text
stringlengths 37
1.41M
|
---|
for x in range(5):
print(x)
for x in range(3,5):
print(x)
for x in range(3,8,3):
print(x) |
def square_definer(width: int, length: int) -> int:
"""Returns the size of the smallest square side possible in area"""
while width != length:
if width > length:
width -= length
return square_definer(width, length)
elif length > width:
length -= width
return square_definer(width, length)
return width
your_width = int(input('Put a width: '))
your_length = int(input('Put a length: '))
print(square_definer(your_width, your_length))
|
set_1 = set()
for number in range(5):
set_1.add(input('Put int or float number: '))
set_1 = list(set_1)
min_num = set_1[0]
max_num = set_1[0]
for i in set_1:
if min_num > i:
min_num = i
if max_num < i:
max_num = i
print('Min num = ', min_num)
print('Max num = ', max_num)
|
def calculator() -> print:
"""Calculates input formula"""
print('Welcome to Calculator!'
'\nProceed with formula input (with spaces), use only "+, -, *, /" as operators, example: "2 * 2"'
'\nTo exit enter "exit"')
user_input = str(input('Please enter formula: '))
if user_input == 'exit':
exit(0)
list_input = user_input.split(' ')
if len(list_input) != 3:
raise ValueError('Please, put spaces and one operator "+, -, *, /" in formula')
try:
number_1 = float(list_input[0])
operator = list_input[1]
number_2 = float(list_input[2])
except ValueError:
print('Please use numbers/digits in formula and operator')
raise ValueError
if not(operator == '+' or operator == '-' or operator == '*' or operator == '/'):
raise IOError('Please input correct operator with spaces.')
if operator == '/' and number_2 == 0:
raise ZeroDivisionError('You cannot divide into zero')
if operator == '+':
print(number_1 + number_2)
if operator == '-':
print(number_1 - number_2)
if operator == '*':
print(number_1 * number_2)
if operator == '/':
print(number_1 / number_2)
|
"""
A module to perform SVD decompostion on a given training dataset.
"""
from __future__ import division
import numpy as np
from scipy.sparse import csr_matrix
import scipy.linalg as linalg
import csv
import os
from math import sqrt
import time
total_users = 943
total_movies = 1682
def get_data():
"""
A function to read data from test file, and return a sparse matrix.
:return: A sparse user - movie rating matrix
"""
matrix_a = np.zeros(shape=(total_users, total_movies))
with open("u.csv", "r") as File:
reader = csv.reader(File)
for row in reader:
row = row[0].split("\t")
matrix_a[(int(row[0]) - 1), (int(row[1]) - 1)] = float(row[2])
return csr_matrix(matrix_a)
def split_matrix(matrix_a):
"""
A function to perform svd decomposition on the matrix given to it.The
algorithm to peform the SVD decomposition for a matrix A is as follows:
- Calculate x = A * A.transpose()
- find all eigen values of x, and find corresponding eigen vectors
- Construct matrix U by arragning eigen vectors, in decreasing order
of their eigen value magnitude, as columns.
- Similarly construct V from matrix y = A.transpose() * A
- Construct the matrix sigma by placing square roots of eigen values
of x in decreasing order of their magnitudes along principal diagonal
of a zero square matrix of appropriate dimensions
- return U, Sigma, V
:param matrix_a: (scipy.sparse.csr_matrix) A sparse matrix that is to be
decomposed via svd
:return: the three matrices, U, Sigma, and V that are the result of SVD
decomposition
"""
transpose_a = csr_matrix.transpose(matrix_a)
matrix_u = np.dot(matrix_a, transpose_a)
matrix_v = np.dot(transpose_a, matrix_a)
# scipy.linalg.eigh() is a function that returns two values - a list of of
# all its eigen values, and corresponding, normalized eigen vectors
# arranged as columns in increasing order of the magnitudes of corresponding
# eigen values. Eigen values are returned in increasing order of their
# magnitude.
vals_u, vecs_u = linalg.eigh(matrix_u.todense())
vals_v, vecs_v = linalg.eigh(matrix_v.todense())
eig_vals = list(vals_u)
# we need eigen values in decreasing order of their magnitudes.
eig_vals.reverse()
# construct matrix sigma.
matrix_sigma = np.zeros(shape=(total_users, total_movies))
for i in xrange(total_users):
try:
matrix_sigma[i, i] = sqrt(eig_vals[i])
except ValueError:
matrix_sigma[i, i] = sqrt(-1*eig_vals[i])
except IndexError as e:
print e
matrix_sigma = csr_matrix(matrix_sigma)
# we need to reverse the order of columns because we need them arranged in
# decreasing order of corresponding eigen values, not increasing order.
# to accomplish this, we transpose our numpy.ndarray, convert to a list
# of lists, perform list reverse operation, construct a numpy.nd array
# from the obtained list and then transpose it back.
# >>> [1,2]
# [3,4]
# >>> (after step 1)[1, 3]
# [2, 4]
# >>> (after list reverse) [2 ,4]
# [1, 3]
# >>> after final transpose, [2, 1]
# >>> [4, 3]
vecs_u = vecs_u.transpose()
temp = list(vecs_u)
temp.reverse()
matrix_u = np.array(temp).transpose()
# do the same for matrix_v
vecs_v = vecs_v.transpose()
temp1 = list(vecs_v)
temp1.reverse()
matrix_v = np.array(temp1)
return matrix_u, matrix_sigma, matrix_v
def rmse(matrix_a, matrix_u, matrix_sigma, matrix_v):
"""
A function to calculate rmse on original matrix.
:param matrix_a: (scipy.sparse.csr_matrix) the original matrix which we
have decomposed.
:param matrix_u: (numpy.ndarray) U in SVD decomposition of matrix_a
:param matrix_sigma: (numpy.ndarray) sigma in SVD decomposition of matrix_a
:param matrix_v: (numpy.ndarray) V in SVD decomposition of matrix_a
:return: (double) rmse error
"""
error = 0
for user in xrange(total_users):
user_vector = matrix_a[user, :].toarray()[0]
temp_u = matrix_u[user]
temp_s = temp_u * matrix_sigma
temp_v = csr_matrix(temp_s) * matrix_v
error_vector = temp_v - user_vector
for i in error_vector[0]:
error += i*i
error = error / (943 * 1682)
return error ** 0.5
def get_energy(matrix_sigma):
"""
A function to calculate energy of a SVD decomposition.
Energy of a SVD decomposition is sum of squares of diagonal values in
matrix sigma of the decomposition
:param matrix_sigma: (numpy.ndarray) The matrix sigma of svd decomposition
:return: (double) the energy of svd decomposition
(list) list of eigen values (diagonal elements) of matrix sigma
"""
energy = 0
eigen_list = []
for i in xrange(matrix_sigma.shape[0]):
eigen = matrix_sigma[i, i]
eigen_list.append(eigen)
energy += eigen ** 2
return energy, eigen_list
def minimize_sigma(matrix_u, matrix_sigma, matrix_v):
"""
To make our decomposition more efficent we can minimize our matrices until
the energy of our decomposition is 90% of energy of original
decomposition. This function accompolishes that.
We minimize our matrices the following way:
- get energy of original matrix as energy
- iteratively eliminate the least eigen value from eigen value list
until the energy of new eigen value list is 90% of original energy
- eliminate correspnding columns from matrix_sigma, and corresponding
columns from matrix_u, corresponding rows from matrix_v
- return the three minimized matrices
:param matrix_u: (numpy.ndarray) U in SVD decomposition
:param matrix_sigma: (numpy.ndarray) sigma in SVD decomposition
:param matrix_v: (numpy.ndarray) V in SVD decomposition
:return: the three matrices minimized.
"""
energy, eigen_list = get_energy(matrix_sigma)
new_energy = energy
count = 0
while new_energy > 0.9 * energy:
count += 1
del(eigen_list[len(eigen_list) - 1])
new_energy = sum([i * i for i in eigen_list])
final_length = len(eigen_list)
count = -1 * count
# eliminate columns corresponding to deleted eigen values from matrix_sigma
matrix_sigma = np.delete(matrix_sigma.todense().transpose(),
np.s_[final_length:], 0).transpose()
# eliminate corresponding rows as well, to get square matrix_sigma again
matrix_sigma = np.delete(matrix_sigma, np.s_[final_length:], 0)
# eliminate corresponding rows from transpose of matrix u and then perform
# transpose again to get original matrix back
matrix_u = np.delete(matrix_u.transpose(), np.s_[count:], 0).transpose()
count = matrix_sigma.shape[0]
# delete rows from matrix v
matrix_v = np.delete(matrix_v, np.s_[count:], 0)
return matrix_u, matrix_sigma, matrix_v
def preprocess(matrix, store=True):
"""
A function to preprocess the matrix. In this step, from every user's
rating, we subtract that user's average rating.
:param matrix: (scipy.sparse.csr_matrix) the matrix to be processed
:param store: (Boolean) if store == true, this function also stores
averages of each user rating in a numpy array. Otherwise, it just performs
pre-processing of matrix a
:return: (scipy.sparse.csr_matrix) preprocessed matrix
"""
if store:
averages = np.zeros(matrix.shape[0])
matrix = matrix.todense()
for i in xrange(matrix.shape[0]):
ave = average(matrix[i])
averages[i] = ave
for j in xrange(matrix[i].shape[1]):
if not matrix[i][0, j] == 0:
matrix[i][0, j] -= ave
np.save("averages.npy", averages)
return csr_matrix(matrix), averages
else:
averages = np.load("averages.npy")
matrix = matrix.todense()
for i in xrange(matrix.shape[0]):
ave = averages[i]
for j in xrange(matrix[i].shape[1]):
if not matrix[i][0, j] == 0:
matrix[i][0, j] -= ave
return csr_matrix(matrix), averages
def average(vector):
"""
calculates average of non zero values of vector
- >>> vector = [1,1,1,0,0,0]
- >>> average(vector) = (3/3) = 1
:param vector: (numpy.ndarray) The array whose average is to be calculated
:return: (double) average of vector
"""
sum = 0
count = 0
for i in xrange(vector.shape[1]):
if not vector[0, i] == 0:
sum += vector[0, i]
count += 1
if count == 0:
return 0
return sum/count
def predict_singular(row, matrix_u, matrix_sigma, matrix_v, averages, column):
"""
This function predicts the rating a user gives to a movie, based on the
matrices obtained from SVD decomposition.
:param row: (int) Id of user
:param column:(int) Id of movie, whose rating from user we have to determine
:param matrix_u:(scipy.sparse.csr_matrix) U in SVD decopmosition
:param matrix_sigma: (np.ndarray) sigma in SVD decomposition
:param matrix_v:(scipy.sparse.csr_matrix) v in svd decomposition
:param averages: (numpy.ndarray) array which contains average rating of each
user.
:return: (int) predicted rating
"""
now = time.clock()
row = int(row)
column = int(column)
# for a user 'row' all his predictions can be calculated by taking the row
# corresponding to the user from matrix_u as r and performing r
# * sigma * v.transpose(). Now rating for a particular movie can be
# obtained by r[movie]
temp_u = matrix_u[row]
temp_s = temp_u * matrix_sigma
temp_v = csr_matrix(temp_s) * matrix_v
prediction = temp_v[0, int(column)] + averages[row]
print time.clock() - now
return prediction
def save_test_data(testfile):
"""
A function to read the testfile and store users and movies, and their
corresponding ratings into numpy arrays.
:param testfile: (String) the name of test file.
:return: None
"""
test_rows = np.zeros(20000)
test_columns = np.zeros(20000)
test_ratings = np.zeros(20000)
count = 0
with open(testfile, "r") as f:
for line in f:
line = [int(word) for word in line.strip().split(",")]
test_rows[count] = int(line[0]) - 1
test_columns[count] = int(line[1]) - 1
test_ratings[count] = int(line[2])
count += 1
np.save("test_rows.npy", test_rows)
np.save("test_columns.npy", test_columns)
np.save("test_ratings.npy", test_ratings)
def save_predictions(matrix_u, matrix_sigma, matrix_v, db="predictions.npy"):
"""
To not run the entire algorithm every time, we can save our predictions
for a given test data. This function does that.
:param matrix_u:(numpy.ndarray) U in SVD decompoistion of given matrix
:param matrix_sigma: (numpy.ndarray) Sigma in SVD decomposition of given
matrix
:param matrix_v: (numpy.ndarray) V in SVD decomposition of given matrix
:param db: (String) name of numpy array containing actual predictions.
:return:
"""
prediction = np.zeros(20000)
test_rows = np.load("test_rows.npy")
test_columns = np.load("test_columns.npy")
averages = np.load("averages.npy")
for i in xrange(20000):
predicted = predict_singular(test_rows[i], matrix_u, matrix_sigma,
matrix_v, averages, test_columns[i])
prediction[i] = predicted
np.save(db, prediction)
def brute_rmse(data="predictions.npy"):
"""
Calculate rmse error over test data. The test data and training data are
disjoint so as to better evaluate the recommender system. Rmse error is
calculated by the formula, sqrt(summation( (predicted - actual) ^ 2)/n
:param data: (String) the name of the numpy array that contains our
predictions.
:return: (double) rmse error
"""
test_ratings = np.load("test_ratings.npy")
prediction = np.load(data)
rmse = 0
for i in xrange(20000):
actual = test_ratings[i]
predicted = prediction[i]
rmse += (predicted - actual) ** 2
return (rmse/20000)**0.5
def precision_at_top_k(db="predictions.npy", k=300):
"""
A function to calculate precision for top_k ratings. we calculate the
precision the following way:
- Get top K entries from our predicted values
- Get threshold for these top K entries
- Get the number of entries amongst these K entries whose actual rating is
greater than threshold as c
- precision = c/k
:param db: (String) name of the numpy array where our predictions are stored.
:param k: (int) k in top K entries
:return: (double) precision
"""
predicted = np.load(db)
test_ratings = np.load("test_ratings.npy")
relevant_entries = predicted.argsort()[::-1][0:k]
threshold = int(predicted[relevant_entries[relevant_entries.shape[0] - 1]])
relevant_count = 0
for entry in relevant_entries:
if test_ratings[entry] >= threshold:
relevant_count += 1
precision = relevant_count / k
return precision
def spearman_correlation(db="predictions.npy"):
"""
Function to calculate spearman correlation.
It is calculated by the following formula:
1 - ((6 * sum((predicted - actual) ^ 2)/( n ( n^2 - 1)), where n is
the number of entries we are checking against.
Spearman correaltion gives how similar two vectors are. How strongly they
are correlated is determined by the magnitude of correlation. The closer
they are to 1, the stronger they are related.
:param db: (String) name of the numpy array where our predictions are stored
:return: (double) spearman correaltion
"""
predicted = np.load(db)
test_ratings = np.load("test_ratings.npy")
d = 0
n = test_ratings.shape[0]
for i in xrange(n):
d += (predicted[i] - test_ratings[i]) ** 2
coeff = (6 * d) / (n * (n ** 2 - 1))
return 1 - coeff
def main():
"""
The main function.
It does the following:
- reads data from training file and converts it to a user movie matrix
- performs preprocessing
- performs SVD decomposition, and calculates rmse, precision on top k
and spearman correlation
- Performs minimzation until 90% of energy, and calculates them again.
:return: None
"""
matrix_a = get_data()
matrix_a, averages = preprocess(matrix_a)
print "starting to split"
matrix_u, matrix_sigma, matrix_v = split_matrix(matrix_a)
if "predictions.npy" not in os.listdir("."):
print "saving predictions"
save_predictions(matrix_u, matrix_sigma, matrix_v)
print "rmse before minimimization", brute_rmse()
print "precision at top k before minimization", precision_at_top_k(
db="predictions.npy")
print "spearman correlation before minimzation", spearman_correlation(
db="predictions.npy")
matrix_u, matrix_sigma, matrix_v = minimize_sigma(matrix_u, matrix_sigma,
matrix_v)
if "min_predictions.npy" not in os.listdir("."):
print "here"
save_predictions(matrix_u, matrix_sigma, matrix_v,
db="min_predictions.npy")
print "rmse after minimisation", brute_rmse(data="min_predictions.npy")
print "precision at top k after minimization", precision_at_top_k(
db="min_predictions.npy")
print "spearman correlation after minimization", spearman_correlation(
db="min_predictions.npy")
if __name__ == "__main__":
main()
# rmse before minimimization 1.2227316644
# precision at top k before minimization 0.686666666667
# spearman correlation before minimzation 0.999999977574
# rmse after minimisation 1.21357348695
# precision at top k after minimization 0.673333333
# spearman correlation after minimization 0.999999977909
|
############# GENERAL TREE ########
class TreeNode:
def __init__(self,data):
self.data=data
self.children=[]
self.parent=None
def add_child(self,child):
child.parent=self
self.children.append(child)
def get_level(self):
level=0
iterator=self.parent
while iterator:
iterator=iterator.parent
level+=1
return level
def print_tree(self):
spaces=" "*self.get_level()*3
prefix=spaces+"|__" if self.parent else ""
print(prefix,self.data)
if self.children:
for child in self.children:
child.print_tree()
if __name__ == "__main__":
root=TreeNode('Electronics')
Tv=TreeNode("Tv")
phones=TreeNode("Phones")
laptops=TreeNode("Laptops")
Tv.add_child(TreeNode("LG"))
Tv.add_child(TreeNode("Sony"))
Tv.add_child(TreeNode("Sumsang"))
phones.add_child(TreeNode("Mi"))
phones.add_child(TreeNode("GOME"))
phones.add_child(TreeNode("Vivo"))
laptops.add_child(TreeNode("Lenvovo"))
laptops.add_child(TreeNode("Apple"))
laptops.add_child(TreeNode("Accer"))
root.add_child(Tv)
root.add_child(phones)
root.add_child(laptops)
root.print_tree()
########## BINARY TREE #############
class Binary_Tree:
def __init__(self,data):
self.data=data
self.left=None
self.right=None
def add_child(self,data):
if data==self.data:
return "data is already exists"
if data<self.data:
if self.left:
self.left.add_child(data)
else:
self.left= Binary_Tree(data)
if data>self.data:
if self.right:
self.right.add_child(data)
else:
self.right= Binary_Tree(data)
def search(self,data):
if data==self.data:
return True
if data<self.data:
if self.left:
return self.left.search(data)
else:
return False
else:
if self.right:
return self.right.search(data)
else:
return False
def in_order_traversal(self):
array=[]
if self.left:
array+=self.left.in_order_traversal()
array.append(self.data)
if self.right:
array+=self.right.in_order_traversal()
return array
def min(self):
if self.left:
return self.left.min()
else:
return self.data
def max(self):
if self.right:
return self.right.max()
else:
return self.data
def sum(self):
total=0
if self.left:
total+=self.left.sum()
total+=self.data
if self.right:
total+=self.right.sum()
return total
def delete(self,data):
if data<self.data:
if self.left:
self.left=self.left.delete(data)
elif data>self.data:
if self.right:
self.right=self.right.delete(data)
else:
if self.right==None and self.left==None:
return None
if self.right:
return self.right
if self.left:
return self.left
else:
max_val=self.left.max()
self.data=max_val
self.left=self.left.delete(max_val)
return self
if __name__ == "__main__":
a=Binary_Tree(56)
a.add_child(45)
a.add_child(4)
a.add_child(5)
a.add_child(450)
a.add_child(8)
print(a.search(450))
a.delete(8)
print(a.in_order_traversal())
print(a.min())
print(a.max())
print(a.sum())
|
import math
def solution(n, m):
answer = []
answer.append(math.gcd(n, m))
answer.append(int((n * m) / answer[0]))
return answer
n = 3
m = 12
print(solution(n, m)) |
def solution(nums):
answer = 0
tmp = len(nums) / 2
nums = list(set(nums))
nums = len(nums)
if(tmp < nums) :
answer = int(tmp)
else :
answer = nums
return answer
num = [3, 1, 2, 3]
print(solution(num)) |
import random
import sys
import time
def setze_zeitstempel():
return time.time() * 1000
def stelle_aufgabe():
i = 0
while True:
i += 1
print(" --- Aufgabe %d --- " % (i))
rechne(0)
def rechne(mode = 0):
answer_correct = False
try:
a = random.randint(0,9)
b = random.randint(0,9)
start = setze_zeitstempel()
if mode == 0:
print("%d x %d = ?" % (a, b))
c = int(input())
if (a * b) == c:
56
answer_correct = True
elif mode == 1:
print("%d + %d = ?" % (a, b))
c = int(input())
if (a + b) == c:
answer_correct = True
stop = setze_zeitstempel()
if ((stop - start) < 5000) and answer_correct:
print("Sehr gut")
elif ((stop -start) < 10000) and ((stop - start) >= 5000) and answer_correct:
print("Weiter so!")
elif ((stop - start) >= 10000) and ((stop - start) < 15000) and answer_correct:
print("Das geht doch schneller, oder?")
elif ((stop - start) >= 15000 and answer_correct):
print("Das war zu langsam")
elif answer_correct is False:
print("Antwort ist falsch")
except ValueError as e:
print("Falsche Eingabe")
if __name__ == "__main__":
stelle_aufgabe()
|
# def choice_to_number(choice):
# """Convert choice to number."""
# if choice == 'Usain':
# return 1
# elif choice == 'Me':
# return 2
# elif choice == 'Aybek':
# return 3
# else:
# return choice
def choice_to_number(choice):
return {'Usain': 1, 'Me': 2, 'Qazi': 3}[choice]
def number_to_choice(number):
return {1: 'Usain', 2: 'Me', 3: 'Qazi'}[number]
def test_choice_to_number():
assert choice_to_number('Usain') == 1
assert choice_to_number('Me') == 2
assert choice_to_number('Aybek') == 3
def test_number_to_choice():
assert number_to_choice(1) == 'Usain'
assert number_to_choice(2) == 'Me'
assert number_to_choice(3) == 'Aybek'
def test_all():
try:
test_choice_to_number()
test_number_to_choice()
except AssertionError:
print(‘WRONG’)
else:
print(‘SUCCESS’)
test_all() |
def fib(n):
if (n is 0 or n is 1):
return 1
return fib(n - 1) + fib(n - 2)
if __name__ == "__main__":
print("Im here")
print(fib(50))
|
#!/usr/bin/env python
# coding: utf-8
# # Linear Regression
# In[1]:
import matplotlib.pyplot as plt
import pandas as pd
import plotly.express as px
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
# In[2]:
# load the data from scikit-learn (a bunch is returned)
boston = load_boston()
# required components
data = boston["data"]
target = boston["target"]
cols = boston["feature_names"]
# In[3]:
def get_var(df, var_name):
globals()[var_name] = df
# fmt:on
(
pd.DataFrame(data, columns=cols)
.assign(target=target)
.dropna(axis=1)
.rename(str.lower, axis=1)
.pipe(get_var, "df1")
)
Y = df1["target"]
X = df1.drop(columns="target", axis=1)
# In[4]:
print(X.shape)
print(Y.shape)
# In[5]:
(X_train, Y_train, X_test, Y_test,) = train_test_split(
X, Y, test_size=0.3, random_state=42, shuffle=False,
)
# In[6]:
print(X_train.shape)
print(Y_test.shape)
|
"""
使用生成器函数实现可迭代类
"""
import math
class PrimeNumbers(object):
"""
实现正向迭代
实现 __iter__ 或 __getitem__ 方法
实现反向迭代
实现 __reversed__ 方法
"""
def __init__(self, start, end):
self.start = start
self.end = end
def isParimeNum(self, k):
if k < 2:
return False
for i in range(2,int(math.sqrt(k) + 1)):
if k % i == 0:
return False
return True
def __iter__(self):
for k in range(self.start, self.end + 1):
if self.isParimeNum(k):
yield k
def __reversed__(self):
for k in range(self.end, self.start - 1, -1):
if self.isParimeNum(k):
yield k
def main():
for i in PrimeNumbers(1, 10):
print(i)
for i in reversed(PrimeNumbers(1, 10)):
print(i)
if __name__ == '__main__':
main() |
"""
对迭代器进行切片操作
"""
# 使用itertools.islice,返回一个迭代对象切片的生成器
from itertools import islice
def file_slice():
f = open('aaa')
# islice(f, 1, 100)
# islice(f, 500)
for i in islice(f, 1, None):
print(i)
def list_slice():
l = [i for i in range(0, 20)]
i = iter(l)
# start=4表示列表中取索引4开始到14结束
for x in islice(i, 4, 14):
print(x)
if __name__ == '__main__':
# file_slice()
list_slice() |
b=16
for mani in range(int(pow(b,1/2)),1,-1):
if(b%mani==0):
print(mani)
print(int(b/mani)) |
import random
from abc import ABC
class Listas_Frutas(ABC):
_frutas_lista = ['banana',
'jabuticaba',
'pitanga',
'mirtilo',
'morango',
'abacaxi',
'cereja'
]
def escolher_fruta(self):
return self._frutas_lista.pop(0)
def tamanho_fruta(self):
return '_' * len(self._frutas_lista.pop(0))
fruta_escolhida = Listas_Frutas().tamanho_fruta()
fruta_len = Listas_Frutas().escolher_fruta()
for i in range(0, len(fruta_len)):
if 'a' == fruta_len[i]:
fruta_escolhida = fruta_escolhida[:i] + 'a' + fruta_escolhida[i + 1:]
#pt = len(fruta_escolhida)
#print(pt)
#for i in range(0, len(fruta_escolhida)):
# if 'a' == fruta_escolhida[i]:
# palavra_descoberta = palavra_descoberta[:i] + 'a' + palavra_descoberta[i + 1:] |
"""This script makes the search to wikipedia by passing the search keyword as the only argument."""
import sys
from elasticsearch import Elasticsearch
import config
def title_to_url(title):
"""Takes the article title and turns it into a wikipedia URL"""
title = title.replace(' ', '_')
return config.WIKIPEDIA_URL + title.encode('utf-8')
def search(keyword):
"""Performs the search against elasticsearch."""
es = Elasticsearch()
result = es.search(index=config.ELASTIC_SEARCH_INDEX, body={
'query': {
'multi_match': {
'query': keyword,
'fuzziness': 1,
'prefix_length': 1,
'fields': ['title^10', 'body']
}
}
})
results = []
for hit in result['hits']['hits']:
results.append((hit['_score'], title_to_url(hit['_source']['title'])))
return results
def search_and_print(keyword):
"""Used for calling the search function and printing the results."""
print "Searched for:", keyword
for score, url in search(keyword):
print score, url
print
if __name__ == "__main__":
if len(sys.argv) < 2:
print "Keyword at positional argument 1 is required."
sys.exit(1)
keyword = sys.argv[1]
search_and_print(keyword)
|
'''
Given a sorted list of disjoint intervals, each interval intervals[i] = [a, b]
represents the set of real numbers x such that a <= x < b.
We remove the intersections between any interval in intervals and the interval toBeRemoved.
Return a sorted list of intervals after all such removals.
Example 1:
Input= 3
0 2
3 4
5 7
1 6
Output= [[0, 1], [6, 7]]
Example 2:
Input= 1
0 5
2 3
Output= [[0, 2], [3, 5]]
'''
sz=1000
a=[0]*sz
n=int(input())
for i in range(n):
x,y=map(int,input().split())
for j in range(x,y):
a[j]+=1
x,y=map(int,input().split())
for j in range(x,y):
a[j]=0
cur=0
ans=[]
x=-1
while(cur<sz):
if(x==-1 and a[cur]>0):
x=cur
if(x!=-1 and a[cur]==0):
ans.append([x,cur])
x=-1
cur+=1
print(ans) |
import operator
from datetime import datetime
class Person():
def __init__(self, last_name='', first_name='', gender='', fav_color='', dob=''):
self.last_name = last_name
self.first_name = first_name
gender = gender
if gender == 'M' or gender == 'Male':
self.gender = 'Male'
elif gender == 'F' or gender == 'Female':
self.gender = 'Female'
else:
self.gender = 'Unknown'
self.fav_color = fav_color
self.dob = datetime.strptime(dob, '%m/%d/%Y')
def generate_line(self):
line = [self.last_name, self.first_name, self.gender,
self.dob, self.fav_color]
for item in line:
str(item)
return line
def parse_text():
''' Parses three text files with different formats. Adds all lines to
common list. Orders lines and formats data for printing.
'''
comma_lines = process_file("comma.txt", ',')
processed_comma_lines = process_comma_file(comma_lines, ',')
pipe_lines = process_file("pipe.txt", '|')
processed_pipe_lines = process_pipe_file(pipe_lines, '|')
space_lines = process_file("space.txt", ' ')
processed_space_lines = process_space_file(space_lines, ' ')
persons_list = processed_comma_lines + processed_pipe_lines + processed_space_lines
output_1_sorted = []
output_2_sorted = []
output_3_sorted = []
output_1_sorted = sorted(persons_list, key=operator.itemgetter(2, 0))
output_2_sorted = sorted(persons_list, key=operator.itemgetter(3, 0))
output_3_sorted = sorted(persons_list, key=operator.itemgetter(0), reverse=True)
for line in output_1_sorted:
line[3] = datetime.strftime(line[3], '%-m/%-d/%Y')
output_1 = []
output_2 = []
output_3 = []
for line in output_1_sorted:
output_1.append(' '.join(line))
for line in output_2_sorted:
output_2.append(' '.join(line))
for line in output_3_sorted:
output_3.append(' '.join(line))
output = {}
output['output_1'] = output_1
output['output_2'] = output_2
output['output_3'] = output_3
write_output_file(output)
return output
def process_file(file, delimiter):
''' read text and split into a list of a list of strings '''
raw_data = []
with open(file, "r") as file:
raw_data = [line.split(delimiter) for line in file]
return raw_data
def process_comma_file(raw_data, delimiter):
list = []
for word in raw_data:
line = [x.strip() for x in word]
list.append(Person(last_name=line[0],
first_name=line[1],
gender=line[2],
fav_color=line[3],
dob=line[4]).generate_line())
return list
def process_pipe_file(raw_data, delimiter):
list = []
for word in raw_data:
line = [x.strip() for x in word]
line[5] = line[5].replace("-", "/")
list.append(Person(last_name=line[0],
first_name=line[1],
gender=line[3],
fav_color=line[4],
dob=line[5]).generate_line())
return list
def process_space_file(raw_data, delimiter):
list = []
for word in raw_data:
line = [x.strip() for x in word]
line[4] = line[4].replace("-", "/")
list.append(Person(last_name=line[0],
first_name=line[1],
gender=line[3],
dob=line[4],
fav_color=line[5]).generate_line())
return list
def write_output_file(output):
output_1 = output['output_1']
output_2 = output['output_2']
output_3 = output['output_3']
with open("output.txt", "w") as text_file:
text_file.write('Output 1:')
text_file.write('\n')
for line in output['output_1']:
text_file.write(line)
text_file.write('\n')
text_file.write('\n')
text_file.write('Output 2:')
text_file.write('\n')
for line in output['output_2']:
text_file.write(line)
text_file.write('\n')
text_file.write('\n')
text_file.write('Output 3:')
text_file.write('\n')
for line in output['output_3']:
text_file.write(line)
text_file.write('\n')
text_file.close()
if __name__ == '__main__':
parse_text()
|
import sys
sys.stdin = open('sample_input.txt')
T = int(input())
for tc in range(1,T+1):
card = input()
card_list = [card[idx:idx+3] for idx in range(0,len(card),3)]
card_type = ['S','D','H','C']
card_cnt = {key:[] for key in card_type}
for card in card_list:
key, value = card[0], card[1:]
if value in card_cnt[key]:
answer = "ERROR"
break
else:
card_cnt[key].append(value)
else:
answer = [13 - len(card_cnt[key]) for key in card_type]
if type(answer) == list:
print(f'#{tc}',*answer)
else:
print(f'#{tc}',answer) |
N = int(input("Please write a count of students: ")) #студенти
K = int(input("Please write a count of apples: ")) #яблуки
count_apples = K//N
apples_left = K%N
print("every student receiped", count_apples,"apples") #виводимо результат
print("apples left:",apples_left) #виводимо результат
input()
|
#!/usr/bin/env python3
class Employee(object):
def __init__(self, name, title):
self.name = name
self.title = title
self.salary_table = {
'manager': 50000,
'director': 20000,
'staff': 10000
}
def salary(self):
return self.salary_table[self.title]
def introduce(self):
print('Hi,all. My name is {}'.format(self.name))
print('My title is {}, and my salary is a secret...'.format(self.title))
print('OK, salary is {}'.format(self.salary()))
staffInfo = {
'sonic': 'manager',
'tom': 'director',
'jerry': 'director',
'amanda': 'staff',
'Bella': 'staff',
'Carry': 'staff',
'Dolce': 'staff',
'Emma': 'staff'
}
def conference_a():
for name in staffInfo:
employee = Employee(name, staffInfo[name])
employee.introduce()
def what_will_happen():
return 'sonic', 'male', 34
def main():
print('This is Sonics homework2.')
conference_a()
name, gend, age = what_will_happen()
print('name={}, gender={}, age={}'.format(name, gend, age))
#name2, gend2, age2, title2 = what_will_happen()
#print('name2={}, gender2={}, title2={}'.format(name2, gend2, title2))
if __name__ == '__main__':
main()
|
import csv
file_to_load = "C:/Users/David/Desktop/GTATL201908DATA3/02 - Homework/03-Python/Instructions/PyPoll/Resources/election_data.csv"
file_to_output= "Resources/election_data.txt"
#variables
vote_total = 0
candidates = []
candidate_votes = {}
winner = " "
winner_votes = {}
#csv format from class activities
with open(file_to_load) as election_data:
reader = csv.DictReader(election_data)
#go throw each row, receiving error in "reader"
for row in reader
#total votes
vote_total = vote_total + 1
#select candidate name
candidate_name = row[2]
#if candidate name does not equal other names
if candidate_name not in candidates:
#add to list
candidates.append(candidate_name)
#count votes for the candidate
candidate_votes[candidate_name] = 0
#add up votes for the candidates
candidate_votes[candidate_name] = candidate_votes[candidate_name] + 1
#go throw votes to get winner
for candidate in candidate_votes
#get votes an percents for candidates
votes = candidate_votes.get(candidate)
vote_percent = votes / vote_total *100
#winner votes
if (votes > winner_votes):
winner_votes = votes
winner = candidate
print()
print()
print()
print("Election Results")
print("-------------------------")
print("Total Votes: " + str(vote_total))
print("-------------------------")
for i in range(len(candidate)):
print(candidate[i] + ": " + str(round(vote_percent[i],3)) +"% (" + str(round(candidate_votes[i],3)+ ")"))
print("Winner: ") + str(winner))
with open("C:/Users/David/Desktop/GTATL201908DATA3/02 - Homework/03-Python/Instructions/PyPoll/Resources/election_data.csv", "w") as text:
text.write("Election Results")
text.write("-------------------------")
text.write("Total Votes: " + str(vote_total))
text.write("-------------------------")
for i in range(len(candidate)):
print(candidate[i] + ": " + str(round(vote_percent[i],3)) +"% (" + str(round(candidate_votes[i],3)+ ")"))
text.write("Winner: ") + str(winner)) |
#!/usr/bin/env python
#Set python environment in the first line as written above
''' This script is written to do the following:
a) Read a .rnt file and save the Location, Strand and Product columns
to another file called filename_LocStrPro.txt
b) Split the Location into two parts and save the Strand and Location
into another file filename_StrLoc1Loc2.txt
c) Based on the strand either increase or decrease the Loc1 and Loc2
numbers and save the changed file to filename_Upstream_StrLoc1Loc2.txt
d) Open the filename.fna file and get the genome presented in both of
the above locations i.e. at original locations and changed locations.
'''
import pandas as pd
import numpy as np
import sys
import collections
# Read the file. Modify the below to check for the file and ask the
# user to specify the filename after the script. Also need to store
# the filename (without the extension) and use it save other files.
# try:
# inp_file = sys.argv[1]
# except ValueError:
# print("No valid integer in line.")
inp_file = sys.argv[1]
#inp_file = 'NC_004061.rnt'
filename=inp_file.split('.')[0]
print(inp_file, filename)
# Read the file as a data frame but Skip the first two rows
df1=pd.read_csv(inp_file,skiprows=2,sep='\t')
print(df1.head())
print(df1.columns)
print(df1.dtypes)
# Store those first two lines (in case they are required)
inp=open(inp_file)
firstline=inp.readline()
secondline=inp.readline()
inp.close()
# Read the gnome file and save it as a string (to slice later)
genomefile=filename+".fna"
with open(genomefile, 'r') as gf:
trash=gf.readline()
genome=gf.read().replace('\n', '')
#print(genome)
#print(trash)
# Save only "Location", "Strand", "Product" columns to a separate
# dataframe
df2=df1[["Location", "Strand", "Product"]].copy()
# Split the Location column into startLoc and endLoc. Finally, add
# these columns to the df2 and remove the Location column from the df2
dfTemp = df2["Location"].str.split("\.\.", n = 1, expand=True)
print(dfTemp.head())
df2["startLoc"] = dfTemp[0]
df2["endLoc"] = dfTemp[1]
print(df2.head())
#df2.drop(columns=['Location'], inplace=True)
df2.drop(['Location'], axis=1, inplace=True)
#Change the type of startLoc and endLoc
df2[["startLoc", "endLoc"]] = df2[["startLoc", "endLoc"]].astype(int)
#Change the order of columns
df2 = df2[["Strand", "startLoc", "endLoc", "Product"]]
df_length=len(df2.index)
#Create a numpy array to store product, AT_geneome_percent,
#AT_upstream_percent
product=[]
at_array =np.zeros((df_length,2))
# Print the Genome from start to end location
genefna='gene_'+filename+'.fna'
gfna=open(genefna,'w')
count=0
for index, row in df2.iterrows():
this_gene=genome[row['startLoc']:row['endLoc']+1]
atgc_count = collections.Counter(this_gene)
at_count = atgc_count['A'] + atgc_count['T']
gene_length = len(this_gene)
at_percent = 100*(at_count/gene_length)
product.append(row['Product'])
at_array[count,0] = at_percent
gfna.write("%a %a %i %i %a %6.3f\n" % (str('>').strip(''),
row['Strand'], row['startLoc'], row['endLoc'], row['Product'],
at_percent))
gfna.write("%a \n" % (genome[row['startLoc']:row['endLoc']+1]))
count = count + 1
print(this_gene)
print(at_percent)
print(gene_length)
# Write df2 to separate file with space as the separator.
LSPfile="LSP_gene_"+filename+".txt"
df2.to_csv(LSPfile, sep="\t", index=False)
print(df2.head())
print(df2.columns)
print(df2.dtypes)
# If Strand is -, change startLoc to endLoc and endLoc to endLoc + 50
# If Strand is +, change endLoc to startLoc and startLoc to endLoc - 50
df2.loc[df2.Strand == "-", ['startLoc']] = df2.loc[:,'endLoc']
df2.loc[df2.Strand == "-", ['endLoc']] = df2.loc[:,'endLoc']+50
df2.loc[df2.Strand == "+", ['endLoc']] = df2.loc[:,'startLoc']
df2.loc[df2.Strand == "+", ['startLoc']] = df2.loc[:,'startLoc']-50
print(df2.head())
# Write df2 to separate file with space as the separator.
LSPfile="LSP_upstream_"+filename+".txt"
df2.to_csv(LSPfile, sep="\t", index=False)
# Print the upstream Genome from start to end location
upfna='upstream_'+filename+'.fna'
ufna=open(upfna,'w')
count=0
for index, row in df2.iterrows():
this_gene=genome[row['startLoc']:row['endLoc']+1]
atgc_count = collections.Counter(this_gene)
at_count = atgc_count['A'] + atgc_count['T']
gene_length = len(this_gene)
at_percent = 100*(at_count/gene_length)
at_array[count,1] = at_percent
ufna.write("%a %a %i %i %a %6.3f\n" % (str('>').strip(''),
row['Strand'], row['startLoc'], row['endLoc'], row['Product'],
at_percent))
ufna.write("%a \n" % (genome[row['startLoc']:row['endLoc']+1]))
count = count + 1
# Print the both the genome's AT percentage
atPercent='atPercent_'+filename+'.txt'
atp=open(atPercent,'w')
atp.write("%a %a\t %a\n" % ('genAT%', 'upstreamAT%', 'Product'))
for i in range(0,len(product)):
atp.write("%6.3f\t %6.3f\t %a \n" % (at_array[i,0],
at_array[i,1],str(product[i]).strip("\'")))
|
#!/usr/bin/env python3
import random
arr = list(range(20))
random.shuffle(arr)
print('Original Array: ' + str(arr))
# QUICKSORT
def partition(A, low, high):
pivot = low
for j in range(low, high):
if A[j] <= A[high]:
A[pivot], A[j] = A[j], A[pivot]
pivot+=1
A[pivot], A[high] = A[high], A[pivot]
return pivot
def quicksort(a, low, high):
if low > high:
return
i = partition(a, low, high)
quicksort(a, low, i-1)
quicksort(a, i+1, high)
quicksort(arr, 0, len(arr)-1)
print('Sorted Array: ' + str(arr))
|
import csv
def create_record(number_of_rec):
while number_of_rec:
install_date = raw_input("Enter the Install Date: ")
device_number = raw_input("Enter the Device Number: ")
serv_address = raw_input("Enter the Service Address: ")
serv_city = raw_input("Enter Service City : ")
if install_date and device_number and serv_address and serv_city:
record_list = [install_date, device_number, serv_address, serv_city]
with open("C:\Path\to\File", "ab") as wf:
writer = csv.writer(wf)
writer.writerow(record_list)
number_of_rec -= 1
def display_record(option):
with open("C:\Path\to\File", "r") as rf:
reader = csv.reader(rf)
if option == 2:
for row in reader:
print " ".join(row)
elif option == 3:
search_feild = raw_input("Search by Install Date, Device Number, Service Address,City,or State :")
for row in reader:
if search_feild in row:
print " ".join(row)
def main():
print("1. Add to the file")
print("2. Display all the data from the file")
print("3. Search for particular data")
print("0. To Exit")
choice = True
while choice:
your_choice = input("Enter your choice:")
if your_choice == 1:
number_of_rec = input("Enter number of records you want to enter:")
create_record(number_of_rec)
if your_choice == 2:
display_record(2)
if your_choice == 3:
display_record(3)
if your_choice == 0:
choice = False
if __name__ == "__main__":
main()
|
"""
This script will try to convert pdfs to text files using pdftotext
"""
import pdftotext
import glob
import os
import csv
def convert(path, outfolder, pattern="*.pdf"):
"""convert files in path with pattern and save to outfolder
"""
filelist = glob.glob(os.path.join(path, pattern))
meta = []
if not os.path.isdir(outfolder):
os.mkdir(outfolder)
for file in filelist:
outfile = os.path.join(outfolder, os.path.splitext(os.path.split(file)[-1])[0] + ".txt")
if os.path.isfile(outfile):
meta.append({"pdf" : file, "txt" : outfile})
continue
try:
with open(file, "rb") as f:
pdf = pdftotext.PDF(f)
text = "\n\n".join(pdf)
npages = len(pdf)
with open(outfile, "w", encoding="utf8") as fout:
fout.writelines(text)
meta.append({"pdf" : file, "txt" : outfile, "npages" : npages})
except:
print("cannot process %s"%file)
with open(os.path.join(outfolder, "converted.csv"), "w") as fout:
writer = csv.DictWriter(fout, fieldnames=["pdf", "txt", "npages"])
writer.writeheader()
writer.writerows(meta)
if __name__ == "__main__":
convert("./pdf", "./txt", pattern="*.pdf")
|
"""
If else, elseif are supported, space delimited like the rest of python
Brutespray examples
https://github.com/x90skysn3k/brutespray/blob/master/brutespray.py#L161
"""
protocols = {"postgressql":"sql",
"pop3": "email"}
# Trying a get a protocol that does exist
print(protocols["pop3"])
# Trying to get a protocol that doesn't exist
# This raises what's called an exception
# Comment this line out to see how the rest of the code works
print(protocols["telnet"])
# This can be managed through try except
try:
print(protocols["telnet"])
except KeyError:
print("Telnet is not an option")
# In conjunction with the rest of the program
people_protocol = [["Steve", "postgressql"],
["Alice", "pop3"],
["Alice", "telnet"]]
for person, protocol in people_protocol:
try:
print("Hacking {0} with {1}".format(person, protocols[protocol]))
except KeyError:
print("Protocol {} is not an option. Failed hack on {}".format(protocol, person))
|
"""
If else, elseif are supported, space delimited like the rest of python
Brutespray examples
Not in Brutespray but really needs to be
"""
protocols = {"postgressql":"sql",
"pop3": "email"}
people_protocol = [["Steve", "postgressql"],
["Alice", "pop3"],
["Alice", "sql"]]
for person, protocol in people_protocol:
if person == "Alice":
# .format string formatting/interpolation. Use this instead of + signs
print("Hacking {0} with {1} even harder".format(person, protocol))
else:
# Python 2 style, no longer fashionable
print("Hacking %s with %s" % (person, protocol))
|
#bring in file types
import os
import csv
# import the file i'm working on
budgetData_csv = os.path.join('PyBank','Resources', 'budget_data.csv')
# what am I looking for - Total (months)
totalMonths = []
#print(totalMonths)
# net total of profit/losses -
totalAmount = []
# past Amount -
amountVariance = 0
# amount variance
monthVariance = 0
profitLoss = int(budget_data.csv[1])
# create my loop so it continues to calculate through the data
with open(budgetData_csv) as bankData:
csvreader = csv.reader(bankData, delimiter=',')
csvheader = next(csvreader)
for row in csvreader:
# Add the months
totalMonths.append(row[0])
print(f'Total Months: {len(totalMonths)}')
# Add the amounts
totalAmount.append(row[1])
print(f'Total Amount: {sum(totalAmount)}')
|
def isAmbiguous(inputDateString):
dateStringArray = inputDateString.split('/')
first = int(dateStringArray[0])
second = int(dateStringArray[1])
if first <= 12 and second <= 12:
return True
else:
return False
inputDateString = input()
if isAmbiguous(inputDateString):
print("Date is ambiguous")
else:
print("Date is not ambiguous") |
DIR = {"N" :(0, 1),"S" :(0, -1) ,"E" :(1, 0) ,"W":(-1,0) ,"NE" :(1,1) ,"NW" :(-1, 1) ,"SE" :(1,-1) ,"SW" :(-1,-1)}
def termino(coordinate, directions) :
x = coordinate[0]
y = coordinate[1]
for i in directions :
dir = ""
digit = 0
for j in range(len(i)) :
if ord(i[j]) >= 48 and ord(i[j]) <= 57 :
digit = digit*10 + int(i[j])
else :
dir += i[j]
x1 , y1 = DIR[dir]
x = x + x1*digit
y = y + y1*digit
return x , y
li = ["1N" , "3NW"]
x , y = termino((1, 1),li )
print((x , y)) |
class ArrayStack:
""" LIFO Stack implementation using a Python list as underlying storage. """
def __init__(self):
"""Create an empty stack"""
self._data = []
def __len__(self):
""" Return the number of elements in the stack. """
return len(self._data)
def is_empty(self):
""" Return True if stack is empty. """
return len(self._data) == 0
def push(self, e):
""" Add element to the top of the stack. """
self._data.append(e)
def top(self):
""" Return (but do not remove) the element at the
top of the stack. Raise exception if empty.
"""
if self.is_empty():
raise Exception('Stack is empty')
return self._data[-1]
def pop(self):
"""
Remove and return the element from top of the stack. (LIFO)
Raise exception if stack is empty
"""
if self.is_empty():
raise Exception('Stack is empty')
return self._data.pop() # remvoe last item of list
obj = ArrayStack()
obj.push(4)
obj.push(6)
print(obj.pop())
obj.top()
|
class Calculator():
def dodaj(self, a, b):
wynik = a + b
print("Twój wynik dodawania to {}".format(wynik))
def odejmij(self, a, b):
wynik = a - b
print("Twój wynik odejmowania to {}".format(wynik))
def mnozenie(self, a, b):
wynik = a * b
print("Twój wynik mnożenia to {}".format(wynik))
def dzielenie(self, a, b):
wynik = a / b
print("Twój wynik dzielenia to {}".format(wynik))
calc = Calculator()
print("Podaj jakie chcesz wykonać działanie:")
print("Naciśnij 1 jeśli chcesz dododać ")
print("Naciśnij 2 jeśli chcesz odejmować")
print("Naciśnij 3 jeśli chcesz pomnożyc")
print("Naciśnij 4 jeśli chcesz podzielić")
c = int(input())
if c == 1 or c == 2 or c == 3 or c == 4:
print("Podaj pierwszą liczbę")
a = float(input())
print("Podaj drugą liczbę")
b = float(input())
if c == 1:
calc.dodaj(a, b)
if c == 2:
calc.odejmij(a, b)
if c == 3:
calc.mnozenie(a, b)
if c == 4:
calc.dzielenie(a, b)
else: print("Nie ma takiego działania. Program zatrzymany.")
print("Podaj jakie chcesz wykonać działanie:")
print("Naciśnij 1 jeśli chcesz dododać ")
print("Naciśnij 2 jeśli chcesz odejmować")
print("Naciśnij 3 jeśli chcesz pomnożyc")
print("Naciśnij 4 jeśli chcesz podzielić")
c = int(input())
if c == 1 or c == 2 or c == 3 or c == 4:
print("Podaj pierwszą liczbę")
a = float(input())
print("Podaj drugą liczbę")
b = float(input())
if c == 1:
calc.dodaj(a, b)
if c == 2:
calc.odejmij(a, b)
if c == 3:
calc.mnozenie(a, b)
if c == 4:
calc.dzielenie(a, b) |
import Clases as c
def convertir_texto_numero(mensaje, min, max):
num = int(mensaje)
if num < min:
raise c.ValorMenorMin()
if num > max:
raise c.ValorMayorMax()
return num
def ingresa_numero(mensaje, min, max):
numero = 0
while True:
try:
texto = input(mensaje)
numero = convertir_texto_numero(texto, min, max)
return numero
except ValueError:
print("Debe ingresar un número")
except c.ValorMenorMin:
print(f"El valor es menor a {min}")
except c.ValorMayorMax:
print(f"El valor es mayor a {max}") |
from dataclasses import dataclass
from typing import List
@dataclass
class Fecha:
dia : int
mes : int
anio : int
@dataclass
class Direccion:
calle : str
altura : int
localidad : str
@dataclass
class Persona:
nombre : str
apellido : str
direcciones : List[Direccion]
fecha_nacimiento : Fecha
class Servicio:
def __init__(self, nombre, costo): # Constructor de la clase
self.nombre = nombre
self.costo = costo
def __repr__(self) -> str:
return f"Servicio(nombre = {0}, costo = {1})".format # Falta copiar
def imprimir_servicio(srv: Servicio): # srv: Nombre del parámetro
print(srv.nombre, srv.costo)
def main():
cable = Servicio("Cablevisión", 1000)
luz = Servicio("Calp", 500)
imprimir_servicio(cable)
imprimir_servicio(luz)
direc1 = Direccion("Bunge", 1200, "Pinamar")
direc2 = Direccion("Bunge", 1300, "Pinamar")
direcciones = [direc1, direc2]
print(direc1)
p = Persona("Carlos", "Perez", direcciones, Fecha(1, 1, 2001))
print(p.fecha_nacimiento.anio)
r = Persona("Gastón", "Dominguez", direcciones, Fecha(4, 4, 1980))
print(r. nombre , r.apellido, r.fecha_nacimiento)
main() |
from PIL import Image
import os
import sys
# directory = "B:\mozakra\\fourth year\\semester1\\machine learning\\project\\sawery"
directory = raw_input("What is your name? ")
for file_name in os.listdir(directory):
print("Processing %s" % file_name)
image = Image.open(os.path.join(directory, file_name))
x,y = image.size
new_dimensions = (32, 32)
output = image.resize(new_dimensions, Image.ANTIALIAS)
output_file_name = raw_input("What is your name? ")
#output_file_name = os.path.join(directory, "small_" + file_name)
output.save(output_file_name, "JPEG", quality = 95)
print("All done") |
slides=[]
slides.append("Hello. Press Enter.")
slides.append("How are you?")
slides.append("This is slide number 3")
slides.append("Yes, this is indeed a cli slideshow presentation")
slides.append(r"""
______________________________________
< This is how you do multi-line slides >
--------------------------------------
\ ^__^
\ (oo)\_______
(__)\ )\/\
||----w |
|| ||
""")
slides.append(r"""
_____ _ _ _ _ _ _ _
|_ _| |__ (_)___ (_)___ __ _ | |_(_) |_| | ___
| | | '_ \| / __| | / __| / _` | | __| | __| |/ _ \
| | | | | | \__ \ | \__ \ | (_| | | |_| | |_| | __/
|_| |_| |_|_|___/ |_|___/ \__,_| \__|_|\__|_|\___|
Stuff like this can be easily added in vim if you call external programs. `:read ! figlet "This is a title"`
""")
slides.append("All it needs is the slides and six lines of python")
slides.append("Infact, I believe it is better than powerpoint.")
slides.append("Thank you for using KraftaNet.")
clear='\033[2J\033[1;1H'
print(clear)
for slide in slides:
print(slide)
input("")
print(clear)
|
print (63832+750)
print ((20+50+80+120+160+200)*2-20+822)
'''
1,进入各种老虎机,显示账号是吃肉的小花
2,点击hud的齿轮,就回到了大厅
3,水果机进不去
4,没有任务
'''
for i in range(1,10,2):
print (i)
if i%5==4:
print ('bbbb')
break
else:
print (i)
def myaddstr(x):
'str+str'
return(x+x)
print (myaddstr.__doc__)#用来查看函数说明文字的
print (myaddstr(1)) |
def get_number():
numberlist=[]
numbers=open("a.txt",'r').readlines()
for number in numbers:
number.strip('\n')
numberlist.append(number)
list=[]
i=0
for i in xrange(len(numberlist)):
w={'phone':numberlist[i].strip('\n')}
list.append(w)
i+=1
return list
if __name__=="__main__":
print get_number()
def get_number(n):
numberlist=[]
numbers=open("a.txt",'r').readlines()
for number in numbers:
number.strip('\n')
numberlist.append(number)
list=[]
i=0
for i in xrange(len(numberlist)):
w={'phone':numberlist[i].strip('\n')}
list.append(w)
i+=1
return list[n]
if __name__=="__main__":
print get_number(0)
print get_number(-1) |
import csv
import re
class Navigate:
# away to get the line number of something we want
@staticmethod
def get_line(word='Why', filename="sample.txt"):
with open(filename) as file:
for num, line in enumerate(file, 1):
if word in line:
return num
@staticmethod
def get_column_number(filename="sample.txt"):
with open(filename) as file:
reader = csv.reader(file, delimiter=' ', skipinitialspace=True)
first_row = next(reader)
num_cols = len(first_row)
print(num_cols)
@staticmethod
def get_specific_column_number(word="do", filename="sample.txt"):
file = open(filename,"r")
list = []
for line in file:
fields = line.split(" ")
list.append(fields)
for i in range(0, len(list)):
j = 0
for item in list[i]:
if word in item:
return j
j += len(item) + 1
|
def function_quarter(x,y):
# x,y = input(), input()
if x > 0:
if y > 0:
print("I quarter")
else:
print("IV quarter")
else:
if y > 0:
print("II quarter")
else:
print("III quarter")
function_quarter(3, 4)
function_quarter(-3.5, 8)
function_quarter(-3.5, -8)
function_quarter(3, -4) |
num = raw_input("Enter a number:")
num = int(num)
if num%2 == 0:
print("Even number.")
else:
print("Odd number.") |
"""Manipulates path."""
import os
import typing as t # NOQA
def get_path_seperator():
# type: () -> str
"""Returns character that seperates directories in the PATH env variable"""
if 'nt' == os.name:
return ';'
else:
return ':'
class PathUpdater(object):
def __init__(self, path_seperator):
# type: (str) -> None
self._path_seperator = path_seperator
self._case_sensitive = 'nt' != os.name
def _arg_to_list(self, path):
# type: (t.Union[str, t.List[str], None]) -> t.List[str]
if not path:
return []
elif isinstance(path, str):
return [path]
else:
return [p for p in path]
def _normalize_path_value(self, path):
# type: (str) -> str
"""Makes path lower case on Windows, stays the same otherwise."""
if self._case_sensitive:
return path
else:
return path.lower()
def _normalize_path_arg(self, path_arg):
# type: (t.Union[str, t.List[str], None]) -> t.List[str]
return [self._normalize_path_value(p)
for p in self._arg_to_list(path_arg)]
def _remove_matching_elements(self, new_path, old_path):
# type: (t.Union[str, t.List[str], None], t.Union[str, t.List[str], None]) -> t.Tuple[t.List[str], t.List[str]] # NOQA
"""Removes elements found in both lists, preserves order."""
norm_old_path = self._normalize_path_arg(old_path)
new_path_list = self._arg_to_list(new_path)
norm_new_path = [self._normalize_path_value(p) for p in new_path_list]
for i in range(len(norm_old_path)):
while i < len(norm_old_path) and norm_old_path[i] in norm_new_path:
while norm_old_path[i] in norm_new_path:
delete_index = norm_new_path.index(norm_old_path[i])
del norm_new_path[delete_index]
del new_path_list[delete_index]
del norm_old_path[i]
return new_path_list, norm_old_path
def update_paths(self, path_var_name, new_path=None, old_path=None):
# type: (str, t.Union[str, t.List[str], None], t.Union[str, t.List[str], None]) -> str # NOQA
"""
Given the name of an environment variables that stores a list of paths,
return a value where, optionally one path is added and optionally one
may be removed. Also updates the environment variable.
"""
new_path, old_path = self._remove_matching_elements(
new_path,
old_path)
original_value = os.environ.get(path_var_name, '')
original_list = original_value.split(self._path_seperator)
modified_list = self._update_paths(original_list, new_path, old_path)
modified_value = self._path_seperator.join(modified_list)
return modified_value
def _update_paths(self, original_list, new_path, old_path):
# type: (t.List[str], t.List[str], t.List[str]) -> t.List
lc_list = [self._normalize_path_value(e) for e in original_list]
remove_indices = [] # type: t.List[int]
for op in old_path:
if op in lc_list:
# Remove only once
remove_indices.append(lc_list.index(op))
filtered_list = [original_list[i] for i in range(len(original_list))
if i not in remove_indices]
modified_list = new_path + filtered_list
return modified_list
|
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def averageOfLevels(self, root):
"""
:type root: TreeNode
:rtype: List[float]
"""
ans = []
final = []
parent = [root]
children = []
while parent :
for p in parent :
if p :
ans.append(p.val)
children.append(p.left)
children.append(p.right)
if ans :
final.append(sum(ans)/float(len(ans)))
parent = children
children = []
ans = []
return final
|
# Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution(object):
def reverseBetween(self, head, m, n):
"""
:type head: ListNode
:type m: int
:type n: int
:rtype: ListNode
"""
'''So basically we are trying to first find the position from where the reversal will begin'''
'''And then start reversing till required'''
if not head or not head.next or n == m : return head
dummy = ListNode(0)
dummy.next = head
prev = dummy
'''Remember to find the value of k here only! We are reducing the value of m later in the code.'''
k = n-m
while m-1 :
prev = prev.next
m -= 1
curr = prev.next
one = prev
two = curr
while k+1 :
nextnode = curr.next
curr.next = prev
prev, curr = curr, nextnode
k -= 1
one.next = prev
two.next = curr
return dummy.next
|
# Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution(object):
def removeNthFromEnd(self, head, n):
"""
:type head: ListNode
:type n: int
:rtype: ListNode
"""
if not head or not head.next : return None
prev = last = head
while n :
last = last.next
n -= 1
if not last :
return head.next
while last.next :
last = last.next
prev = prev.next
prev.next = prev.next.next
return head
|
# how to use argparse?
# https://docs.python.org/3/library/argparse.html
import argparse
# I - The first step in using the argparse is creating an ArgumentParser object:
parser = argparse.ArgumentParser(description='Process some integers.')
# II - Filling an ArgumentParser with information about program arguments is done by making calls to the add_argument() method.
parser.add_argument('integers', metavar='N', type=int, nargs='+', help='an integer for the accumulator')
|
# Non Abundant Sum
# A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the
# proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.
# A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n.
# As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant
# numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two
# abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest
# number that cannot be expressed as the sum of two abundant numbers is less than this limit.
# Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.
import math
import functools as ft
import timeit
@ft.lru_cache(maxsize=None)
def abundant(num):
sumdivs = 1
for i in range(2,math.floor(num/2)+1):
if num%i == 0:
sumdivs += i
if sumdivs > num:
return True
return False
total = 0
start=timeit.default_timer()
for num in range(1,28124):
flag = True
for j in range(1,math.floor(num/2)+1):
if abundant(j) and abundant(num-j):
flag = False
break
if flag:
total += num
end = timeit.default_timer()
print(total)
print('total time:')
print(end-start) |
"""
Brainfuck to python compiler. Example:
$ cat mul.bf
read a and b
,>,<
| a | b | c | d |
compute c = a*b using d as temp (pointer starts and ends and a)
[
sum b to c and copy in d (ends in b)
>[->+>+<<]
move d in b (ends in d)
>>[-<<+>>]
back on a
<<<-
]
print c
>>.
$ python bpc.py --comments --memory 5 --optimizations 2 --output a.py mul.bf
$ cat a.py
# -*- coding: UTF-8 -*-
m = [ 0 ] * 5
p = 0
# read a and b
m[p] = int(raw_input("Insert a number: ") or 0)
m[p + 1] = int(raw_input("Insert a number: ") or 0)
# | a | b | c | d |
# compute c = a*b using d as temp (pointer starts and ends and a)
while m[p]:
# sum b to c and copy in d (ends in b)
p = (p + 1) % 5
while m[p]:
m[p] -= 1
m[p + 1] += 1
m[p + 2] += 1
# move d in b (ends in d)
p = (p + 2) % 5
while m[p]:
m[p] -= 1
m[p - 2] += 1
# back on a
m[p - 3] -= 1
p = (p - 3) % 5
# print c
print m[p + 2]
$ python a.py
Insert a number: 5
Insert a number: 3
15
$
"""
import click
import re
class CodeBuilder(object):
"""
Builds the code by incrementally adding statements to it, automatically
managing code indentation.
"""
def __init__(self, indent_size=4, indent_char=' '):
self.code = list()
self.indent = 0
self.indent_size = indent_size
self.indent_char = indent_char
def start_block(self):
self.indent += self.indent_size
def end_block(self):
self.indent -= self.indent_size
assert self.indent >= 0
def append(self, statements):
self.code += [self.indent_char * self.indent + s for s in statements.split('\n')]
def stream_code(self):
comment, first_line = False, True
for row in self.code:
if re.match(r'^\s*#', row):
if not comment and not first_line:
yield ''
comment = True
else:
comment = False
yield row
first_line = False
def get_code(self):
return '\n'.join(c for c in self.stream_code())
class Tokenizer(object):
"""
Splits the code into tokens (either instructions or comments). Generates an
event for each token and when the process has finished.
"""
instruction_set = set(['+', '-', '<', '>', '.', ',', ']', '['])
def __init__(self):
self.handlers = {
'finish': list(),
'instruction': list(),
'comment': list(),
}
def _invoke_handlers(self, handler_type, *args, **kwargs):
for handler in self.handlers[handler_type]:
handler(handler_type, *args, **kwargs)
def register_handler(self, message_type, handler):
assert message_type in self.handlers.keys()
self.handlers[message_type].append(handler)
def tokenize(self, code):
i, code_length = 0, len(code)
while i < code_length:
if code[i] in self.instruction_set:
self._invoke_handlers('instruction', code[i], i)
i += 1
else:
start = i
while i < code_length and not code[i] in self.instruction_set:
i += 1
self._invoke_handlers('comment', code[start:i], start, i)
self._invoke_handlers('finish')
class Compiler0(object):
"""
Simple and direct translation of brainfuck instructions into their python equivalent.
"""
def __init__(self, tokenizer, builder, memory_size, comments, dump_memory):
self.memory_size = memory_size
self.dump_memory = dump_memory
self.comments = comments
self.builder = builder
self.tokenizer = tokenizer
self.tokenizer.register_handler('instruction', self.on_instruction)
self.tokenizer.register_handler('finish', self.on_finish)
if self.comments:
self.tokenizer.register_handler('comment', self.on_comment)
self.write_incipit()
def write_incipit(self):
self.builder.append('# -*- coding: UTF-8 -*-')
self.builder.append('m = [ 0 ] * %d' % self.memory_size)
self.builder.append('p = 0')
def on_instruction(self, _type, instruction, *args, **kwargs):
if instruction == '+' or instruction == '-':
self.builder.append('m[p] %s= 1' % instruction)
elif instruction == '<':
self.builder.append('p = (p - 1) %% %d' % self.memory_size)
elif instruction == '>':
self.builder.append('p = (p + 1) %% %d' % self.memory_size)
elif instruction == ',':
self.builder.append('m[p] = int(raw_input("Insert a number: ") or 0)')
elif instruction == '.':
self.builder.append('print m[p]')
elif instruction == '[':
self.builder.append('while m[p]:')
self.builder.start_block()
elif instruction == ']':
self.builder.end_block()
def on_comment(self, _type, comment, *args, **kwargs):
for comment in (c.strip() for c in comment.split('\n')):
if comment:
self.builder.append('# ' + comment)
def on_finish(self, _type, *args, **kwargs):
assert self.builder.indent == 0, 'Some loops are not closed'
if self.dump_memory:
self._write_dump_memory()
def _write_dump_memory(self):
if self.comments:
self.builder.append('# dump the memory')
self.builder.append(
"print '\\n~~~ Program Terminated ~~~'\n"
"print 'Pointer:', p\n"
"print 'Memory:'\n"
"m += [ 0 ] * ({dump_step} - {memory_size} % {dump_step})\n"
"dump = ('{{:4d}}' * {dump_step}).format\n"
"for i in range(0, {memory_size}, {dump_step}):\n"
" print '{{:7d}} | {{}}'.format(i, dump(*m[i:i + {dump_step}]))\n"
"".format(memory_size=self.memory_size, dump_step=16))
class Compiler1(Compiler0):
"""
Compiles the code and aggregates similar operations to a single macro instruction.
For example, '+++' becomes 'm[p]+=3', '<<<<' becomes 'p-=4' and so on.
"""
def __init__(self, *args, **kwargs):
super(Compiler1, self).__init__(*args, **kwargs)
self.operation, self.times = None, 0
self.accumulated = set(['+', '-', '<', '>'])
def _flush(self):
if self.operation == '+' or self.operation == '-':
self.builder.append('m[p] %s= %d' % (self.operation, self.times))
elif self.operation == '<':
self.builder.append('p = (p - %d) %% %d' % (self.times, self.memory_size))
elif self.operation == '>':
self.builder.append('p = (p + %d) %% %d' % (self.times, self.memory_size))
def on_finish(self, *args, **kwargs):
self._flush()
super(Compiler1, self).on_finish(*args, **kwargs)
def on_instruction(self, _type, instruction, *args, **kwargs):
if instruction in self.accumulated:
if instruction == self.operation:
self.times += 1
else:
self._flush()
self.times, self.operation = 1, instruction
else:
self._flush()
self.times, self.operation = 0, None
super(Compiler1, self).on_instruction(_type, instruction, *args, **kwargs)
class Compiler2(Compiler0):
"""
Caches the pointer movements and uses relative offsets to index memory whenever possible.
Also aggregates identical brainfuck instructions into a single python statement.
"""
def __init__(self, *args, **kwargs):
super(Compiler2, self).__init__(*args, **kwargs)
self.operation = None
self.times = self.pointer_move = self.pointer_position = 0
self.accumulated = set(['+', '-', '<', '>'])
def _get_relative_pointer_string(self):
if self.pointer_move:
return 'p %s %d' % (['-', '+'][self.pointer_move > 0], abs(self.pointer_move))
else:
return 'p'
def _flush(self):
if self.operation == '+' or self.operation == '-':
self.builder.append('m[%s] %s= %d' % (self._get_relative_pointer_string(),
self.operation, self.times))
elif self.operation == '<':
self.pointer_move -= self.times
elif self.operation == '>':
self.pointer_move += self.times
def _commit_pointer(self):
if self.pointer_move:
self.builder.append('p = (%s) %% %d' % (self._get_relative_pointer_string(),
self.memory_size))
self.pointer_move = 0
def on_instruction(self, _type, instruction, *args, **kwargs):
if instruction in self.accumulated and instruction == self.operation:
self.times += 1
return
self._flush()
self.times, self.operation = 1, instruction
if instruction == ',':
self.builder.append('m[%s] = int(raw_input("Insert a number: ") or 0)' %
self._get_relative_pointer_string())
elif instruction == '.':
self.builder.append('print m[%s]' % self._get_relative_pointer_string())
elif instruction == '[':
self._commit_pointer()
self.builder.append('while m[%s]:' % self._get_relative_pointer_string())
self.builder.start_block()
elif instruction == ']':
self._commit_pointer()
self.builder.end_block()
def compile(code, memory, comments, dump, indent, tab_indent, optimizations):
"""
Compiles the given brainfuck code into python.
"""
assert memory > 0, 'Memory must be larger than 0'
assert indent > 0, 'Indentation width must be larger than 0'
assert optimizations in set([0, 1, 2]), 'Optimization level must be 0, 1 or 2'
builder = CodeBuilder(indent_size=indent, indent_char='\t' if tab_indent else ' ')
tokenizer = Tokenizer()
compiler_cls = (Compiler0 if optimizations == 0 else
Compiler1 if optimizations == 1 else Compiler2)
compiler = compiler_cls(tokenizer, builder, memory, comments, dump)
tokenizer.tokenize(code)
return builder.get_code()
@click.command()
@click.argument('input', type=click.File('r'))
@click.option('--output', '-o', type=click.File('w'), default='a.py',
help='Compiled python file name or \'-\' for stdout.')
@click.option('--memory', '-m', default=1024,
help='The size of the memory used by the program.')
@click.option('--comments/--no-comments', '-c', default=False,
help='Include comments in generated file.')
@click.option('--dump/--no-dump', '-d', default=False,
help='Dump the memory and the pointer at the end of the program')
@click.option('--indent', '-i', default=4,
help='Number of characters used to indent the code.')
@click.option('--tab-indent/--space-indent', '-t', default=False,
help='Indent with tabs or spaces.')
@click.option('--optimizations', '-O', default=2,
help='Optimization level (0, 1, 2)')
# aggiungere dimensione celle
# aggiugere stile di memoria (extend-on-overflow, wrap-around, throw-exception)
def main_cli(input, output, *args, **kwargs):
code = input.read()
compiled = compile(code, *args, **kwargs)
output.write(compiled)
if __name__ == '__main__':
main_cli()
|
"""
Blackbody temperature calculations
"""
import numpy as np
import ChiantiPy.tools.constants as const
class blackStar:
"""
Calculate blackbody radiation
Parameters
----------
temperature : `~numpy.ndarray`
Temperature in Kelvin
radius : `~numpy.ndarray`
Stellar radius in cm
Attributes
----------
Temperature : `~numpy.ndarray`
Temperature in Kelvin
Radius : `~numpy.ndarray`
Stellar radius in cm
Incident : `~numpy.ndarray`
Blackbody photon distribution
"""
def __init__(self, temperature, radius):
self.Temperature = temperature
self.Radius = radius
def incident(self, distance, energy):
"""
Calculate photon distribution times the visible cross-sectional area.
Parameters
----------
distance : `~numpy.ndarray`
Distance to the stellar object in cm
energy : `~numpy.ndarray`
Energy range in erg
Notes
-----
This function returns the photon distribution instead of the distribution times the cross-sectional area. Is this correct? Why is the incident photon distribution calculated at all?
"""
print((' distance %10.2e energy '%(energy)))
bb = blackbody(self.Temperature, energy)
out = const.pi*(self.Radius/distance)**2*bb['photons']
self.Incident = bb
def blackbody(temperature, variable, hnu=1):
"""
Calculate the blackbody photon distribution as a function of energy (`hnu` = 1) or as a function of wavelength (`hnu` = 0) in units of :math:`\mathrm{photons}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{str}^{-1}\,\mathrm{erg}^{-1}`
Parameters
----------
temperature : `~numpy.float64`
Temperature at which to calculate the blackbody photon distribution
variable : `~numpy.ndarray`
Either energy (in erg) or wavelength (in angstrom)
hnu : `int`
If 1, calculate distribution as a function of energy. Otherwise, calculate it as a function of wavelength
Returns
-------
{'photons', 'temperature', 'energy'} or {'photons', 'temperature', 'wvl'} : `dict`
"""
if hnu:
energy = variable
bb =(2./(const.planck*(const.hc**2)))*energy**2/(np.exp(energy/(const.boltzmann*temperature)) - 1.)
return {'photons':bb, 'temperature':temperature, 'energy':energy}
else:
wvl = 1.e-8*variable
bb = ((2.*const.pi*const.light)/wvl**4)/(np.exp(const.hc/(wvl*const.boltzmann*temperature)) - 1.)
return {'photons':bb, 'temperature':temperature, 'wvl':wvl}
|
#Numpy 2-D array
import numpy as np
np_2d=np.array([[1.73,1.68,1.93,1.44],
[65.2,59.7,63.0,66.9]])
print(np_2d)
print(np_2d.shape)
print(np_2d[0][2])
print(np_2d[0,2])
print(np_2d[:,1:3])
print(np_2d[1:])
|
"""Functions to handle currency exchange."""
import requests
from django.conf import settings
class CurrencyRates:
"""Fetch current exchange rates for USD conversion."""
ENDPOINT = "http://api.exchangeratesapi.io/v1/latest"
def __init__(self):
"""Create request and fetch."""
url = (
f"{self.ENDPOINT}?access_key={settings.EXCHANGERATESAPI_KEY}"
"&symbols=USD,GBP,AUD"
"&format=1"
)
print(f"Request URL: {url}")
response = requests.get(url)
if response.status_code != 200:
raise ValueError(
"FX API request refused (https://api.exchangeratesapi.io)"
f" (HTTP status {response.status_code})"
)
self.rates = response.json()['rates']
def get_rate(self, currency):
"""Get conversion rate from USD to given currency."""
usd = self.rates['USD']
return self.rates[currency] / usd
def USD_to_USD(usd):
"""Blank function to return USD unaltered."""
return round(usd, 2)
def GBX_to_USD(pence):
"""Convert GBP pence to USD."""
c = CurrencyRates()
rate = c.get_rate('GBP')
return round((pence / 100) / rate, 2)
def GBP_to_USD(gbp):
"""Convert GBP to USD."""
c = CurrencyRates()
rate = c.get_rate('GBP')
return round(gbp / rate, 2)
def AUD_to_USD(aud):
"""Convert AUD to USD."""
c = CurrencyRates()
rate = c.get_rate('AUD')
return round(aud / rate, 2)
exchange = {
"USD": USD_to_USD,
"GBX": GBX_to_USD,
"GBP": GBP_to_USD,
"AUD": AUD_to_USD,
}
|
import turtle
n = 1
a = 30
x = -100
y = 0
turtle.shape('turtle')
turtle.left(90)
for i in range(8):
turtle.penup()
turtle.goto(x,y)
turtle.pendown()
for i in range(360):
turtle.left(1)
turtle.forward(n/4)
for i in range(360):
turtle.right(1)
turtle.forward(n / 4)
n+=0.5
turtle.mainloop()
|
# Explanation
# Bubble sort, sorts the array elements by repeatedly moving the largest element to the highest index position.
# In bubble sorting, consecutive adjacent pairs of elements in the array are compared with each other.
# If the element at the lower index is greater than the element at the higher index then the two elements are interchanged
# so that the element is placed before the bigger one.
# NOTE: At the end of first pass, the largest element in the arr will be placed it's proper position
# Worst Case Time Complexity [ Big-O ]: O(n2)
# Best Case Time Complexity [Big-omega]: O(n)
# Average Time Complexity [Big-theta]: O(n2)
# Space Complexity: O(1)
arr = list(map(int,input().split()))
n = len(arr)
status = False
for i in range(n):
for j in range(n-i-1):
if arr[j] > arr[j+1]:
arr[j],arr[j+1] = arr[j+1], arr[j]
status = True
if status == False: # if the arr is already sorted then break
break
print(*arr)
|
# Video Reference : https://www.youtube.com/watch?v=QN9hnmAgmOc&t=376s
# Quick Sort is based on the concept of Divide and Conquer, just like merge sort
# 1. Select an element pivot from the array element
# 2. Rearrange the element in the array in such a way that all elements that
# are less than the pivot appear before the pivot and all elements greater than the pivot element come after it.
# 3. After such a partitioning, the pivot is placed in it's final position.
# 4. Recursively sort the two sub-array.
# Worst Case Time Complexity [ Big-O ]: O(n2)
# Best Case Time Complexity [Big-omega]: O(n*log n)
# Average Time Complexity [Big-theta]: O(n*log n)
# Space Complexity: O(n*log n)
def partition(arr, start, end):
pivot = arr[(start + end) // 2]
low = start - 1
high = end + 1
while True:
low += 1
while arr[low] < pivot:
low += 1
high -= 1
while arr[high] > pivot:
high -= 1
if low >= high:
return high
# If an element at low (on the left of the pivot) is larger than the
# element at high (on right right of the pivot), then swap them
arr[low], arr[high] = arr[high], arr[low]
def quick_sort(arr):
def _quick_sort(arr, start, end):
if start < end:
split_index = partition(arr, start, end)
_quick_sort(arr, start, split_index)
_quick_sort(arr, split_index + 1, end)
_quick_sort(arr, 0, len(arr) - 1)
arr = list(map(int, input().split()))
quick_sort(arr)
print(*arr)
|
# Problem Statement Link : https://leetcode.com/problems/power-of-two/
def powerOfTwo(n):
if n < 0: return False
ans = 0
while n:
ans += 1
n = n & (n - 1)
if ans == 1:
return True
else:
return False
n = int(input())
print(powerOfTwo(n))
|
"""
Python has the following data types built-in by default, in these categories:
Text Type: str
Numeric Types: int, float, complex
Sequence Types: list, tuple, range
Mapping Type: dict
Set Types: set, frozenset
Boolean Type: bool
Binary Types: bytes, bytearray, memoryview
"""
x = 5
print(type(x))
|
### imports ###
import face_recognition as fr
import os
import cv2
import face_recognition
import numpy as np
### encode all the face images ###
def encoded_faces():
#looks through the facee_iamges folder and encodes all the faces ###
# returns a dict of (name, image encoded)
encoded = {}
for dirpath, dnames, fnames in os.walk("./face_images"): # look through each image in face_iamges folder
for f in fnames:
if f.endswith(".jpg") or f.endswith(".png"):
face = fr.load_image_file("face_images/" + f) # load each file
encoding = fr.face_encodings(face)[0] # get the face encoding
encoded[f.split(".")[0]] = encoding # split encoding add to dict
return encoded
### encode image from file name ###
def unknown_image(img):
face = fr.load_image_file("face_images/" + img) # load the image file
encoding = fr.face_encodings(face)[0] # get the face encoding
return encoding
### find the faces and label in known ###
def search_face(im):
# param 'im' is str of file path
# returns a list of face names
face_names = [] # create a list for the face names found
faces = encoded_faces() # set the function
faces_encoded = list(faces.values()) # create a list of the encoded faces values
known_face_names = list(faces.keys()) # creat a list of the faces key values
img = cv2.imread(im, 1) # read in the image
face_locations = face_recognition.face_locations(img) # find the face locations from the image
unknown_face_encodings = face_recognition.face_encodings(img, face_locations) # find the unkown face encodings
for face_encoding in unknown_face_encodings: # loop through unkown face encodings
# See if the face is a match for the known face(s)
match_list = face_recognition.compare_faces(faces_encoded, face_encoding) # see if the face is a match
name = "Unknown"
face_distances = face_recognition.face_distance(faces_encoded, face_encoding) # find face distances
best_match = np.argmin(face_distances) # find the smallest distance from known face to new face
if match_list[best_match]: # if a match
name = known_face_names[best_match] # set the name
face_names.append(name) # add the name to the list
### create the visual face boxes and text ###
for (top, right, bottom, left), name in zip(face_locations, face_names): # loop through face_locations and face_names
# Draw a box around the face
cv2.rectangle(img, (left-20, top-20), (right+20, bottom+40), (0, 255, 0), 1) # set the box parameters
font = cv2.FONT_HERSHEY_DUPLEX # set the font
cv2.putText(img, name, (left -20, bottom +75), font, 1.0, (0, 0, 255), 2) # set the text parameters
### return the image with face names if found ###
while True:
cv2.imshow('Face Recgonition Results', img) # show the title and image
if cv2.waitKey(1) & 0xFF == ord('q'): # set wait key and q exit command
return face_names
### run the function on the image to search ###
# print(search
#_face('Barak_Joe.jpg')) # alternative example
print(search_face('test_images/Jumanji_Cast.jpg'))
|
import sys
import warnings
import matplotlib.pyplot as plt
import numpy as np
from bokeh.plotting import figure, show
from scipy import integrate
class PressureMatrix:
r"""This class calculates the pressure matrix of the object with the given parameters.
It is supposed to be an attribute of a bearing element,
but can work on its on to provide graphics for the user.
Parameters
----------
Grid related
^^^^^^^^^^^^
Describes the discretization of the problem
nz: int
Number of points along the Z direction (direction of flow).
ntheta: int
Number of points along the direction theta. NOTE: ntheta must be odd.
nradius: int
Number of points along the direction r.
length: float
Length in the Z direction (m).
Operation conditions
^^^^^^^^^^^^^^^^^^^^
Describes the operation conditions.
omega: float
Rotation of the rotor (rad/s).
p_in: float
Input Pressure (Pa).
p_out: float
Output Pressure (Pa).
load: float
Load applied to the rotor (N).
Geometric data of the problem
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Describes the geometric data of the problem.
radius_rotor: float
Rotor radius (m).
radius_stator: float
Stator Radius (m).
eccentricity: float, optional
Eccentricity (m) is the euclidean distance between rotor and stator centers.
The center of the stator is in position (0,0).
beta: float, optional
Attitude angle. Angle between the origin and the eccentricity (rad).
Fluid characteristics
^^^^^^^^^^^^^^^^^^^^^
Describes the fluid characteristics.
viscosity: float
Viscosity (Pa.s).
density: float
Fluid density(Kg/m^3).
Returns
-------
An object containing the pressure matrix and its data.
Attributes
----------
ltheta: float
Length in the theta direction (rad).
dz: float
Range size in the Z direction.
dtheta: float
Range size in the theta direction.
ntotal: int
Number of nodes in the grid., ntheta, nradius, n_interv_z, n_interv_theta,
n_interv_z: int
Number of intervals on Z.
n_interv_theta: int
Number of intervals on theta.
n_interv_radius: int
Number of intervals on r.
p_mat_analytical : array of shape (nz, ntheta)
The analytical pressure matrix.
p_mat_numerical : array of shape (nz, ntheta)
The numerical pressure matrix.
xi: float
Eccentricity (m) (distance between rotor and stator centers) on the x-axis.
It is the position of the center of the rotor.
The center of the stator is in position (0,0).
yi: float
Eccentricity (m) (distance between rotor and stator centers) on the y-axis.
It is the position of the center of the rotor.
The center of the stator is in position (0,0).
re : array of shape (nz, ntheta)
The external radius in each position of the grid.
ri : array of shape (nz, ntheta)
The internal radius in each position of the grid.
z : array of shape (1, nz)
z along the object. It goes from 0 to lb.
xre : array of shape (nz, ntheta)
x value of the external radius.
xri : array of shape (nz, ntheta)
x value of the internal radius.
yre : array of shape (nz, ntheta)
y value of the external radius.
yri : array of shape (nz, ntheta)
y value of the internal radius.
eccentricity : float
distance between the center of the rotor and the stator.
difference_between_radius: float
distance between the radius of the stator and the radius of the rotor.
eccentricity_ratio: float
eccentricity/difference_between_radius
bearing_type: str
type of structure. 'short_bearing': short; 'long_bearing': long;
'medium_size': in between short and long.
if length/radius_stator <= 1/4 it is short.
if length/radius_stator > 8 it is long.
radial_clearance: float
Difference between both stator and rotor radius, regardless of eccentricity.
analytical_pressure_matrix_available: bool
True if analytically calculated pressure matrix is available.
numerical_pressure_matrix_available: bool
True if numerically calculated pressure matrix is available.
Examples
--------
>>> from ross.fluid_flow import fluid_flow as flow
>>> import numpy as np
>>> from bokeh.plotting import show
>>> nz = 8
>>> ntheta = 64
>>> nradius = 11
>>> length = 0.01
>>> omega = 100.*2*np.pi/60
>>> p_in = 0.
>>> p_out = 0.
>>> radius_rotor = 0.08
>>> radius_stator = 0.1
>>> viscosity = 0.015
>>> density = 860.
>>> eccentricity = 0.001
>>> beta = np.pi
>>> my_fluid_flow = flow.PressureMatrix(nz, ntheta, nradius, length,
... omega, p_in, p_out, radius_rotor,
... radius_stator, viscosity, density,
... beta=beta, eccentricity=eccentricity)
>>> my_fluid_flow.calculate_pressure_matrix_analytical() # doctest: +ELLIPSIS
array([[-0.00000...
>>> my_fluid_flow.calculate_pressure_matrix_numerical() # doctest: +ELLIPSIS
array([[...
>>> # to show the plots you can use:
>>> # show(my_fluid_flow.plot_eccentricity())
>>> # show(my_fluid_flow.plot_pressure_theta(z=int(nz/2)))
>>> my_fluid_flow.matplot_pressure_theta(z=int(nz/2)) # doctest: +ELLIPSIS
<matplotlib.axes._subplots.AxesSubplot object at...
"""
def __init__(
self,
nz,
ntheta,
nradius,
length,
omega,
p_in,
p_out,
radius_rotor,
radius_stator,
viscosity,
density,
beta=None,
eccentricity=None,
load=None,
):
if load is None and eccentricity is None:
sys.exit("Either load or eccentricity must be given.")
self.nz = nz
self.ntheta = ntheta
self.nradius = nradius
self.n_interv_z = nz - 1
self.n_interv_theta = ntheta - 1
self.n_interv_radius = nradius - 1
self.length = length
self.ltheta = 2.0 * np.pi
self.dz = length / self.n_interv_z
self.dtheta = self.ltheta / self.n_interv_theta
self.ntotal = self.nz * self.ntheta
self.omega = omega
self.p_in = p_in
self.p_out = p_out
self.radius_rotor = radius_rotor
self.radius_stator = radius_stator
self.viscosity = viscosity
self.density = density
self.radial_clearance = self.radius_stator - self.radius_rotor
self.difference_between_radius = radius_stator - radius_rotor
self.bearing_type = ""
if self.length / self.radius_stator <= 1 / 4:
self.bearing_type = "short_bearing"
elif self.length / self.radius_stator >= 8:
self.bearing_type = "long_bearing"
else:
self.bearing_type = "medium_size"
self.eccentricity = eccentricity
self.eccentricity_ratio = None
self.load = load
if self.eccentricity is None:
self.eccentricity = (
self.calculate_eccentricity_ratio() * self.difference_between_radius
)
self.eccentricity_ratio = self.eccentricity / self.difference_between_radius
if self.load is None:
self.load = self.get_rotor_load()
if beta is None:
self.beta = self.calculate_attitude_angle()
else:
self.beta = beta
self.xi = self.eccentricity * np.cos(2 * np.pi - self.beta)
self.yi = self.eccentricity * np.sin(2 * np.pi - self.beta)
self.re = np.zeros([self.nz, self.ntheta])
self.ri = np.zeros([self.nz, self.ntheta])
self.z = np.zeros([1, self.nz])
self.xre = np.zeros([self.nz, self.ntheta])
self.xri = np.zeros([self.nz, self.ntheta])
self.yre = np.zeros([self.nz, self.ntheta])
self.yri = np.zeros([self.nz, self.ntheta])
self.p_mat_analytical = np.zeros([self.nz, self.ntheta])
self.c1 = np.zeros([self.nz, self.ntheta])
self.c2 = np.zeros([self.nz, self.ntheta])
self.c0w = np.zeros([self.nz, self.ntheta])
self.M = np.zeros([self.ntotal, self.ntotal])
self.f = np.zeros([self.ntotal, 1])
self.P = np.zeros([self.ntotal, 1])
self.p_mat_numerical = np.zeros([self.nz, self.ntheta])
self.gama = np.zeros([self.nz, self.ntheta])
self.calculate_coefficients()
self.analytical_pressure_matrix_available = False
self.numerical_pressure_matrix_available = False
def calculate_attitude_angle(self):
"""Calculates the attitude angle based on the eccentricity.
Returns
-------
float
Attitude angle
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.calculate_attitude_angle() # doctest: +ELLIPSIS
1.5...
"""
return np.arctan(np.pi * (1 - self.eccentricity_ratio ** 2) / (4 * self.eccentricity_ratio))
def calculate_pressure_matrix_analytical(self, method=0, force_type=None):
"""This function calculates the pressure matrix analytically.
Parameters
----------
method: int
Determines the analytical method to be used, when more than one is available.
In case of a short bearing:
0: based on the book Tribology Series vol. 33, by Frene et al., chapter 5.
1: based on the chapter Linear and Nonlinear Rotordynamics, by Ishida and
Yamamoto, from the book Flow-Induced Vibrations.
In case of a long bearing:
0: based on the Fundamentals of Fluid Flow Lubrification, by Hamrock, chapter 10.
force_type: str
If set, calculates the pressure matrix analytically considering the chosen type: 'short' or 'long'.
Returns
-------
p_mat_analytical: matrix of float
Pressure matrix of size (nz x ntheta)
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.calculate_pressure_matrix_analytical() # doctest: +ELLIPSIS
array([[...
"""
if self.bearing_type == "short_bearing" or force_type == 'short':
if method == 0:
for i in range(0, self.nz):
for j in range(0, self.ntheta):
# fmt: off
self.p_mat_analytical[i][j] = (
((-3 * self.viscosity * self.omega) / self.difference_between_radius ** 2) *
((i * self.dz - (self.length / 2)) ** 2 - (self.length ** 2) / 4) *
(self.eccentricity_ratio * np.sin(j * self.dtheta)) /
(1 + self.eccentricity_ratio * np.cos(j * self.dtheta)) ** 3)
# fmt: on
if self.p_mat_analytical[i][j] < 0:
self.p_mat_analytical[i][j] = 0
elif method == 1:
for i in range(0, self.nz):
for j in range(0, self.ntheta):
# fmt: off
self.p_mat_analytical[i][j] = (3 * self.viscosity / ((self.difference_between_radius ** 2) *
(1. + self.eccentricity_ratio * np.cos(
j * self.dtheta)) ** 3)) * \
(-self.eccentricity_ratio * self.omega * np.sin(
j * self.dtheta)) * \
(((i * self.dz - (self.length / 2)) ** 2) - (
self.length ** 2) / 4)
# fmt: on
if self.p_mat_analytical[i][j] < 0:
self.p_mat_analytical[i][j] = 0
elif self.bearing_type == "long_bearing" or force_type == 'long':
if method == 0:
for i in range(0, self.nz):
for j in range(0, self.ntheta):
self.p_mat_analytical[i][j] = (6 * self.viscosity * self.omega *
(self.ri[i][j] / self.difference_between_radius) ** 2 *
self.eccentricity_ratio * np.sin(self.gama[i][j]) *
(2 + self.eccentricity_ratio * np.cos(self.gama[i][j]))) / (
(2 + self.eccentricity_ratio ** 2) *
(1 + self.eccentricity_ratio * np.cos(
self.gama[i][j])) ** 2) + \
self.p_in
if self.p_mat_analytical[i][j] < 0:
self.p_mat_analytical[i][j] = 0
elif self.bearing_type == "medium_size":
raise ValueError("The pressure matrix for a bearing that is neither short or long can only be calculated "
"numerically. Try calling calculate_pressure_matrix_numerical or setting force_type "
"to either 'short' or 'long' in calculate_pressure_matrix_analytical.")
self.analytical_pressure_matrix_available = True
return self.p_mat_analytical
def calculate_coefficients(self):
"""This function calculates the constants that form the Poisson equation
of the discrete pressure (central differences in the second
derivatives). It is executed when the class is instantiated.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.calculate_coefficients()
>>> my_fluid_flow.c0w # doctest: +ELLIPSIS
array([[...
"""
for i in range(0, self.nz):
zno = i * self.dz
self.z[0][i] = zno
plot_eccentricity_error = False
position = -1
for j in range(0, self.ntheta):
# fmt: off
self.gama[i][j] = j * self.dtheta + (np.pi - self.beta)
[radius_external, self.xre[i][j], self.yre[i][j]] = \
self.external_radius_function(self.gama[i][j])
[radius_internal, self.xri[i][j], self.yri[i][j]] = \
self.internal_radius_function(zno, self.gama[i][j])
self.re[i][j] = radius_external
self.ri[i][j] = radius_internal
w = self.omega * self.ri[i][j]
k = (self.re[i][j] ** 2 * (np.log(self.re[i][j]) - 1 / 2) - self.ri[i][j] ** 2 *
(np.log(self.ri[i][j]) - 1 / 2)) / (self.ri[i][j] ** 2 - self.re[i][j] ** 2)
self.c1[i][j] = (1 / (4 * self.viscosity)) * ((self.re[i][j] ** 2 * np.log(self.re[i][j]) -
self.ri[i][j] ** 2 * np.log(self.ri[i][j]) +
(self.re[i][j] ** 2 - self.ri[i][j] ** 2) *
(k - 1)) - 2 * self.re[i][j] ** 2 * (
(np.log(self.re[i][j]) + k - 1 / 2) * np.log(
self.re[i][j] / self.ri[i][j])))
self.c2[i][j] = (- self.ri[i][j] ** 2) / (8 * self.viscosity) * \
((self.re[i][j] ** 2 - self.ri[i][j] ** 2 -
(self.re[i][j] ** 4 - self.ri[i][j] ** 4) /
(2 * self.ri[i][j] ** 2)) +
((self.re[i][j] ** 2 - self.ri[i][j] ** 2) /
(self.ri[i][j] ** 2 *
np.log(self.re[i][j] / self.ri[i][j]))) *
(self.re[i][j] ** 2 * np.log(self.re[i][j] / self.ri[i][j]) -
(self.re[i][j] ** 2 - self.ri[i][j] ** 2) / 2))
self.c0w[i][j] = (- w * self.ri[i][j] *
(np.log(self.re[i][j] / self.ri[i][j]) *
(1 + (self.ri[i][j] ** 2) / (self.re[i][j] ** 2 - self.ri[i][j] ** 2)) - 1 / 2))
# fmt: on
if not plot_eccentricity_error:
if abs(self.xri[i][j]) > abs(self.xre[i][j]) or abs(
self.yri[i][j]
) > abs(self.yre[i][j]):
plot_eccentricity_error = True
position = i
if plot_eccentricity_error:
self.plot_eccentricity(position)
sys.exit(
"Error: The given parameters create a rotor that is not inside the stator. "
"Check the plotted figure and fix accordingly."
)
def mounting_matrix(self):
"""This function assembles the matrix M and the independent vector f.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.mounting_matrix()
>>> my_fluid_flow.M # doctest: +ELLIPSIS
array([[...
"""
# fmt: off
count = 0
for x in range(self.ntheta):
self.M[count][count] = 1
self.f[count][0] = self.p_in
count = count + self.nz - 1
self.M[count][count] = 1
self.f[count][0] = self.p_out
count = count + 1
count = 0
for x in range(self.nz - 2):
self.M[self.ntotal - self.nz + 1 + count][1 + count] = 1
self.M[self.ntotal - self.nz + 1 + count][self.ntotal - self.nz + 1 + count] = -1
count = count + 1
count = 1
j = 0
for i in range(1, self.nz - 1):
a = (1 / self.dtheta ** 2) * (self.c1[i][self.ntheta - 1])
self.M[count][self.ntotal - 2 * self.nz + count] = a
b = (1 / self.dz ** 2) * (self.c2[i - 1, j])
self.M[count][count - 1] = b
c = -((1 / self.dtheta ** 2) * ((self.c1[i][j]) + self.c1[i][self.ntheta - 1])
+ (1 / self.dz ** 2) * (self.c2[i][j] + self.c2[i - 1][j]))
self.M[count, count] = c
d = (1 / self.dz ** 2) * (self.c2[i][j])
self.M[count][count + 1] = d
e = (1 / self.dtheta ** 2) * (self.c1[i][j])
self.M[count][count + self.nz] = e
count = count + 1
count = self.nz + 1
for j in range(1, self.ntheta - 1):
for i in range(1, self.nz - 1):
a = (1 / self.dtheta ** 2) * (self.c1[i, j - 1])
self.M[count][count - self.nz] = a
b = (1 / self.dz ** 2) * (self.c2[i - 1][j])
self.M[count][count - 1] = b
c = -((1 / self.dtheta ** 2) * ((self.c1[i][j]) + self.c1[i][j - 1])
+ (1 / self.dz ** 2) * (self.c2[i][j] + self.c2[i - 1][j]))
self.M[count, count] = c
d = (1 / self.dz ** 2) * (self.c2[i][j])
self.M[count][count + 1] = d
e = (1 / self.dtheta ** 2) * (self.c1[i][j])
self.M[count][count + self.nz] = e
count = count + 1
count = count + 2
count = 1
for j in range(self.ntheta - 1):
for i in range(1, self.nz - 1):
if j == 0:
self.f[count][0] = (self.c0w[i][j] - self.c0w[i][self.ntheta - 1]) / self.dtheta
else:
self.f[count][0] = (self.c0w[i, j] - self.c0w[i, j - 1]) / self.dtheta
count = count + 1
count = count + 2
# fmt: on
def resolves_matrix(self):
"""This function resolves the linear system [M]{P}={f}.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.mounting_matrix()
>>> my_fluid_flow.resolves_matrix()
>>> my_fluid_flow.P # doctest: +ELLIPSIS
array([[...
"""
self.P = np.linalg.solve(self.M, self.f)
def calculate_pressure_matrix_numerical(self):
"""This function calculates the pressure matrix numerically.
Returns
-------
p_mat_numerical: matrix of float
Pressure matrix of size (nz x ntheta)
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.calculate_pressure_matrix_numerical() # doctest: +ELLIPSIS
array([[...
"""
self.mounting_matrix()
self.resolves_matrix()
for i in range(self.nz):
for j in range(self.ntheta):
k = j * self.nz + i
if self.P[k] < 0:
self.p_mat_numerical[i][j] = 0
else:
self.p_mat_numerical[i][j] = self.P[k]
self.numerical_pressure_matrix_available = True
return self.p_mat_numerical
def internal_radius_function(self, z, gama):
"""This function calculates the radius of the rotor given the
radius and the position z.
Parameters
----------
z: float
Distance along the z-axis.
gama: float
Gama is the distance in the theta-axis. It should range from 0 to 2*np.pi.
Returns
-------
radius_internal: float
The size of the internal radius at that point.
xri: float
The position x of the returned internal radius.
yri: float
The position y of the returned internal radius.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> radius_internal, xri, yri = my_fluid_flow.internal_radius_function(z=0, gama=0)
>>> radius_internal
0.079
"""
if (np.pi - self.beta) < gama < (2 * np.pi - self.beta):
alpha = np.absolute(2 * np.pi - gama - self.beta)
radius_internal = np.sqrt(self.radius_rotor ** 2
- (self.eccentricity * np.sin(alpha)) ** 2) + self.eccentricity * np.cos(alpha)
xri = radius_internal * np.cos(gama)
yri = radius_internal * np.sin(gama)
else:
alpha = self.beta + gama
radius_internal = np.sqrt(self.radius_rotor ** 2
- (self.eccentricity * np.sin(alpha)) ** 2) + self.eccentricity * np.cos(alpha)
xri = radius_internal * np.cos(gama)
yri = radius_internal * np.sin(gama)
return radius_internal, xri, yri
def external_radius_function(self, gama):
"""This function calculates the radius of the stator.
Parameters
----------
gama: float
Gama is the distance in the theta-axis. It should range from 0 to 2*np.pi.
Returns
-------
radius_external: float
The size of the external radius at that point.
xre: float
The position x of the returned external radius.
yre: float
The position y of the returned external radius.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> radius_external, xre, yre = my_fluid_flow.external_radius_function(gama=0)
>>> radius_external
0.1
"""
radius_external = self.radius_stator
xre = radius_external * np.cos(gama)
yre = radius_external * np.sin(gama)
return radius_external, xre, yre
def get_rotor_load(self):
"""Returns the load applied to the rotor, based on the eccentricity ratio.
Suitable only for short bearings.
Returns
-------
float
Load applied to the rotor.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.get_rotor_load() # doctest: +ELLIPSIS
1.5...
"""
if not self.bearing_type == "short_bearing":
warnings.warn(
"Function get_rotor_load suitable only for short bearings. "
"The ratio between the bearing length and its radius should be less or "
"equal to 0.25. Currently we have "
+ str(self.length / self.radius_stator)
+ "."
)
return (
(
np.pi
* self.radius_stator
* 2
* self.omega
* self.viscosity
* (self.length ** 3)
* self.eccentricity_ratio
)
/ (
8
* (self.radial_clearance ** 2)
* ((1 - self.eccentricity_ratio ** 2) ** 2)
)
) * (np.sqrt((16 / (np.pi ** 2) - 1) * self.eccentricity_ratio ** 2 + 1))
def modified_sommerfeld_number(self):
"""Returns the modified sommerfeld number.
Returns
-------
float
The modified sommerfeld number.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.modified_sommerfeld_number() # doctest: +ELLIPSIS
6...
"""
return (
self.radius_stator * 2 * self.omega * self.viscosity * (self.length ** 3)
) / (8 * self.load * (self.radial_clearance ** 2))
def sommerfeld_number(self):
"""Returns the sommerfeld number.
Returns
-------
float
The sommerfeld number.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.sommerfeld_number() # doctest: +ELLIPSIS
805...
"""
modified_s = self.modified_sommerfeld_number()
return (modified_s / np.pi) * (self.radius_stator * 2 / self.length) ** 2
def calculate_eccentricity_ratio(self):
"""Calculate the eccentricity ratio for a given load using the sommerfeld number.
Suitable only for short bearings.
Returns
-------
float
The eccentricity ratio.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.calculate_eccentricity_ratio() # doctest: +ELLIPSIS
0.0...
"""
if not self.bearing_type == "short_bearing":
warnings.warn(
"Function calculate_eccentricity_ratio suitable only for short bearings. "
"The ratio between the bearing length and its radius should be less or "
"equal to 0.25. Currently we have "
+ str(self.length / self.radius_stator)
+ "."
)
s = self.modified_sommerfeld_number()
coefficients = [
1,
-4,
(6 - (s ** 2) * (16 - np.pi ** 2)),
-(4 + (np.pi ** 2) * (s ** 2)),
1,
]
roots = np.roots(coefficients)
for i in range(0, len(roots)):
if 0 <= roots[i] <= 1:
return np.sqrt(roots[i].real)
sys.exit("Eccentricity ratio could not be calculated.")
def get_analytical_stiffness_matrix(self):
"""Returns the stiffness matrix calculated analytically.
Suitable only for short bearings.
Returns
-------
list of floats
A list of length four including stiffness floats in this order: kxx, kxy, kyx, kyy
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.get_analytical_stiffness_matrix() # doctest: +ELLIPSIS
[...
"""
if not self.bearing_type == "short_bearing":
warnings.warn(
"Function get_analytical_stiffness_matrix suitable only for short bearings. "
"The ratio between the bearing length and its radius should be less or "
"equal to 0.25. Currently we have "
+ str(self.length / self.radius_stator)
+ "."
)
# fmt: off
f = self.get_rotor_load()
h0 = 1.0 / (((np.pi ** 2) * (1 - self.eccentricity_ratio ** 2) + 16 * self.eccentricity_ratio ** 2) ** 1.5)
a = f / self.radial_clearance
kxx = a * h0 * 4 * ((np.pi ** 2) * (2 - self.eccentricity_ratio ** 2) + 16 * self.eccentricity_ratio ** 2)
kxy = (a * h0 * np.pi * ((np.pi ** 2) * (1 - self.eccentricity_ratio ** 2) ** 2 -
16 * self.eccentricity_ratio ** 4) /
(self.eccentricity_ratio * np.sqrt(1 - self.eccentricity_ratio ** 2)))
kyx = (-a * h0 * np.pi * ((np.pi ** 2) * (1 - self.eccentricity_ratio ** 2) *
(1 + 2 * self.eccentricity_ratio ** 2) +
(32 * self.eccentricity_ratio ** 2) * (1 + self.eccentricity_ratio ** 2)) /
(self.eccentricity_ratio * np.sqrt(1 - self.eccentricity_ratio ** 2)))
kyy = (a * h0 * 4 * ((np.pi ** 2) * (1 + 2 * self.eccentricity_ratio ** 2) +
((32 * self.eccentricity_ratio ** 2) *
(1 + self.eccentricity_ratio ** 2)) / (1 - self.eccentricity_ratio ** 2)))
# fmt: on
return [kxx, kxy, kyx, kyy]
def get_analytical_damping_matrix(self):
"""Returns the damping matrix calculated analytically.
Suitable only for short bearings.
Returns
-------
list of floats
A list of length four including stiffness floats in this order: cxx, cxy, cyx, cyy
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.get_analytical_damping_matrix() # doctest: +ELLIPSIS
[...
"""
if not self.bearing_type == "short_bearing":
warnings.warn(
"Function get_analytical_damping_matrix suitable only for short bearings. "
"The ratio between the bearing length and its radius should be less or "
"equal to 0.25. Currently we have "
+ str(self.length / self.radius_stator)
+ "."
)
# fmt: off
f = self.get_rotor_load()
h0 = 1.0 / (((np.pi ** 2) * (1 - self.eccentricity_ratio ** 2) + 16 * self.eccentricity_ratio ** 2) ** 1.5)
a = f / (self.radial_clearance * self.omega)
cxx = (a * h0 * 2 * np.pi * np.sqrt(1 - self.eccentricity_ratio ** 2) *
((np.pi ** 2) * (
1 + 2 * self.eccentricity_ratio ** 2) - 16 * self.eccentricity_ratio ** 2) / self.eccentricity_ratio)
cxy = (-a * h0 * 8 * (
(np.pi ** 2) * (1 + 2 * self.eccentricity_ratio ** 2) - 16 * self.eccentricity_ratio ** 2))
cyx = cxy
cyy = (a * h0 * (2 * np.pi * (
(np.pi ** 2) * (1 - self.eccentricity_ratio ** 2) ** 2 + 48 * self.eccentricity_ratio ** 2)) /
(self.eccentricity_ratio * np.sqrt(1 - self.eccentricity_ratio ** 2)))
# fmt: on
return [cxx, cxy, cyx, cyy]
def calculate_oil_film_force(self, force_type=None):
"""This function calculates the forces of the oil film in the N and T directions, ie in the
opposite direction to the eccentricity and in the tangential direction.
Parameters
----------
force_type: str
If set, calculates the pressure matrix analytically considering the chosen type: 'short' or 'long'.
Returns
-------
normal_force: float
Force of the oil film in the opposite direction to the eccentricity direction.
tangential_force: float
Force of the oil film in the tangential direction
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.calculate_oil_film_force() # doctest: +ELLIPSIS
(...
"""
if force_type != 'numerical' and (force_type == 'short' or self.bearing_type == 'short_bearing'):
normal_force = 0.5 * self.viscosity * (self.radius_rotor / self.difference_between_radius) ** 2 * \
(self.length ** 3 / self.radius_rotor) * ((2 * self.eccentricity_ratio ** 2 * self.omega) /
(1 - self.eccentricity_ratio ** 2) ** 2)
tangential_force = 0.5 * self.viscosity * (self.radius_rotor / self.difference_between_radius) ** 2 * \
(self.length ** 3 / self.radius_rotor) * (
(np.pi * self.eccentricity_ratio * self.omega) /
(2 * (1 - self.eccentricity_ratio ** 2) ** (3. / 2)))
elif force_type != 'numerical' and (force_type == 'long' or self.bearing_type == 'long_bearing'):
normal_force = 6 * self.viscosity * (self.radius_rotor / self.difference_between_radius) ** 2 * \
self.radius_rotor * self.length * ((2 * self.eccentricity_ratio ** 2 * self.omega) /
((2 + self.eccentricity_ratio ** 2) *
(1 - self.eccentricity_ratio ** 2)))
tangential_force = 6 * self.viscosity * (self.radius_rotor / self.difference_between_radius) ** 2 * \
self.radius_rotor * self.length * ((np.pi * self.eccentricity_ratio * self.omega) /
((2 + self.eccentricity_ratio ** 2) *
(1 - self.eccentricity_ratio ** 2) ** 0.5))
else:
p_mat = self.p_mat_numerical
a = np.zeros([self.nz, self.ntheta])
b = np.zeros([self.nz, self.ntheta])
g1 = np.zeros(self.nz)
g2 = np.zeros(self.nz)
theta_list = np.zeros(self.ntheta)
z_list = np.zeros(self.nz)
for i in range(self.nz):
z_list[i] = i * self.dz
for j in range(self.ntheta):
theta_list[j] = j * self.dtheta + (np.pi - self.beta)
gama = j * self.dtheta + (np.pi - self.beta)
a[i][j] = p_mat[i][j] * np.cos(gama)
b[i][j] = p_mat[i][j] * np.sin(gama)
for i in range(self.nz):
g1[i] = integrate.simps(a[i][:], theta_list)
g2[i] = integrate.simps(b[i][:], theta_list)
integral1 = integrate.simps(g1, z_list)
integral2 = integrate.simps(g2, z_list)
normal_force = - self.radius_rotor * integral1
tangential_force = self.radius_rotor * integral2
return normal_force, tangential_force
def plot_eccentricity(self, z=0):
"""This function assembles pressure graphic along the z-axis.
The first few plots are of a different color to indicate where theta begins.
Parameters
----------
z: int, optional
The distance in z where to cut and plot.
Returns
-------
Figure
An object containing the plot.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> fig = my_fluid_flow.plot_eccentricity(z=int(my_fluid_flow.nz/2))
>>> # to show the plots you can use:
>>> # show(fig)
"""
p = figure(
title="Cut in plane Z=" + str(z),
x_axis_label="X axis",
y_axis_label="Y axis",
)
for j in range(0, self.ntheta):
p.circle(self.xre[z][j], self.yre[z][j], color="red")
p.circle(self.xri[z][j], self.yri[z][j], color="blue")
p.circle(0, 0, color="blue")
p.circle(self.xi, self.yi, color="red")
p.circle(0, 0, color="black")
return p
def plot_pressure_z(self, theta=0):
"""This function assembles pressure graphic along the z-axis for one or both the
numerically (blue) and analytically (red) calculated pressure matrices, depending on if
one or both were calculated.
Parameters
----------
theta: int, optional
The theta to be considered.
Returns
-------
Figure
An object containing the plot.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.calculate_pressure_matrix_numerical() # doctest: +ELLIPSIS
array([[...
>>> fig = my_fluid_flow.plot_pressure_z(theta=int(my_fluid_flow.ntheta/2))
>>> # to show the plots you can use:
>>> # show(fig)
"""
if (
not self.numerical_pressure_matrix_available
and not self.analytical_pressure_matrix_available
):
sys.exit(
"Must calculate the pressure matrix. "
"Try calling calculate_pressure_matrix_numerical() or calculate_pressure_matrix_analytical() first."
)
x = []
y_n = []
y_a = []
for i in range(0, self.nz):
x.append(i * self.dz)
y_n.append(self.p_mat_numerical[i][theta])
y_a.append(self.p_mat_analytical[i][theta])
p = figure(
title="Pressure along the Z direction (direction of flow); Theta="
+ str(theta),
x_axis_label="Points along Z",
)
if self.numerical_pressure_matrix_available:
p.line(x, y_n, legend="Numerical pressure", color="blue", line_width=2)
if self.analytical_pressure_matrix_available:
p.line(x, y_a, legend="Analytical pressure", color="red", line_width=2)
return p
def plot_shape(self, theta=0):
"""This function assembles a graphic representing the geometry of the rotor.
Parameters
----------
theta: int, optional
The theta to be considered.
Returns
-------
Figure
An object containing the plot.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> fig = my_fluid_flow.plot_shape(theta=int(my_fluid_flow.ntheta/2))
>>> # to show the plots you can use:
>>> # show(fig)
"""
x = np.zeros(self.nz)
y_re = np.zeros(self.nz)
y_ri = np.zeros(self.nz)
for i in range(0, self.nz):
x[i] = i * self.dz
y_re[i] = self.re[i][theta]
y_ri[i] = self.ri[i][theta]
p = figure(
title="Shapes of stator and rotor along Z; Theta=" + str(theta),
x_axis_label="Points along Z",
y_axis_label="Radial direction",
)
p.line(x, y_re, line_width=2, color="red")
p.line(x, y_ri, line_width=2, color="blue")
return p
def plot_pressure_theta(self, z=0):
"""This function assembles pressure graphic in the theta direction for a given z
for one or both the numerically (blue) and analytically (red) calculated pressure matrices,
depending on if one or both were calculated.
Parameters
----------
z: int, optional
The distance along z-axis to be considered.
Returns
-------
Figure
An object containing the plot.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.calculate_pressure_matrix_numerical() # doctest: +ELLIPSIS
array([[...
>>> fig = my_fluid_flow.plot_pressure_theta(z=int(my_fluid_flow.nz/2))
>>> # to show the plots you can use:
>>> # show(fig)
"""
if (
not self.numerical_pressure_matrix_available
and not self.analytical_pressure_matrix_available
):
sys.exit(
"Must calculate the pressure matrix. "
"Try calling calculate_pressure_matrix_numerical() or calculate_pressure_matrix_analytical() first."
)
theta_list = []
for theta in range(0, self.ntheta):
theta_list.append(theta * self.dtheta)
p = figure(
title="Pressure along Theta; Z=" + str(z),
x_axis_label="Points along Theta",
y_axis_label="Pressure",
)
if self.numerical_pressure_matrix_available:
p.line(
theta_list,
self.p_mat_numerical[z],
legend="Numerical pressure",
line_width=2,
color="blue",
)
elif self.analytical_pressure_matrix_available:
p.line(
theta_list,
self.p_mat_analytical[z],
legend="Analytical pressure",
line_width=2,
color="red",
)
return p
def matplot_eccentricity(self, z=0, ax=None):
"""This function assembles pressure graphic along the z-axis using matplotlib.
The first few plots are of a different color to indicate where theta begins.
Parameters
----------
z: int, optional
The distance in z where to cut and plot.
ax : matplotlib axes, optional
Axes in which the plot will be drawn.
Returns
-------
ax : matplotlib axes
Returns the axes object with the plot.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> ax = my_fluid_flow.matplot_eccentricity(z=int(my_fluid_flow.nz/2))
>>> # to show the plots you can use:
>>> # plt.show()
"""
if ax is None:
ax = plt.gca()
for j in range(0, self.ntheta):
ax.plot(self.xre[z][j], self.yre[z][j], "r.")
ax.plot(self.xri[z][j], self.yri[z][j], "b.")
ax.plot(0, 0, "r*")
ax.plot(self.xi, self.yi, "b*")
ax.set_title("Cut in plane Z=" + str(z))
ax.set_xlabel("X axis")
ax.set_ylabel("Y axis")
plt.axis("equal")
return ax
def matplot_pressure_z(self, theta=0, ax=None):
"""This function assembles pressure graphic along the z-axis using matplotlib
for one or both the numerically (blue) and analytically (red) calculated pressure matrices,
depending on if one or both were calculated.
Parameters
----------
theta: int, optional
The distance in theta where to cut and plot.
ax : matplotlib axes, optional
Axes in which the plot will be drawn.
Returns
-------
ax : matplotlib axes
Returns the axes object with the plot.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.calculate_pressure_matrix_numerical() # doctest: +ELLIPSIS
array([[...
>>> ax = my_fluid_flow.matplot_pressure_z(theta=int(my_fluid_flow.ntheta/2))
>>> # to show the plots you can use:
>>> # plt.show()
"""
if (
not self.numerical_pressure_matrix_available
and not self.analytical_pressure_matrix_available
):
sys.exit(
"Must calculate the pressure matrix. "
"Try calling calculate_pressure_matrix_numerical() or calculate_pressure_matrix_analytical() first."
)
if ax is None:
ax = plt.gca()
x = np.zeros(self.nz)
y_n = np.zeros(self.nz)
y_a = np.zeros(self.nz)
for i in range(0, self.nz):
x[i] = i * self.dz
y_n[i] = self.p_mat_numerical[i][theta]
y_a[i] = self.p_mat_analytical[i][theta]
if self.numerical_pressure_matrix_available:
ax.plot(x, y_n, "b", label="Numerical pressure")
if self.analytical_pressure_matrix_available:
ax.plot(x, y_a, "r", label="Analytical pressure")
ax.set_title(
"Pressure along the Z direction (direction of flow); Theta=" + str(theta)
)
ax.set_xlabel("Points along Z")
ax.set_ylabel("Pressure")
return ax
def matplot_shape(self, theta=0, ax=None):
"""This function assembles a graphic representing the geometry of the rotor using matplotlib.
Parameters
----------
theta: int, optional
The theta to be considered.
ax : matplotlib axes, optional
Axes in which the plot will be drawn.
Returns
-------
ax : matplotlib axes
Returns the axes object with the plot.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> ax = my_fluid_flow.matplot_shape(theta=int(my_fluid_flow.ntheta/2))
>>> # to show the plots you can use:
>>> # plt.show()
"""
if ax is None:
ax = plt.gca()
x = np.zeros(self.nz)
y_ext = np.zeros(self.nz)
y_int = np.zeros(self.nz)
for i in range(0, self.nz):
x[i] = i * self.dz
y_ext[i] = self.re[i][theta]
y_int[i] = self.ri[i][theta]
ax.plot(x, y_ext, "r")
ax.plot(x, y_int, "b")
ax.set_title("Shapes of stator and rotor along Z; Theta=" + str(theta))
ax.set_xlabel("Points along Z")
ax.set_ylabel("Radial direction")
return ax
def matplot_pressure_theta_cylindrical(self, z=0, from_numerical=True, ax=None):
"""This function assembles cylindrical pressure graphic in the theta direction for a given z,
using matplotlib.
Parameters
----------
z: int, optional
The distance along z-axis to be considered.
from_numerical: bool, optional
If True, takes the numerically calculated pressure matrix as entry.
If False, takes the analytically calculated one instead.
If condition cannot be satisfied (matrix not calculated), it will take the one that is available
and raise a warning.
ax : matplotlib axes, optional
Axes in which the plot will be drawn.
Returns
-------
ax : matplotlib axes
Returns the axes object with the plot.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.calculate_pressure_matrix_numerical() # doctest: +ELLIPSIS
array([[...
>>> ax = my_fluid_flow.matplot_pressure_theta_cylindrical(z=int(my_fluid_flow.nz/2))
>>> # to show the plots you can use:
>>> # plt.show()
"""
if (
not self.numerical_pressure_matrix_available
and not self.analytical_pressure_matrix_available
):
sys.exit(
"Must calculate the pressure matrix. "
"Try calling calculate_pressure_matrix_numerical() or calculate_pressure_matrix_analytical() first."
)
if from_numerical:
if self.numerical_pressure_matrix_available:
p_mat = self.p_mat_numerical
else:
p_mat = self.p_mat_analytical
warnings.warn(
"Plotting from analytically calculated pressure matrix, as numerically calculated "
"one is not available."
)
else:
if self.analytical_pressure_matrix_available:
p_mat = self.p_mat_analytical
else:
p_mat = self.p_mat_numerical
warnings.warn(
"Plotting from numerically calculated pressure matrix, as analytically calculated "
"one is not available."
)
if ax is None:
fig, ax = plt.subplots(subplot_kw=dict(projection="polar"))
r = np.arange(
0,
self.radius_stator + 0.0001,
(self.radius_stator - self.radius_rotor) / self.nradius,
)
theta = np.arange(-np.pi * 0.25, 1.75 * np.pi + self.dtheta / 2, self.dtheta)
pressure_along_theta = np.zeros(self.ntheta)
for i in range(0, self.ntheta):
pressure_along_theta[i] = p_mat[0][i]
min_pressure = np.amin(pressure_along_theta)
r_matrix, theta_matrix = np.meshgrid(r, theta)
z_matrix = np.zeros((theta.size, r.size))
inner_radius_list = np.zeros(self.ntheta)
pressure_list = np.zeros((theta.size, r.size))
for i in range(0, theta.size):
inner_radius = np.sqrt(
self.xri[z][i] * self.xri[z][i] + self.yri[z][i] * self.yri[z][i]
)
inner_radius_list[i] = inner_radius
for j in range(0, r.size):
if r_matrix[i][j] < inner_radius:
continue
pressure_list[i][j] = pressure_along_theta[i]
z_matrix[i][j] = pressure_along_theta[i] - min_pressure + 0.01
ax.contourf(theta_matrix, r_matrix, z_matrix, cmap="coolwarm")
ax.set_title("Pressure along Theta; Z=" + str(z))
return ax
def matplot_pressure_theta(self, z=0, ax=None):
"""This function assembles pressure graphic in the theta direction for a given z,
using matplotlib.
Parameters
----------
z: int, optional
The distance along z-axis to be considered.
ax : matplotlib axes, optional
Axes in which the plot will be drawn.
Returns
-------
ax : matplotlib axes
Returns the axes object with the plot.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.calculate_pressure_matrix_numerical() # doctest: +ELLIPSIS
array([[...
>>> ax = my_fluid_flow.matplot_pressure_theta(z=int(my_fluid_flow.nz/2))
>>> # to show the plots you can use:
>>> # plt.show()
"""
if (
not self.numerical_pressure_matrix_available
and not self.analytical_pressure_matrix_available
):
sys.exit(
"Must calculate the pressure matrix. "
"Try calling calculate_pressure_matrix_numerical() or calculate_pressure_matrix_analytical() first."
)
if ax is None:
ax = plt.gca()
list_of_thetas = []
for t in range(0, self.ntheta):
list_of_thetas.append(t * self.dtheta)
if self.numerical_pressure_matrix_available:
ax.plot(
list_of_thetas, self.p_mat_numerical[z], "b", label="Numerical pressure"
)
if self.analytical_pressure_matrix_available:
ax.plot(
list_of_thetas,
self.p_mat_analytical[z],
"r",
label="Analytical pressure",
)
ax.set_title("Pressure along Theta; Z=" + str(z))
ax.set_xlabel("Points along Theta")
ax.set_ylabel("Pressure")
return ax
def pressure_matrix_example():
"""This function returns an instance of a simple pressure matrix.
The purpose is to make available a simple model
so that doctest can be written using it.
Parameters
----------
Returns
-------
An instance of a pressure matrix object.
Examples
--------
>>> my_fluid_flow = pressure_matrix_example()
>>> my_fluid_flow.eccentricity
0.001
"""
my_pressure_matrix = PressureMatrix(nz=8, ntheta=64, nradius=11, length=0.01, omega=100. * 2 * np.pi / 60,
p_in=0., p_out=0., radius_rotor=0.08, radius_stator=0.1,
viscosity=0.015, density=860., eccentricity=0.001, beta=np.pi)
return my_pressure_matrix
|
import ctypes
class Array :
"""Implements the Array ADT using array capabilities of the ctypes module."""
def __init__( self, size ):
"""Creates an array with size elements."""
assert size > 0, "Array size must be > 0"
self._size = size
# Create the array structure using the ctypes module.
PyArrayType = ctypes.py_object * size
self._elements = PyArrayType()
# Initialize each element.
self.clear( None )
def __len__( self ):
"""Returns the size of the array."""
return self._size
def __getitem__( self, index ):
"""Gets the contents of the index element."""
assert index >= 0 and index < len(self), "Array subscript out of range"
return self._elements[ index ]
def __setitem__( self, index, value ):
"""Puts the value in the array element at index position."""
assert index >= 0 and index < len(self), "Array subscript out of range"
self._elements[ index ] = value
def clear( self, value ):
"""Clears the array by setting each element to the given value."""
for i in range(len(self)):
self._elements[i] = value
def __iter__( self ):
"""Returns the array's iterator for traversing the elements."""
return _ArrayIterator( self._elements )
class Array2D :
"""Implementation of the Array2D ADT using an array of arrays."""
def __init__( self, numRows, numCols ):
"""Creates a 2-D array of size numRows x numCols."""
# Create a 1-D array to store an array reference for each row.
self._theRows = Array( numRows )
# Create the 1-D arrays for each row of the 2-D array.
for i in range( numRows ) :
self._theRows[i] = Array( numCols )
def numRows( self ):
"""Returns the number of rows in the 2-D array."""
return len( self._theRows )
def numCols( self ):
"""Returns the number of columns in the 2-D array."""
return len( self._theRows[0] )
def clear( self, value ):
"""Clears the array by setting every element to the given value."""
for row in range( self.numRows() ):
self._theRows[row].clear( value )
def __getitem__( self, ndxTuple ):
"""Gets the contents of the element at position [i, j]"""
assert len(ndxTuple) == 2, "Invalid number of array subscripts."
row = ndxTuple[0]
col = ndxTuple[1]
assert row >= 0 and row < self.numRows() and col >= 0 and col < self.numCols(), \
"Array subscript out of range."
the1dArray = self._theRows[row]
return the1dArray[col]
def __setitem__( self, ndxTuple, value ):
"""Sets the contents of the element at position [i,j] to value."""
assert len(ndxTuple) == 2, "Invalid number of array subscripts."
row = ndxTuple[0]
col = ndxTuple[1]
assert row >= 0 and row < self.numRows() and col >= 0 and col < self.numCols(), \
"Array subscript out of range."
the1dArray = self._theRows[row]
the1dArray[col] = value
class Matrix:
"""A matrix is a collection of scalar values arranged in rows and columns as a
rectangular grid of a fixed size. The elements of the matrix can be accessed by specifying
a given row and column index with indices starting at 0.
"""
def __init__(self, rows, cols):
"""Creates a new matrix containing rows and columns with each element initialized to 0"""
self._theGrid = Array2D(rows, cols)
self._theGrid.clear(0)
def numRows(self):
"""Returns the number of rows in the matrix"""
return self._theGrid.numRows()
def numCols(self):
"""Returns the number of columns in the matrix"""
return self._theGrid.numCols()
def __getitem__(self, i):
"""Returns the value stored in the given matrix element. Both row and col must be within the
valid range."""
return self._theGrid[i[0], i[1]]
def __setitem__(self, i, scalar):
"""Sets the matrix element at the given row and col to scalar. The element indices must be
within the valid range."""
self._theGrid[i[0], i[1]] = scalar
def scale_by(self, scalar):
"""Multiplies each element of the matrix by the given scalar value. The matrix is modified
by this operation"""
for r in range(self.numRows()):
for c in range(self.numCols()):
self[r,c] *= scalar
def transpose(self):
"""Returns a new matrix that is the transpose of this matrix"""
new_matrix = Matrix(self.numCols(), self.numRows())
for col in range(self.numCols()):
for row in range(self.numRows()):
new_matrix[col, row] = self._theGrid[row, col]
return new_matrix
def __add__(self, rhsMatrix):
"""Creates and returns a new matrix that is the result of adding this matrix to the given rhsMatrix.
The size of the two matrices must be the same"""
assert rhsMatrix.numRows() == self.numRows() and \
rhsMatrix.numCols == self.numRows(), \
"Matrix sizes are not compatible for the add operation."
# Create the new matrix
newMatrix = Matrix(self.numRows(), self.numCols())
# Add the corresponding elements in the two matrices
for r in range(self.numRows()):
for c in range(self.numCols()):
newMatrix[r,c] = self[r,c] + rhsMatrix[r,c]
return newMatrix
def __sub__(self, rhsMatrix):
"""The same as add() operation but subtracts the two matrices."""
def __mul__(self, rhsMatrix):
"""Creates and returns a new matrix that is the result of mulitplying this matrix to the given
rhsMatrix. The two matrices must be of appropriate sizes as defined for matrix multiplication.
"""
class _ArrayIterator :
"""An iterator for the Array ADT."""
def __init__( self, theArray ):
self._arrayRef = theArray
self._curNdx = 0
def __iter__( self ):
return self
def __next__( self ):
if self._curNdx < len( self._arrayRef ) :
entry = self._arrayRef[ self._curNdx ]
self._curNdx += 1
return entry
else :
raise StopIteration
|
max = 0
num = 0
for i in range(1, 10):
a = int(input())
if a > max:
max = a
num = i
print('%d\n%d' %(max, num)) |
T=int(input())
for _ in range(T):
stack=0
ps=input()
flag=True#for x in ps를 하면 stack이 음수되면 False
for x in ps:
if x =='(':stack+=1
elif x ==')':stack-=1
if stack<0:flag=False
if flag and stack==0:print('YES')
else:print('NO')
'''
1
(()())((()))
''' |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 24 09:33:52 2019
@author: owner
"""
'''
def name(a):
print(a)
name("yasmin")
def my_function(x):
for x in x:
print(x)
fruits = ["apple", "banana", "cherry"]
my_function(fruits)
def y(*num):
sum=0
for n in num:
sum=sum+n
print("sum=", sum)
y(1,5,8)
y(1,8,9,6)
def u(*s,a):
print(a)
for t in s:
print(t)
u(1,5,8,a=9)
def t(a,s,d):
print(a)
print(s)
print(d)
l=[2,8]
t(1,*l)
def u(**k):
for key,value in k.items():
print(key,"==",value)
u(e=1,r=6,t=9)
x = "awesome"
def myfunc():
print("Python is " + x)
myfunc()
print("Python is " + x)
def factorial(n):
if n == 1:
return 1
else:
return n * factorial(n-1)
print(factorial(2956))
usm=lambda x,c,v: x+c-v
print(usm(5,2,3))
print ((lambda x, y, z=3: x + y + z)(1, 2,2))
MyList = [0,1,2,3,4,10,13,22,25,100,120]
print("squared List:", map(lambda x: x**2, MyList[0]))
MyList = [0,1,2,3,4,10,13,22,25,100,120]
odd_numbers = list(filter(lambda x: x % 2, MyList))
print(odd_numbers)
even_numbers = list(filter(lambda x: not(x % 2), MyList))
print(even_numbers)
scores = [66, 90, 68, 59, 76, 60, 88, 74, 81, 65]
x= list((lambda y:y>75),scores)
print(y)
my_strings = ['a', 'b', 'c', 'd', 'e']
my_numbers = [1,2,3,4,5,8]
l = [1,2,3,"y","e","w"]
results = list(zip(my_strings, my_numbers,l))
print(results)
'''
from functools import reduce
x= reduce(lambda a,b: a+b,[23,21,45,98])
print(x)
|
secret = "1"
guess = input("Guess the secret number...")
match = secret == guess
if match:
print ("Congratulations, you guessed the right number!")
else:
print("I'm sorry. This was not the correct number :(") |
# I hate trying to figure out 2D space in my brain.
import os
# Easy function to parse direction and distance and return a point
def drawWire(Wire):
Points = list()
X = 0
Y = 0
for line in Wire:
direction = line[0:1]
distance = int(line[1:len(line)])
if (direction == "U"):
Y += distance
elif (direction == "D"):
Y -= distance
elif (direction == "R"):
X += distance
else:
assert(direction == "L")
X -= distance
Points.append( (X,Y,distance) )
return Points
# This is a simple algorithm to determine instersections
# This assumes the line is either horizontal or vertical
# If Line A has constant X and B has constant Y, If the X coord of A is between the two X coords of B AND
# The Y coord of B is between to the two Y coords of A then they instersect at (A[x],B[y]). Otherwise they do not touch
def findIntersection(A1,A2,B1,B2):
# A has constant X, B has constant Y
if (A1[0] == A2[0] and B1[1] == B2[1]):
if ((A1[0] > min(B1[0],B2[0]) and A1[0] < max(B1[0],B2[0])) and
(B1[1] > min(A1[1],A2[1]) and B1[1] < max(A1[1],A2[1])) ):
return (A1[0],B1[1])
#A has constant Y, B has constant X
elif (A1[1] == A2[1] and B1[0] == B2[0]):
if ((B1[0] > min(A1[0],A2[0]) and B1[0] < max(A1[0],A2[0])) and
(A1[1] > min(B1[1],B2[1]) and A1[1] < max(B1[1],B2[1])) ):
return (B1[0],A1[1])
#parallel
else:
return False
# Not parallel but not intersecting
return False
f = open("{}\\Input.txt".format(os.path.dirname(os.path.realpath(__file__))),"r")
Wire1 = f.readline().split(",")
Wire2 = f.readline().split(",")
# Get the points of my wire
Wire1Points = drawWire(Wire1)
Wire2Points = drawWire(Wire2)
manhattenDistancesFromCenter = list()
wireDistancesFromCenter = list()
# Go through each pair of points in order they were drawn.
# Save all the manhatten distances from (0,0)
for i in range(len(Wire1Points)-1):
for j in range(len(Wire2Points)-1):
doIntersect = findIntersection(Wire1Points[i],Wire1Points[i+1],Wire2Points[j],Wire2Points[j+1])
if (doIntersect):
manhattenDistancesFromCenter.append(sum(doIntersect))
# The WireXPoints keep track of distance from last point in the [2] index. Sum all those indexes up to this point and add the distance to the instersect point
wire1distance = sum(x[2] for x in Wire1Points[0:i+1]) + max(abs(doIntersect[0]-Wire1Points[i][0]),abs(doIntersect[1]-Wire1Points[i][1]))
wire2distance = sum(x[2] for x in Wire2Points[0:j+1]) + max(abs(doIntersect[0]-Wire2Points[j][0]),abs(doIntersect[1]-Wire2Points[j][1]))
wireDistancesFromCenter.append(wire1distance+wire2distance)
# Print the smallest distance
print("Part1:{}".format(min(manhattenDistancesFromCenter)))
print("Part2:{}".format(min(wireDistancesFromCenter))) |
import os
from anytree import Node
from anytree.search import findall
def getOrbits(node):
if (node.parent != None):
return 1 + getOrbits(node.parent)
else:
return 0
def findCommonParent(a,b):
commonParent = a
while True:
res = findall(commonParent, filter_=lambda node: node.name == b.name)
if (commonParent.parent == None):
return None
elif (res):
return commonParent
commonParent = commonParent.parent
def getDistanceFromParent(node,parent):
distance = 1
currentNode = node.parent
while (currentNode != parent):
distance += 1
currentNode = currentNode.parent
return distance
f = open("{}{}Input.txt".format(os.path.dirname(os.path.realpath(__file__)),os.path.sep),"r")
Input = [line.rstrip() for line in f]
graph = dict()
for line in Input:
nodes = line.split(')')
for node in nodes:
if (node not in graph):
graph[node] = Node(node)
graph[nodes[1]].parent = graph[nodes[0]]
# Count how many parents each node has
numberOfOrbits = 0
for n in graph.values():
numberOfOrbits += getOrbits(n)
print ("Part 1: {}".format(numberOfOrbits))
# I could just use 'Walker' for the second part but I feel like writing my own
commonParent = findCommonParent(graph["YOU"],graph["SAN"])
distance = getDistanceFromParent(graph["YOU"],commonParent) + getDistanceFromParent(graph["SAN"],commonParent) - 2
print ("Part 2: {}".format(distance)) |
import sys
import math
import pandas as pd
from collections import Counter
from sklearn.tree import DecisionTreeClassifier
class DecisionNode:
# A DecisionNode contains an attribute and a dictionary of children.
# The attribute is either the attribute being split on, or the predicted label if the node has no children.
def __init__(self, attribute):
self.attribute = attribute
self.children = {}
# Visualizes the tree
def display(self, level = 0):
if self.children == {}: # reached leaf level
print(": ", self.attribute, end="")
else:
for value in self.children.keys():
prefix = "\n" + " " * level * 4
print(prefix, self.attribute, "=", value, end="")
self.children[value].display(level + 1)
# Predicts the target label for instance x
def predicts(self, x):
if self.children == {}: # reached leaf level
return self.attribute
value = x[self.attribute]
subtree = self.children[value]
return subtree.predicts(x)
# Illustration of functionality of DecisionNode class
def funTree():
myLeftTree = DecisionNode('humidity')
myLeftTree.children['normal'] = DecisionNode('no')
myLeftTree.children['high'] = DecisionNode('yes')
myTree = DecisionNode('wind')
myTree.children['weak'] = myLeftTree
myTree.children['strong'] = DecisionNode('no')
return myTree
def id3(examples, target, attributes):
#tree = funTree()
tree = decisionTree(examples, target, attributes)
return tree
# build the decision tree
def decisionTree(examples, target, attributes):
bestattribute, baseCase = bestAttribute(examples, target, attributes)
root= DecisionNode(bestattribute)
if baseCase:
return root
else:
attrWithOutBestAttr= attributes.copy()
attrWithOutBestAttr.remove(bestattribute)
for attrVal in examples[bestattribute].unique():
dataAttrVal= examples[examples[bestattribute] == attrVal]
root.children[attrVal]= decisionTree(dataAttrVal, target, attrWithOutBestAttr)
return root
# get the best attribute at each level
def bestAttribute(examples, target, attributes):
targetValues = examples[target].unique()
if len(attributes) == 0:
# if attributes is empty, return the single-node tree root with
# label = most common value of target attribute in examples.
return (examples[target].value_counts().idxmax(), True)
elif len(targetValues) > 1:
entropies = []
for i in attributes:
# get current attribute and target value
attribute = examples[[i, target]]
attributeValues = attribute[i].unique()
entropy = getEntropy(examples, target, i, attributeValues, targetValues)
entropies.append(entropy)
best_Attribute = attributes[entropies.index(max(entropies))]
return (best_Attribute, False)
else:
return (targetValues[0], True)
def getEntropy(examples, target, attribute, attributeValues, targetValues):
entropy = 0
df_attribute = examples[[attribute, target]]
for i in attributeValues:
df2 = df_attribute.loc[df_attribute[attribute] == i]
targetValues = df2[target].unique()
n = df2.shape[0]
temp_entropy = 0
counts = df2[str(target)].value_counts().to_dict()
for j in range(targetValues.size):
if type(targetValues[j]) == type('adf'):
fraction = (counts.get(str(targetValues[j])))/(df2.shape[0])
else:
fraction = (counts.get(int(targetValues[j])))/(df2.shape[0])
temp_entropy += (fraction) * math.log(fraction)
entropy += (n/examples.shape[0]) * temp_entropy
return entropy
#################### MAIN PROGRAM ######################
# Reading input data
#train = pd.read_csv(sys.argv[1])
#test = pd.read_csv(sys.argv[2])
#target = sys.argv[3]
train = pd.read_csv('playtennis_train.csv')
test = pd.read_csv('playtennis_test.csv')
target = 'playtennis'
attributes = train.columns.tolist()
attributes.remove(target)
# Learning and visualizing the tree
tree = id3(train,target,attributes)
tree.display()
# Evaluating the tree on the test data
correct = 0
for i in range(0,len(test)):
if str(tree.predicts(test.loc[i])) == str(test.loc[i,target]):
correct += 1
print("\nThe accuracy is: ", correct/len(test))
# Implementing the actual DecisionTreeClassifier from scikit-learn
dtc = DecisionTreeClassifier()
print(train.dtypes)
#mapping classes to labels
outlook_to_int = {'sunny':1, 'overcast':2, 'rainy':3}
train['outlook'] = train['outlook'].replace(outlook_to_int)
test['outlook'] = test['outlook'].replace(outlook_to_int)
temperature_to_int = {'hot':1, 'mild':2, 'cool':3}
train['temperature'] = train['temperature'].replace(temperature_to_int)
test['temperature'] = test['temperature'].replace(temperature_to_int)
humidity_to_int = {'high':1, 'normal':2}
train['humidity'] = train['humidity'].replace(humidity_to_int)
test['humidity'] = test['humidity'].replace(humidity_to_int)
wind_to_int = {'weak':1, 'strong':2}
train['wind'] = train['wind'].replace(wind_to_int)
test['wind'] = test['wind'].replace(wind_to_int)
train_target = train[['playtennis']]
print(train)
train = train.drop(['playtennis'], axis=1)
dtc.fit(train, train_target)
test_target = test['playtennis']
test = test.drop(['playtennis'], axis=1)
print("Score = {}".format(dtc.score(test, test_target))) |
import asyncio
def square_distance(n1=2, n2=4):
"""
distancia cuadrada entre dos números
"""
x_square = (n1.x - n2.x) ** 2
y_square = (n1.y - n2.y) ** 2
return x_square + y_square
def even_odd(n1=0):
"""
calcula par o impar de un número
devuelve True si es par y False si es impar
"""
try:
if n1 % 2 == 0:
return True
elif n1 == 0:
pass
else:
return False
except:
pass
async def percentaje(n=0, n_max=0, t=0, f=0, action=False):
"""
n = número actual del porcentaje n_max = número máximo del porcentage t = tiempo f = número que edita el porcentage
crea un porcentage y lo edita en el tiempo según la acción, True = creciendo, False = decreciendo
"""
if action == True:
for i in range(n, n_max, f):
n = i
await asyncio.sleep(t)
return n
elif action == False:
for i in range(n, 0, f):
n = i
await asyncio.sleep(t)
return n
def square_vectors(x, y, h, w):
"""
desde el punto arriba izquierda dando la x y de ese punto, genera el resto de esquinas usando el ancho w y el alto w
"""
# 1
a_x, a_y = x, y
# 2
b_x, b_y = x + w, y
# 3
c_x, c_y = x, y + h
# 4
d_x, d_y = x + w, y + h
a = [a_x, a_y]
b = [b_x, b_y]
c = [c_x, c_y]
d = [d_x, d_y]
vectors = [a, b, c, d]
return vectors
def rectagles_overlapping(parameter_list):
"""
docstring
"""
pass
|
from random import SystemRandom
sr = SystemRandom()
def generate_password(length, valid_chars = None):
if valid_chars == None:
valid_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
valid_chars += valid_chars.lower() + "0123456789"
password = ""
counter = 0
while counter < length:
rnum = sr.randint(0, 128)
char = chr(rnum)
if char in valid_chars:
password += chr(rnum)
counter += 1
return password
print("Automatically generated password by Python: ", generate_password(15)) |
from bulls_and_cows.combinatorics import all_colors
def inconsistent(p, guesses):
"""
The function checks, if a permutation p is consistent with the previous
colors. Each previous color permutation guess[0] compared with p has to
return the same amount of blacks and whites as the corresponding
evaluation
"""
for guess in guesses:
res = check(guess[0], p)
(rightly_positioned, permutated) = guess[1]
if res != [rightly_positioned, permutated]:
return True # inconsistent
return False # consistent
def answer_ok(a):
"""
Checking of an evaluation given by the human player makes
sense. 3 blacks and 1 white make no sense for example.
"""
(rightly_positioned, permutated) = a
if (rightly_positioned + permutated > number_of_positions) \
or (rightly_positioned + permutated < len(colours) - number_of_positions):
return False
if rightly_positioned == 3 and permutated == 1:
return False
return True
def get_evaluation():
"""
Asks the human player for an evaluation
"""
show_current_guess(new_guess[0])
rightly_positioned = int(input("Blacks: "))
permutated = int(input("Whites: "))
return rightly_positioned, permutated
def new_evaluation(current_colour_choices):
"""
This funtion gets an evaluation of the current guess, checks
the consistency of this evaluation, adds the guess together with
the evaluation to the list of guesses, shows the previous guesses
and creates a new guess
"""
rightly_positioned, permutated = get_evaluation()
if rightly_positioned == number_of_positions:
return current_colour_choices, (rightly_positioned, permutated)
if not answer_ok((rightly_positioned, permutated)):
print("Input Error: Sorry, the input makes no sense")
return current_colour_choices, (-1, permutated)
guesses.append((current_colour_choices, (rightly_positioned, permutated)))
view_guesses()
current_colour_choices = create_new_guess()
if not current_colour_choices:
return current_colour_choices, (-1, permutated)
return current_colour_choices, (rightly_positioned, permutated)
def check(p1, p2):
"""
Check() calculates the number of bulls (blacks) and cows (whites)
of two permutations
"""
blacks = 0
whites = 0
for i in range(len(p1)):
if p1[i] == p2[i]:
blacks += 1
else:
if p1[i] in p2:
whites += 1
return [blacks, whites]
def create_new_guess():
"""
A new guess is created, which is consistent to the
previous guesses
"""
next_choice = next(permutation_iterator)
while inconsistent(next_choice, guesses):
try:
next_choice = next(permutation_iterator)
except StopIteration:
print("Error: Your answers were inconsistent!")
return ()
return next_choice
def show_current_guess(new_guess):
"""
The current guess is printed to stdout
"""
print("New Guess: ", end=" ")
for c in new_guess:
print(c, end=" ")
print()
def view_guesses():
"""
The list of all guesses with the corresponding evaluations
is printed
"""
print("Previous Guesses:")
for guess in guesses:
guessed_colours = guess[0]
for c in guessed_colours:
print(c, end=" ")
for i in guess[1]:
print(" %i " % i, end=" ")
print()
if __name__ == "__main__":
colours = ["red", "green", "blue", "yellow", "orange", "pink"]
guesses = []
number_of_positions = 4
permutation_iterator = all_colors(colours, number_of_positions)
current_colour_choices = next(permutation_iterator)
new_guess = (current_colour_choices, (0, 0))
while (new_guess[1][0] == -1) or (new_guess[1][0] != number_of_positions):
new_guess = new_evaluation(new_guess[0]) |
'''
Calculate the runtime of the following recursive binary search function.
HINT:
The function contains a subtle runtime bug due to memory management.
This bug causes the runtime to not be O(log n).
'''
def binary_search(xs, x):
'''
Returns whether x is contained in xs.
>>> binary_search([0,1,3,4],1)
True
>>> binary_search([0,1,3,4],2)
False
'''
mid = len(xs)//2
if len(xs)==1:
return xs[0]==x
elif x<xs[mid]:
return binary_search(xs[:mid],x)
else:
return binary_search(xs[mid:],x)
|
#To make game of hangman
def HangManOyy(question,answer):
import random
from os import system
ra=answer.upper() if answer.upper()==answer else answer.lower()
take=""
turn=3#The tries
while(turn>=0):
fail=0
print('\nYour question is : ',question)
for char in ra:
if (char in take.upper()) or (char in take.lower()) or (char in take):
print("\t",char,end="")
else:
print("\t_",end=" ")
fail+=1
guess = input("\n\n\tEnter the code: ")
system('cls')
if(guess=="done" and fail==0):
return 3
take += guess
if(fail==0):
print("\n You completed",)
return 3
if guess in ra:
print("\nGood Going !!")
continue
print("\nThe chances are : ",turn-1)
if(turn-1==0):
print("You surrendered but !! Nice played")
print("Also the letters were :-------",ra,"--------")
break
turn-=1
print("Nice played you have found all the words ",) |
lst=[1, 2 ,3, 4, 3, 3, 2, 1]
new_lst=list()
_min=0
while(lst!=[]):
new_lst.append(len(lst))
_min=min(lst)
lst=[i for i in lst if i != min(lst)]
for i in range(len(lst)):
lst[i]= lst[i]-_min
print(new_lst) |
def to_fahrenheit (temperature):
fahrenheit = (temperature * (9 / 5)) + 32
return fahrenheit
def to_celsius (temperature):
celsius = (temperature - 32) * (5 / 9)
return celsius
def to_kelvin (temperature):
#print("tc")
#print(to_celsius(212))
kelvin = temperature + 273.15
return kelvin
f = to_fahrenheit(100)
c = to_celsius(32)
k = to_kelvin(-273.15)
m = to_fahrenheit(to_celsius(98.6))
print("fahrenheit: " + str(f))
print("celsius: " + str(c))
print("kelvin: " + str(k))
print("multiconvert: " + str(m))
|
#do slice to trip the space(method 1)
def trim(s):
item1 = 0
item2 = -1
while item1 < len(s):
if s[item1] == ' ':
item1 += 1
else:
break
while item2 > -len(s):
if s[item2] == ' ':
item2 -= 1
else:
break
return s[item1 : len(s) + item2 + 1]
if trim('hello ') != 'hello':
print('测试失败!')
elif trim(' hello') != 'hello':
print('测试失败!')
elif trim(' hello ') != 'hello':
print('测试失败!')
elif trim(' hello world ') != 'hello world':
print('测试失败!')
elif trim('') != '':
print('测试失败!')
elif trim(' ') != '':
print('测试失败!')
else:
print('测试成功!') |
#判断回数(121,1331,1221等)
'''
from functools import reduce
digits = {'0' : 0, '1' : 1, '2' : 2, '3' : 3, '4' : 4, '5' : 5, \
'6' : 6, '7' : 7, '8' : 8, '9' : 9}
def str2num(s):
return digits[s]
def fn(x, y):
return 10 * x + y
def is_palindrome(n):
if n < 10:
return True
else:
s = str(n)
L = list(map(str2num, s))
n1 = reduce(fn, L)
L.reverse()
n2 = reduce(fn, L)
return n1 == n2
'''
def is_palindrome(n):
return str(n)[:] == str(n)[::-1] #more simple way~~
#[start end step]
output = filter(is_palindrome, range(1, 1000))
print('1~1000:', list(output))
if list(filter(is_palindrome, range(1, 200))) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191]:
print('测试成功!')
else:
print('测试失败!') |
from functools import reduce
digits = {'0' : 0, '1' : 1, '2' : 2, '3' : 3, '4' : 4, '5' : 5, \
'6' : 6, '7' : 7, '8' : 8, '9' : 9}
def str2int(s):
def chr2num(s):
return digits[s]
return reduce(lambda x, y: 10 * x + y, map(chr2num, s))
S = input("Input your string:")
print(str2int(S))
print(type(str2int(S))) |
# -*- coding: utf-8 -*-
"""
Created on Sun Dec 13 00:46:30 2020
@author: nnath
"""
#DATA VISUALIZATION FOR DATAT SCIENCE
'''
Popular plotting libaries
MATPLOTLIB : to create 2D graphs ; uses numpy internally
PANDAS VISUALISATION : built on Matplotlib
SEABORN : High level interface for attractive and informative statistical graphs
GGPLOT : based on R; Grammer Of Graphics
PLOTLY : Create interactive plots
'''
import pandas as pd
import os
import numpy as np
import matplotlib.pyplot as plt
os.chdir(r'D:\GITHUB\PANDAS\Pandas')
os.listdir()
df_cars = pd.read_csv('CARS.csv',sep=",")
df_cars.isnull().sum()
df_cars.dropna(axis=0,inplace=True)
df_cars.info()
#SCATTER PLOT : or Correlation Plot - used to convery relation between 2 numerical variables
plt.scatter(df_cars['EngineSize'],df_cars['Weight'],c='red')
plt.title('Scatter plot for EngineSize vs Weight')
plt.xlabel('EngineSize')
plt.ylabel('Weight')
plt.show()
#Histogram : used to represent frequency distribution of numerical variables
#height represent the frequency of each range or bin
plt.hist(df_cars['Weight'].head(100))
plt.hist(df_cars['Length'],color='green',edgecolor='white',bins=5)
plt.title('Histogram plot for length of cars')
plt.xlabel('m')
plt.ylabel('Length')
#----------------------------------
'''
# Generate data on commute times.
'''
#1
size, scale = 1000, 10
commutes = np.random.gamma(scale, size=size) ** 1.5
plt.hist(commutes)
#2
size, scale = 1000, 10
commutes = pd.Series(np.random.gamma(scale, size=size) ** 1.5)
commutes.plot.hist(grid=True, bins=20, rwidth=0.9,
color='#607c8e')
plt.title('Commute Times for 1,000 Commuters')
plt.xlabel('Counts')
plt.ylabel('Commute Time')
plt.grid(axis='y', alpha=0.75)
#-----------------------------------------
#BAR PLOT : distribution of categorial variables
df = pd.crosstab(index=df_cars['Make'],columns='count',dropna=True)#returns only count column need 'Make' column
df_cars['count']=1
df_cars.groupby(['Make']).count()['count']
df_cars.drop(columns = ['count'], inplace = True)
#df of car name and its count to represent in bar graph
counts = df_cars['Make'].value_counts()#series returned
car_brands = pd.unique(df_cars['Make'])#array returned
index = np.arange(len(car_brands))
plt.bar(index , counts , color = 'red')
plt.bar(index , counts , color = ['red','blue'])
plt.bar(index , counts , color = ['red','blue','yellow','green'])
plt.title('Bar plot for cars')
plt.xlabel('Car brand')
plt.ylabel('Frequency')
plt.xticks(index,car_brands)
'''
dd_sorted = (df_cars['Make'].head(50)).sort_values(ascending=True)
counts = dd_sorted.value_counts().sort_index(ascending=True)#series returned; sort by index
'''
#counts = df_cars['Make'].head(50).value_counts()
#counts is in descending order and car_brand in random order
#in plt.bar() we give array to match with the corresponding count and car_brand
counts = df_cars['Make'].head(50).value_counts().sort_index(ascending=True)
car_brands = pd.unique(df_cars['Make'].head(50))#array returned
counts.sort_values()
index = np.arange(len(car_brands))
#plt.bar(index , counts , color = 'red')
#plt.bar(index , counts , color = ['red','blue'])
plt.bar(index , counts , color = ['red','blue','yellow','green'])
plt.title('Bar plot for cars')
plt.xlabel('Car brand')
plt.ylabel('Frequency')
plt.xticks(index,car_brands)#,rotation=70)
|
import math
# Returns the lcm of first n numbers
def lcm(n):
ans = 1
for i in range(1, n + 1):
ans = int((ans * i)/math.gcd(ans, i))
return ans
# main
n = 20
print (lcm(n))
|
import json
def are_equal_lists(list1, list2):
"""Check if two lists contain same items regardless of their orders."""
return len(list1) == len(list2) and all(list1.count(i) == list2.count(i) for i in list1)
def load_json_data(json_file_path):
with open(json_file_path, 'r') as json_file:
return json.load(json_file)
|
from tkinter import *
cal= Tk()
cal.title("Calculator")
expression = ""
cal.iconbitmap('E:\calculator.ico')
cal.config(bg="gray25")
def add(value):
global expression
expression += value
label_display.config(text=expression)
def clear():
global expression
expression = ""
label_display.config(text=expression)
def calculate():
global expression
result = ""
if expression != "":
try:
result = eval(expression)
except:
result = "error"
expression = ""
label_display.config(text=result)
label_display = Label(cal,width=13,borderwidth=5,text="",font=('ds-digital',15,'bold'),bg="gray25",fg="khaki1")
label_display.grid(row=0, column=0, columnspan=4)
button_1 = Button(cal,width=3, text="1", font=('ds-digital',15,'bold'),bg="gray75", command=lambda: add("1"))
button_1.grid(row=1, column=0)
button_2 = Button(cal,width=3, text="2", font=('ds-digital',15,'bold'),bg="gray75",command=lambda: add("2"))
button_2.grid(row=1, column=1)
button_3 = Button(cal,width=3, text="3", font=('ds-digital',15,'bold'),bg="gray75",command=lambda: add("3"))
button_3.grid(row=1, column=2)
button_divide = Button(cal,width=3, text="/",font=('ds-digital',15,'bold'),bg="orange2",fg="white",command=lambda: add("/"))
button_divide.grid(row=1, column=3)
button_4 = Button(cal,width=3, text="4",font=('ds-digital',15,'bold'),bg="gray75", command=lambda: add("4"))
button_4.grid(row=2, column=0)
button_5 = Button(cal,width=3, text="5",font=('ds-digital',15,'bold'),bg="gray75",command=lambda: add("5"))
button_5.grid(row=2, column=1)
button_6 = Button(cal,width=3, text="6",font=('ds-digital',15,'bold'),bg="gray75",command=lambda: add("6"))
button_6.grid(row=2, column=2)
button_multiply = Button(cal,width=3,text="*",font=('ds-digital',15,'bold'),bg="orange2",fg="white", command=lambda: add("*"))
button_multiply.grid(row=2, column=3)
button_7 = Button(cal,width=3, text="7", font=('ds-digital',15,'bold'),bg="gray75",command=lambda: add("7"))
button_7.grid(row=3, column=0)
button_8 = Button(cal,width=3,text="8", font=('ds-digital',15,'bold'),bg="gray75", command=lambda: add("8"))
button_8.grid(row=3, column=1)
button_9 = Button(cal,width=3, text="9", font=('ds-digital',15,'bold'),bg="gray75",command=lambda: add("9"))
button_9.grid(row=3, column=2)
button_subtract = Button(cal,width=3, text="-",font=('ds-digital',15,'bold'),bg="orange2",fg="white",command=lambda: add("-"))
button_subtract.grid(row=3, column=3)
button_clear = Button(cal,width=3, text="C",font=('ds-digital',15,'bold'),bg="orange2",fg="white",command=lambda: clear())
button_clear.grid(row=4, column=0)
button_0 = Button(cal,width=3, text="0", font=('ds-digital',15,'bold'),bg="gray75",command=lambda: add("0"))
button_0.grid(row=4, column=1)
button_dot = Button(cal,width=3, text=".", font=('ds-digital',15,'bold'),bg="gray75",command=lambda: add("."))
button_dot.grid(row=4, column=2)
button_add = Button(cal,width=3, text="+",font=('ds-digital',15,'bold'),bg="orange2",fg="white", command=lambda: add("+"))
button_add.grid(row=4, column=3)
button_equals = Button(cal, text="=", width=22, command=lambda: calculate())
button_equals.grid(row=5, column=0, columnspan=4)
mainloop() |
# -*- coding:utf-8 -*-
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution:
# 返回ListNode
def ReverseList(self, pHead):
# write code here
Node = pHead
ppre = None
pnext = None # 设置了三个指针
re = None
while (Node!= None):
if Node.next == None:
re = Node
pnext = Node.next #四步实现将Node的下一个指向前一个元素
Node.next = ppre
ppre = Node
Node = pnext
return re
|
class Solution:
# array 二维列表
def Find(self, target, array):
# write code here
row_N = len(array)
col = len(array[0]) - 1
if (row_N > 0 and col > 0): # 至少要有一行和一列,才能进行循环
row = 0
while (row < row_N and col >= 0): # 遍历完所有行和列的时候终止循环
if array[row][col] > target:
col -= 1
elif array[row][col] < target:
row += 1
else:
return True
return False
else:
return False
|
# -*- coding:utf-8 -*-
class Solution:
min_stack = []
data = []
def push(self, node):
# write code here
self.data.append(node)
if len(self.min_stack)==0 or node < self.min_stack[-1]: #倒数第一个元素
self.min_stack.append(node)
else:
self.min_stack.append(self.min_stack[-1])
def pop(self):
# write code here
if len(self.data) > 0:
self.data.pop()
self.min_stack.pop()
def top(self):
# write code here
return self.data[-1]
def min(self):
# write code here
return self.min_stack[-1]
|
# -*- coding:utf-8 -*-
class Solution:
def reOrderArray(self, array):
# write code here
odd = []
even = []
for num in array:
if num&(2-1) == 1: #用位与计算代替求余,判断奇
odd.append(num)
if num&(2-1) == 0: #用位与计算代替求余,判断偶
even.append(num)
return odd+even
|
# -*- coding:utf-8 -*-
class Solution:
def rectCover(self, number):
# write code here
r1 = 1
r2 = 2
if number < 3:
return number
else:
for i in range(3,number+1):
fn = r1+r2 # 横着放时,必须同时横放两个才不会出现覆盖
r1,r2 = r2,fn
return fn
|
# 13. Escreva um programa que substitua ‘,’ por ‘.’ e ‘.’ por ‘,’ em uma string. Exemplo: 1,000.54
# por 1.000,54.
myname = input('Qual é o seu nome? ====>>>: ')
print()
numantigo = input(myname + ', digite um número com vírgulas para as partes inteiras e ponto para as partes decimais: ')
print()
numnovo = numantigo.translate({ord(','): '.', ord('.'): ','})
print('Bem, '+ myname +', o valor que você digitou foi transformado para: ' + numnovo)
print()
print(myname +', obrigado por você ter particiado dessa experiência.') |
a=int(input("Digite o Primeiro Número")) #Converte em inteiro, aplicado aos demais tipos da linguagem
b=int(input("Digite o Segundo Número"))
for x in range(a,b):
if (x%4)==0:
print(x) |
#!/usr/bin/python
m_palidromes = []
def isPalindrome(m_num, m_palidromes):
if ( str(m_num) == str(m_num)[::-1] ):
m_palidromes.append(m_num)
return m_palidromes
for m_left in xrange(999, 100, -1):
for m_right in xrange(999, 100, -1):
m_palidromes = isPalindrome(m_left * m_right, m_palidromes)
m_palidromes.sort()
print m_palidromes[-1] |
class Token():
def __init__(self,Tipo,caracter): #Constructor de la clase animal
self.Tipo=Tipo #usamos la notacion __ por que lo estamos encapsulando, ninguna subclase puede acceder a el, es un atributo privado
self.caracter=caracter
def setTipo(self,Tipo):
self.__Tipo=Tipo
def getTipo(self):
return self.__Tipo
def setcaracter(self,caracter):
self.__caracter=caracter
def getcaracter(self):
return self.caracter
def miestado(self):
print("Tipo: ",self.__Tipo,"--------->"+"Token: ",self.__caracter)
|
#!/usr/bin/env python
import sys,os,argparse
def main():
it = get_args()
try:
file = open(it.thefile,'r')
except:
print "cant open file: ",it.thefile,"."
print "we will replace ",it.searcher," with ",it.replacer, \
" in the file ",it.thefile," and output that to the screen"
for lines in file:
print lines.replace(it.searcher,it.replacer).rstrip()
file.close()
sys.exit(0)
def get_args():
parser = argparse.ArgumentParser(description="This will read in a file and replace a word with another")
parser.add_argument("-f","--file",dest="thefile",
default="/Users/peltzaj/Desktop/mouse.txt",
help="Absolute File Path to file to be manipulated")
parser.add_argument("-s","--search",dest="searcher",default="the",
help="the word to be replaced")
parser.add_argument("-r","--replace",dest="replacer",default="teh",
help="the word to replace the searched word with")
args = parser.parse_args()
return args
if __name__ == "__main__":
main()
|
# -*- coding: UTF-8 -*-
import time
from copy import deepcopy
board_size = 0
def read_data(filename):
"""根据文件名读取board
:param filename:
:return:
"""
board = []
# 限制分为大于,小于两部分存,为了后面检查限制的时候更方便
comparison_constraint = []
with open(filename) as f:
global board_size
board_size = int(f.readline())
for i in range(board_size):
line = f.readline()
row = [int(num) for num in line.split(' ')]
board.append(row)
# 读取比较限制
lines = f.readlines()
for line in lines:
constraint = [int(num) for num in line.split(' ')]
comparison_constraint.append(constraint)
# print(comparison_constraint)
return board, comparison_constraint
def initial(board):
"""根据读出的board信息,初始化值域和赋值情况
:param board: 二维列表
:return: 初始化值域和赋值情况
"""
domain = []
assigned = []
for i in range(board_size):
row = []
for j in range(board_size):
if board[i][j] != 0:
row.append(True)
else:
row.append(False)
assigned.append(row)
# 初始化值域
for row in board:
domain_each_row = []
for grid in row:
# 未赋值
if grid == 0:
grid_domain = [v for v in range(1, board_size + 1)]
domain_each_row.append(grid_domain)
else:
domain_each_row.append([grid])
domain.append(domain_each_row)
return (domain, assigned)
def print_board(board):
for row in board:
for i in row:
print(i, end=' ')
print('')
def MRV(domain, assigned):
"""寻找值域最小的格子,返回其坐标,若都已赋值则返回 [-1,-1]
:param domain: 所有格子的值域
:param assigned: 所有格子的赋值情况
:return: 返回值域最小的格子的坐标,若都已赋值则返回 [-1,-1]
"""
least_domain_len = 99999
x = -1
y = -1
for r in range(board_size):
for c in range(board_size):
domain_len = len(domain[r][c])
if not assigned[r][c] and domain_len < least_domain_len:
x = r
y = c
least_domain_len = domain_len
return (x, y)
def compare_check(domain, comparison, x, y, cur_value):
"""对比较限制的检查
:param domain: 格子值域,每个格子一个列表,board由一个二维列表构成,故为三维列表
:param comparison: 比较限制列表,二维列表,每一行表示一个大小限制
:param x: 当前坐标
:param y: 当前坐标
:param cur_value: 当前取值
:return: 限制可满足则返回True,否则False
"""
n = 0
satisfied = 0
# 遍历限制,有多少限制就要满足多少,否则为不满足
for constraint in comparison:
if x == constraint[0] and y == constraint[1]:
n += 1
for value in domain[constraint[2]][constraint[3]]:
if cur_value < value:
satisfied += 1
break
elif x == constraint[2] and y == constraint[3]:
n += 1
for value in domain[constraint[0]][constraint[1]]:
if cur_value > value:
satisfied += 1
break
return n == satisfied
def recursive_check(domain, comparison, row_or_col, cur_index, num_checked, visited):
"""主要为了检查all-diff,也就是该行该列是否能各不相同,因为board_size会变,才写成递归
:param domain: 格子值域,每个格子一个列表,board由一个二维列表构成,故为三维列表
:param comparison: 比较限制列表,二维列表,每一行表示一个大小限制
:param row_or_col: 0或1,指明正在做行检查还是列检查,0表示行检查
:param cur_index: 如果当前在做行检查,作为行坐标,否则为列坐标,检查时,该值不变,另一个坐标会在 0~board_size-1变化
:param num_checked: 该行或该列已检查过的坐标数
:param visited: 该行该列哪些值已经取了,列表
:return: 所有条件都满足时返回 True
"""
if num_checked == board_size:
return True
if row_or_col == 0:
x = cur_index
y = num_checked
else:
x = num_checked
y = cur_index
# 检查该行或该列第num_checked格子
for value in domain[x][y]:
# 该行或列已经有这个值了,或者未通过大小限制的检查,则继续检查下一个值
compare_satisfied = compare_check(domain, comparison, x, y, value)
if visited[value] or not compare_satisfied:
continue
# 如果通过了大小检查,也保证了该行或列没有相同的值
# 则标记该值已有,继续赋值下一个
visited[value] = True
if recursive_check(domain, comparison, row_or_col, cur_index, num_checked + 1, visited):
return True
visited[value] = False
# 如果所有值都不行,则返回上一层,重新赋值,重新检查
return False
def constraints_check(domain, comparison, row_or_col, cur_index, x, y, value):
"""调用递归检查,做all_diff检查和比较限制检查
:param domain: 格子值域,每个格子一个列表,board由一个二维列表构成,故为三维列表
:param comparison: 比较限制列表,二维列表,每一行表示一个大小限制
:param row_or_col: 0或1,指明正在做行检查还是列检查,0表示行检查
:param cur_index: 如果当前在做行检查,作为行坐标,否则为列坐标,检查时,该值不变,另一个坐标会在 0~board_size-1变化
:param x: 坐标
:param y: 坐标
:param value: 当前格子的取值
:return: 如果能找到一些赋值,满足两方面的限制就返回True
"""
visited = [False for i in range(board_size+1)]
domain_copy = deepcopy(domain[x][y])
domain[x][y] = [value]
can_be_satisfied = recursive_check(domain, comparison, row_or_col, cur_index, 0, visited)
domain[x][y] = deepcopy(domain_copy)
return can_be_satisfied
def GAC_Enforce(domain, comparison, x, y):
"""检查限制条件,并去掉不合适的值
:param domain: 格子值域,每个格子一个列表,board由一个二维列表构成,故为三维列表
:param comparison: 比较限制列表,二维列表,每一行表示一个大小限制
:param x: 坐标
:param y: 坐标
:return: 某个坐标值域被删空了就返回True,表示发生了DWO
"""
GACQueue = []
# 0表示行检查,1表示列检查
# 大小比较每次都会做,所以没有单独再入队。如果反之,每次是大小限制入队的话,会很慢!!!
# 因为一个格子的坐标发生了变化,会影响行列,所以都是成对出现的
# 初始入队 (0, x)表示对x行进行行检查,(1, y)表示对y列进行列检查
GACQueue.append((0, x))
GACQueue.append((1, y))
while GACQueue:
row_or_col_check, cur_index = GACQueue[0]
del(GACQueue[0])
# 检查该行或该列的所有格子
for other_index in range(board_size):
if row_or_col_check == 0:
x = cur_index
y = other_index
else:
x = other_index
y = cur_index
cur_domain = domain[x][y]
for value in cur_domain:
# 如果不能满足条件则去掉该值,这里会做all-diff检查和大小限制检查
if not constraints_check(domain, comparison, row_or_col_check, cur_index, x, y, value):
domain[x][y] = [v for v in domain[x][y] if v != value]
# 如果值域为空则,返回True,表示发生了 DWO
if not domain[x][y]:
return True
# 如果值域不为空,且相关限制不在队列中则将相关限制加入队列
# r=1,则变化的是[O,C]处, 有 (0,O), (1,C)入队
# r=0,则变化的是[C,O]处, 有 (0,C), (1,O)入队
else:
if (row_or_col_check, cur_index) not in GACQueue:
GACQueue.append((row_or_col_check, cur_index))
if (1 - row_or_col_check, other_index) not in GACQueue:
GACQueue.append((1 - row_or_col_check, other_index))
return False
def GAC(domain, comparison, assigned, board):
"""GAC算法,赋值,调用GAC_Enforce做检查去值,每次调用代表赋值一个格子
:param domain: 格子值域,每个格子一个列表,board由一个二维列表构成,故为三维列表
:param comparison: 比较限制列表,二维列表,每一行表示一个大小限制
:param assigned: 所有格子是否赋值的情况,二维bool列表
:param board: 棋盘,二维列表
:return: 找到解就返回True,否则返回False
"""
# 找值域最小的赋值
(x, y) = MRV(domain, assigned)
# 若全部都完成赋值
if (x, y) == (-1, -1):
return True
assigned[x][y] = True
values = domain[x][y]
# 暂存值域
temp_domain = deepcopy(domain)
for value in values:
board[x][y] = value
# 赋值,也就去掉其他的值
domain[x][y] = [value]
# 如果没有 DWO
if not GAC_Enforce(domain, comparison, x, y):
find_solution = GAC(domain, comparison, assigned, board)
if find_solution:
return True
# 恢复值域
domain = deepcopy(temp_domain)
assigned[x][y] = False
return False
def run_test(filename):
board, comparison = read_data(filename)
print_board(board)
print("-----------------------")
domain, assigned = initial(board)
begin = time.time()
GAC(domain, comparison, assigned, board)
end = time.time()
print_board(board)
print('Time cost:', end - begin, 's')
if __name__ == '__main__':
run_test('4.txt')
print('\n')
run_test('5.txt')
print('\n')
run_test('6.txt')
print('\n')
run_test('7.txt')
print('\n')
run_test('8.txt')
|
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
pd.set_option('max_columns', 15)
#loading the datasets
train = pd.read_csv('train_Df64byy.csv')
test = pd.read_csv('test_YCcRUnU.csv')
target = 'Response'
ID = test['ID']
#First look to the data
train.head()
#Some basic stats of the dataset
train.describe()
#We have to remove the ID variable, as it is not going to be part of the study
train = train.drop(['ID'], axis = 1)
test = test.drop(['ID'], axis = 1)
#SOME PLOTS TO ANALYSE THE DATA
#We need to divide the data into numerical and categorical variables, in order to
#do the proper plots
num_variables = train.select_dtypes(include = [np.number])
cat_variables = train.select_dtypes(include = [np.object])
#Boxplots for numerical variables
fig = plt.figure(figsize=(12,10))
for i in range(len(num_variables.columns)):
fig.add_subplot(2, 4, i+1)
sns.boxplot(y=num_variables.iloc[:,i])
plt.tight_layout()
plt.show()
#Countplots for categorical variables
fig2 = plt.figure(figsize = (12,15))
for i in range(len(cat_variables.columns)):
fig2.add_subplot(2,3, i+1)
sns.countplot(x=cat_variables.iloc[:,i])
plt.tight_layout()
plt.show()
#With this plots we can have an idea about the distribution of each variable
#DATA CLEANING
#Analysing the presence of missing values
(train.isna().sum())
(test.isna().sum())
#We have missing values in three diferent variables: Health Indicator, Holding_Policy_Type,
#and Holding_Policy_and Holding_Policy_Duration
#Dealing with missing values
#First, we are going to replace missing values by the most common values
train['Health Indicator'] = (train['Health Indicator'].fillna(train['Health Indicator'].mode()[0]))
test['Health Indicator'] = (test['Health Indicator'].fillna(test['Health Indicator'].mode()[0]))
#Before doing the same with Holding Policy variables, we are going to create a new variable
#that gets a 1 if the customer has a holding policy and a 0 if not.
train['Holding_policy'] = [1 if x>0 else 0 for x in (train['Holding_Policy_Type'])]
test['Holding_policy'] = [1 if x>0 else 0 for x in (test['Holding_Policy_Type'])]
train['Holding_Policy_Type'] = (train['Holding_Policy_Type'].fillna(train['Holding_Policy_Type'].mode()[0]))
test['Holding_Policy_Type'] = (test['Holding_Policy_Type'].fillna(test['Holding_Policy_Type'].mode()[0]))
#This variable contain numerical and categorical levels, so first, we have to replace
#the categorical level by a number, and then replace na values by the most common one
train['Holding_Policy_Duration'] = (train['Holding_Policy_Duration'].replace('14+', 15.0))
test['Holding_Policy_Duration'] = test['Holding_Policy_Duration'].replace('14+', 15.0)
train['Holding_Policy_Duration'] = (train['Holding_Policy_Duration'].fillna(train['Holding_Policy_Duration'].mode()[0])).astype('float64')
test['Holding_Policy_Duration'] = (test['Holding_Policy_Duration'].fillna(test['Holding_Policy_Duration'].mode()[0])).astype('float64')
#Correlation matrix
matrix = train.corr().abs()
sns.heatmap(matrix, annot= True)
plt.show()
#We can see correlation between Upper age and Lower age, so we have to remove one of them
#First we are going to create a new variable, called dif_age, which is the difference
#between upper and lower age
train['Dif_age'] = train['Upper_Age'] - train['Lower_Age']
test['Dif_age'] = test['Upper_Age'] - test['Lower_Age']
#Now we can remove Upper or Lower age, cause they are correlated and also included in this
#new variable. Upper Age is going to be dropped, cause it is also correlated with Reco_Policy_Premium
train = train.drop(['Upper_Age'], axis =1) #try then dropping lower age
test = test.drop(['Upper_Age'], axis =1)
#LABEL ENCODING
#There are some variables that need to be encoded
from sklearn.preprocessing import LabelEncoder
#This encoding is for variables whose levels dont have a hierarchical order, they are independent
train = pd.get_dummies(train, columns = ['City_Code','Accomodation_Type', 'Reco_Insurance_Type', 'Is_Spouse'])
test = pd.get_dummies(test, columns = ['City_Code','Accomodation_Type', 'Reco_Insurance_Type', 'Is_Spouse'])
#On the other hand, label encoder is used for variables whose levels need a hierarchical order, which means
#that distances between levels are important (the model needs to know that)
encoder = LabelEncoder()
train['Health Indicator'] = encoder.fit_transform(train['Health Indicator'])
test['Health Indicator'] = encoder.fit_transform(test['Health Indicator'])
train['Holding_Policy_Type'] = encoder.fit_transform(train['Holding_Policy_Type'])
test['Holding_Policy_Type'] = encoder.fit_transform(test['Holding_Policy_Type'])
#MODEL
from sklearn.utils import class_weight
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
from lightgbm import LGBMClassifier
from sklearn.model_selection import RandomizedSearchCV
X_train = train.drop(['Region_Code', 'Response'], axis = 1)
Y_train = train['Response']
X_test = test.drop(['Region_Code'], axis = 1)
#LIGHT GBM
x_train, x_val, y_train, y_val = train_test_split(X_train, Y_train, test_size=0.2)
weights = class_weight.compute_class_weight('balanced', np.unique(y_train), y_train)
weights = dict(enumerate(weights))
#MODEL
#LIGHTGBM
from sklearn.model_selection import RepeatedStratifiedKFold
model = LGBMClassifier(class_weight=weights, metric = 'roc_auc_score',
learning_rate=0.15, max_depth=14, feature_fraction =0.9,
num_leaves=2^14)
learning_rate = [0.01, 0.02, 0.05, 0.1, 0.12, 0.15,0.2]
max_depth = range (1,15)
feature_fraction = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
subsample = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
params = dict(learning_rate=learning_rate, max_depth=max_depth, feature_fraction=feature_fraction,
subsample=subsample)
search = RandomizedSearchCV(model, param_distributions=params, cv=cv, n_jobs=-1, n_iter=10)
search.fit(x_train, y_train)
print("Best: %f using %s" % (search.best_score_, search.best_params_))
model.fit(X_train, Y_train)
prediction = model.predict(x_val)
accuracy = roc_auc_score(prediction, y_val)
print(accuracy)
prediction_bien = model.predict(X_test)
complete = pd.DataFrame({'ID': ID, target: prediction_bien})
complete.to_csv(r'E:\MACHINE LEARNING\Python projects\jobathon\lightgbm_bien.csv', index=False)
|
# Process the word list
# Remove the words that has numbers/special characters
f = open("words.txt","r")
print f
myList = []
for line in f:
if line.strip().isalpha():
myList.append(line)
print len(myList)
f = open("english_words.txt",'w')
for i in myList:
f.write(i) |
"""Custom topology example
author: Brandon Heller ([email protected])
Two directly connected switches plus a host for each switch:
host --- switch --- switch --- host
Adding the 'topos' dict with a key/value pair to generate our newly defined
topology enables one to pass in '--topo=mytopo' from the command line.
"""
from mininet.topo import Topo, Node
class MyTopo( Topo ):
"Simple topology example."
def __init__( self, enable_all = True ):
"Create custom topo."
# Add default members to class.
super( MyTopo, self ).__init__()
# Set Node IDs for hosts and switches
Host1 = 1
Host2 = 2
Host3 = 3
Host4 = 4
Host5 = 5
Host6 = 6
Host7 = 7
Host8 = 8
Switch1 = 9
Switch2 = 10
Switch3 = 11
Switch4 = 12
Switch5 = 13
Switch6 = 14
# Add nodes
self.add_node( Switch1, Node( is_switch=True ) )
self.add_node( Switch2, Node( is_switch=True ) )
self.add_node( Switch3, Node( is_switch=True ) )
self.add_node( Switch4, Node( is_switch=True ) )
self.add_node( Switch5, Node( is_switch=True ) )
self.add_node( Switch6, Node( is_switch=True ) )
self.add_node( Host1, Node( is_switch=False ) )
self.add_node( Host2, Node( is_switch=False ) )
self.add_node( Host3, Node( is_switch=False ) )
self.add_node( Host4, Node( is_switch=False ) )
self.add_node( Host5, Node( is_switch=False ) )
self.add_node( Host6, Node( is_switch=False ) )
self.add_node( Host7, Node( is_switch=False ) )
self.add_node( Host8, Node( is_switch=False ) )
# Add edges
self.add_edge( Host1, Switch1 )
self.add_edge( Host2, Switch1 )
self.add_edge( Host3, Switch6 )
self.add_edge( Host4, Switch6 )
self.add_edge( Host5, Switch3 )
self.add_edge( Host6, Switch3 )
self.add_edge( Host7, Switch5 )
self.add_edge( Host8, Switch5 )
self.add_edge( Switch1, Switch2 )
self.add_edge( Switch2, Switch6 )
self.add_edge( Switch2, Switch3 )
self.add_edge( Switch3, Switch4 )
self.add_edge( Switch4, Switch5 )
self.add_edge( Switch4, Switch1 )
# Consider all switches and hosts 'on'
self.enable_all()
topos = { 'mytopo': ( lambda: MyTopo() ) }
|
#pragma once
#include "Tile.h"
class Tile:
# char ,char ,Piece*
""" The function creates the class variable of the Bishop
Input- bishop's x, bishop's y, piece to set on tile
Output- none """
def __init__(self, x, y, piece = None):
self._x = x
self._y = y
self._piece = piece
""" The function returns the piece on the tile
Input- none
Output- piec of the tile """
def getPiece(self):
return self._piece
""" The function delets all of the dynamic variables
Input- none
Output- none
Tile::~Tile()
{
}"""
#Piece*
""" The function sets inputed piece as tile piece
Input- piece to set
Output- none """
def setPiece(self, piece):
self._piece = piece
""" The function returns the x of the tile
Input- none
Output- the x of the tile """
def getX(self):
return self._x
""" The function returns the x of the tile
Input- none
Output- none """
def getY(self):
return self._y |
__author__ = 'longqi'
'''
import time
run = raw_input("Start? > ")
mins = 0
# Only run if the user types in "start"
if run == "start":
# This is saying "while we have not reached 20 minutes running"
while mins != 20:
print ">>>>>>>>>>>>>>>>>>>>>", mins
# Sleep for a minute
time.sleep(60)
# Increment the minute total
mins += 1
# Bring up the dialog box here
'''
'''
import sched
import time
s = sched.scheduler(time.time, time.sleep)
def print_time():
print "From print_time", time.time()
def print_some_times():
print time.time()
s.enter(5, 1, print_time, ())
s.enter(10, 1, print_time, ())
s.run()
print time.time()
print_some_times()
'''
'''
import sched
import time
def hello(name):
print 'hello world, i am %s, Current Time:%s' % (name, time.time())
run(name)
def run(name):
s = sched.scheduler(time.time, time.sleep)
s.enter(3, 2, hello, (name,))
s.run()
s = sched.scheduler(time.time, time.sleep)
s.enter(3, 2, hello, ('guo',))
s.run()
'''
'''
from threading import Event, Thread
import time
class RepeatTimer(Thread):
def __init__(self, interval, function, iterations=0, args=[], kwargs={}):
Thread.__init__(self)
self.interval = interval
self.function = function
self.iterations = iterations
self.args = args
self.kwargs = kwargs
self.finished = Event()
def run(self):
count = 0
while not self.finished.is_set() and (self.iterations <= 0 or count < self.iterations):
self.finished.wait(self.interval)
if not self.finished.is_set():
self.function(*self.args, **self.kwargs)
count += 1
def cancel(self):
self.finished.set()
def hello():
print 'hello world, Current Time:%s' % (time.time())
r = RepeatTimer(5.0, hello)
r.start()
'''
'''
from threading import Timer
def hello():
print "hello, world"
t.run()
t = Timer(1.0, hello)
t.start() # after 1 seconds, "hello, world" will be printed
'''
import threading;
i = 0
def work():
global i
threading.Timer(0.01, work).start()
print("stackoverflow ", i, end='\r')
i += 1
work();
|
dezena = input("Digite um número inteiro:")
dezena = int(dezena)
valor = dezena // 10
valor = valor % 10
print("O dígito das dezenas é",valor) |
def fatorial(k):
'''(int) -> int
Recebe um inteiro k e retorna o valor de k!
Pre-condicao: supoe que k eh um numero inteiro nao negativo.
'''
if k == 0:
k_fat = 1
else:
k_fat = k * fatorial(k - 1)
return k_fat
# testes
print("0! =", fatorial(0))
print("1! =", fatorial(1))
print("5! =", fatorial(5))
print("6! =", fatorial(6))
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.