or set(data[4].qubits) == {qr[1], qr[0]}
assert [bit._index for bit in data[4].clbits] == [0]
check(for_loop_circuit)
|
for_loop_circuit
|
difficult
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.