text
stringlengths 37
1.41M
|
---|
import asyncio
import time
import threading
# @asyncio.coroutine # 会把一个生成器标记为coroutine类型
# def hello():
# print("Hello world! (%s)" % threading.currentThread())
# # 异步调用asyncio.sleep(2):
# yield from asyncio.sleep(2)
# print("Hello again! (%s)" % threading.currentThread())
# 请注意,async和await是针对coroutine的新语法,要使用新的语法,只需要做两步简单的替换:
# 1.把@asyncio.coroutine替换为async;
# 2.把yield from替换为await。
async def hello():
print("Hello world!")
r = await asyncio.sleep(2)
print("Hello again!")
if __name__ == '__main__':
start = time.time()
# 获取EventLoop:
loop = asyncio.get_event_loop()
# 执行coroutine
loop.run_until_complete(hello())
loop.close()
print('times: %0.4f seconds' % (time.time() - start))
|
from tkinter import *
import sys
root = Tk()
label_1 = Label(root, text="Values:")
input = Entry(root)
addition = Button(root, text=" Add ")
subtract = Button(root, text="Subtract")
multiply = Button(root, text="Multiply")
division = Button(root, text="Divide")
equal = Button(root, text=" = ")
output = Label(root, text="")
label_1.grid(row=0, column=0,sticky=W)
input.grid(row=0, column=1, columnspan=4,sticky=W+E+N+S)
addition.grid(row=1, column=0)
subtract.grid(row=1, column=1)
multiply.grid(row=1, column=2)
division.grid(row=1, column=3)
equal.grid(row=1, column=4)
output.grid(row=2)
input_str = ''
def add(event):
global input_str
global input
input_str += input.get() + '+'
output.config(text=input_str)
input = Entry(root, text="")
input.grid(row=0, column=1, columnspan=3, sticky=W + E + N + S)
def sub(event):
global input_str
global input
input_str += input.get() + '-'
output.config(text=input_str)
input = Entry(root, text="")
input.grid(row=0, column=1, columnspan=3, sticky=W + E + N + S)
def mul(event):
global input_str
global input
input_str += input.get() + 'x'
output.config(text=input_str)
input = Entry(root, text="")
input.grid(row=0, column=1, columnspan=3, sticky=W + E + N + S)
def div(event):
global input_str
global input
input_str += input.get() + '÷'
output.config(text=input_str)
input = Entry(root, text="")
input.grid(row=0, column=1, columnspan=3, sticky=W + E + N + S)
def eq(event):
global input_str
input_str = input_str.replace('x', '*')
input_str = input_str.replace('÷', '/')
string = input_str[0:len(input_str)-1]
calculation = str(eval(string))
calc = calculation
input_str = ''
output.config(text=calc)
addition.bind("<Button-1>", add)
subtract.bind("<Button-1>", sub)
multiply.bind("<Button-1>", mul)
division.bind("<Button-1>", div)
equal.bind("<Button-1>", eq)
root.mainloop() |
#!python
def linear_search(array, item):
"""return the first index of item in array or None if item is not found"""
# implement linear_search_iterative and linear_search_recursive below, then
# change this to call your implementation to verify it passes all tests
# return linear_search_iterative(array, item)
return linear_search_recursive(array, item)
def linear_search_iterative(array, item):
# loop over all array values until item is found
for index, value in enumerate(array):
if item == value:
return index # found
return None # not found
def linear_search_recursive(array, item, index=0):
# once implemented, change linear_search to call linear_search_recursive
# to verify that your recursive implementation passes all tests
if index > len(array) -1:
return None # not found
# base case - when we have found item
if array[index] == item:
return index
else:
# recurse to the next index
return linear_search_recursive(array, item, index+1)
def binary_search(array, item):
"""return the index of item in sorted array or None if item is not found"""
# implement binary_search_iterative and binary_search_recursive below, then
# change this to call your implementation to verify it passes all tests
# return binary_search_iterative(array, item)
return binary_search_recursive(array, item)
def binary_search_iterative(array, item):
'''
O(log n) time - because we're cutting half at every iteration
O(1) space - we're not making any memory
'''
left = 0
right = len(array)-1
while left <= right:
middle = (left + right) // 2
if array[middle] == item:
return middle
elif array[middle] < item:
left = middle + 1
else:
right = middle - 1
return None # not found
# edge case is a tricky input
def binary_search_recursive(array, item, left=None, right=None):
# O(log n) space + time - because we're using the stack as space and cutting half at every iteration
if item in array:
# set left and right starter values
if left == None and right == None:
return binary_search_recursive(array, item, left=0, right=((len(array) -1) // 2))
# base case
if (array[right] == item):
return right # => found
# recursive cases
if left <= right:
if (array[right] < item):
return binary_search_recursive(array, item, left = (left + right) // 2, right= right + 1)
elif (array[right] > item):
return binary_search_recursive(array, item, left = (left + right) // 2, right= right -1)
return None # not found |
from Tkinter import *
window = Tk()
ps2_canvas = Canvas(window, width=500, height=500)
ps2_canvas.grid(row=0, column=0)
# These next four statements are the ones you should play with for your
# program. LEAVE EVERYTHING ELSE (apart from the comments) ALONE
# draw the face
ps2_canvas.create_oval(100, 100, 400, 400, fill='yellow')
# Draw the mouth
ps2_canvas.create_arc(175, 175, 325, 325, start=225, extent=90, style=ARC)
# Draw the left eye
ps2_canvas.create_oval(200, 205, 202, 207, fill='black')
# Draw the right eye
ps2_canvas.create_oval(298, 205, 300, 207, fill='black')
# Keep this line at the end of your program
window.mainloop()
|
#Problem Set 5, Part II
#Kim, Matthew
# you might want to use one of the functions you defined in the previous part
# of this pset. This is why we're importing that file here. If you want to use
# the list_sort function in the other file, you should use the dot notation,
# i.e., listops.list_sort(....) Make sure this file, the listops file, and the
# part2helper.py are all in the same folder.
import listops
import part2helper # importing this file to get the nested list defined there.
def list_min(a):
temp = a[0]
for i in a:
if i < temp:
temp = i
return temp
def list_sort(b):
x = []
y = []
z = list(b)
q = []
for i in range(0,len(b)):
num = list_min(z)
y.append(b.index(num))
x.append(num)
z.remove(num)
q.append(x)
q.append(y)
return q
# All your function definitions should be before this line and after the
# import lines.
# __main__
# Please do **not** remove the following line. The variable tasks is the
# nested list storing the tasks.
tasks = part2helper.tasks
# Have the rest of your main program here.
def print_task(tasks,b):
months = ['','Jan', 'Feb','Mar','Apr','May','June','Jul','Aug','Sept','Oct','Nov','Dec']
q = []
lastlist = []
for n in range(0,len(tasks)):
if b[0] == tasks[n][1] and b[1] == tasks[n][2]:
q.append(tasks[n])
result_printtask = q
return result_printtask
def order(a):
x = []
a = print_task(tasks,a)
for i in a:
x.append(i[3])
result_order = list_sort(x)
return result_order
def starttime(a):
x = []
b = order(a)
result_printtask = print_task(tasks,a)
for i in b[1]:
x.append(result_printtask[i][3])
return x
def minutes(a):
x = []
b = order(a)
result_printtask = print_task(tasks,a)
for i in b[1]:
x.append(result_printtask[i][4])
return x
def task(a):
x = []
b = order(a)
result_printtask = print_task(tasks,a)
for i in b[1]:
x.append(result_printtask[i][0])
return x
def description(a):
x = []
b = order(a)
result_printtask = print_task(tasks,a)
for i in b[1]:
x.append(result_printtask[i][6])
return x
def duration(a):
x = []
b = order(a)
result_printtask = print_task(tasks,a)
for i in b[1]:
x.append(result_printtask[i][5])
return x
def convert_to_minutes(a):
hour = starttime(a)
minute = minutes(a)
x = [hour, minute]
time = []
for i in range(0,len(x[1])):
time.append(x[0][i]*60 + x[1][i])
return time
def newtime(a):
start_time = convert_to_minutes(a)
newtime = []
for i in range(0,len(start_time)):
newtime.append(start_time[i] + duration(a)[i])
return newtime
def newtime2(a):
newtime2 = []
newtimet = newtime(a)
for n in range(0,len(newtimet)):
newtime2.append(int(newtimet[n]/60))
return newtime2
def newminutes(a):
newminutes = []
newtimed = newtime(a)
newtimeo = newtime2(a)
for j in range(0,len(newtimed)):
newminutes.append((newtimed[j]/60.0 - newtimeo[j])*60)
return newminutes
def print_tasks(tasks,a):
months = ['', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct',
'Nov','Dec']
b = newtime(a)
for i in range(0, len(b)):
print 'These are your tasks for ' + str(months[a[0]]) + str(a[1])
print ''
print 'Task Name: ' + task(a)[i]
print ''
print ' Start time: ', starttime(a)[i], ':', int(minutes(a)[i])
print ' End time: ', newtime2(a)[i], ':', int(newminutes(a)[i])
print ' Description: ' + description(a)[i]
print ''
print print_tasks(tasks, [10,1])
|
#Problem Set 1
#Kim, Matthew
#Collaborators:Jeremy Lim
#Part I
import math
def golden_ratio():
g_ratio = (1 + math.sqrt(5))/2
return g_ratio
print golden_ratio ()
#Part II
def is_even (input_int):
lol = int(input_int) % 2
return lol == 0
print is_even(20)
print is_even(3)
#Part III
import math
def quad_form(a,b,c):
disc = float(b**2 - (4*a*c))
sdisc = math.sqrt((disc))
denominator = float(2*a)
numerator1 = float((-b + sdisc))
numerator2 = float((-b - sdisc))
return numerator1/denominator, numerator2/denominator
def explanation():
print 'Quadratic Equation values'
a = float(raw_input('Value of a: '))
b = float(raw_input('Value of b: '))
c = float(raw_input('Vale of c: '))
return quad_form(a,b,c)
print explanation()
#Hello Professor, I really didn't understand how specific you wanted us to be
#when you said "You should always have a prompt for input, explaining what is
#desired". My friend Jeremy interpreted it as putting the Value of the variables
#rather than simply "a=" or "b=" but I thought you meant more explanation.
#I did what I did also because I wanted to try calling a function within a function
#FYI, I originally had the raw inputs not in a function and printed quad_form(a,b,c)
#Have a great weekend!
|
class Line(object):
def __init__(self,p1, p2):
p1 = Point(p1)
p2 = Point(p2)
def getp1(self):
return self.p1
def getp2(self):
return self.p2
def setp1(self,p1):
self.p1 = p1
def setp2(self,p2):
self.p2 = p2
def __str__(self):
return length(p1,p2)
#2
class Song(object):
def __init__(self):
if isinstance(self.lyric, list):
self.lyric = list1
else:
happybdaylist = list1
def __str__(self):
for lyric in list1:
print lyric
|
meal_cost = float(input())
tip_percent = int(input())
tax_percent = int(input())
tip = meal_cost * (tip_percent / 100)
tax = meal_cost * (tax_percent / 100)
total_cost = int(round(meal_cost + tip + tax))
print(total_cost)
|
import onetimepad
from tkinter import *
root = Tk()
root.title("Chryptography App")
def encryptMessage():
a = var.get()
ct = onetimepad.encrypt(a,"saikumar")
print("Working",ct)
e2.delete(0,END)
e2.insert(END,ct)
def dycrptMessage():
a = var2.get()
ct = onetimepad.decrypt(a,"saikumar")
print("Working",ct)
e4.delete(0,END)
e4.insert(END,ct)
l1 = Label(root,text="Plain Text")
l1.grid(row=0,column=0)
l3 = Label(root,text="Encypted Text")
l3.grid(row=0,column=2)
var= StringVar()
e1 = Entry(root,textvariable=var)
e1.grid(row=0,column=1)
var2= StringVar()
e3 = Entry(root,textvariable=var2)
e3.grid(row=0,column=3)
l2 = Label(root,text="Encypted Text")
l2.grid(row=1,column=0)
l4 = Label(root,text="Plain Text")
l4.grid(row=1,column=2)
e2 = Entry(root)
e2.grid(row=1,column=1)
e4 = Entry(root)
e4.grid(row=1,column=3)
b1 = Button(root,text="Encyption",bg="blue",fg="Red",command=encryptMessage)
b1.grid(row=2,column=1)
b2 = Button(root,text="Dycrption",bg="blue",fg="Red",command=dycrptMessage)
b2.grid(row=2,column=3)
root.mainloop()
|
# Contains basic utility functions.
class Utility:
def __init__(self):
pass
@staticmethod
def str_to_list_converter(str_val=''):
# Converting string to list
# Input : 'a,b,c' or '[a,b,c]' or '1,2,3' or '[1,2,3]'
# Output : ['a','b','c'] or [1,2,3]
if str_val[0] is '[' and str_val[-1] is ']':
edited_list = str_val[1:-1].split(',')
else:
edited_list = str_val.split(',')
try:
final_list = map(int, edited_list)
return final_list
except ValueError:
final_list = edited_list
return final_list
|
from arrays import *
arr1 = array("i",[1,2,5,4,3])
def searchelement(array,value):
for i in array:
if i == value:
return array.index(value)
return "The element does not exist"
searchelement(arr1,5)
|
from arrays import *
arr1 = array("i",[1,2,3,4,5,6,7,8])
print(arr1)
def tranversearray(array):
for i in array:
print(i)
traversearray(arr1)
def accessElement(array,index):
if index >= len(array):
print("There is not any element in this index")
else:
print(array[index])
accessElement(arr1,4)
def searchelement(array,value):
for i in array:
if i == value:
return array.index(value)
return "The element does not exist in this array"
print(searchelement(arr1,5))
arr1.remove(2)
print(arr1)
|
# student1 = "Tarkek"
# student2 = "Chris"
# student3 = "Michael"
# def Students():
# print(f"{student1} {student2} {student3}")
# Students()
# student1 = "Glen"
# Students()
# class Students:
# def PrintStudents():
# print("Tarek Chris Michael")
#Students.PrintStudents()
# class Students:
# def students(self):
# print("Tarek Chris Michael")
# Michael = Students()
# Michael.students()
# Chris = Students()
# Chris.students()
# class MyClass(object):
# def __init__(self, first_name, last_name):
# print("hello world")
# self.first_name = first_name
# self.last_name = last_name
# def printName(self):
# # name = "Celeste"
# print(f"{self.first_name} {self.last_name} ")
# dc = MyClass("Chris", "Humphrey")
# dc.printName()
# dc_houston = MyClass("Mohammad", "Azam")
# dc_houston.printName()
# def Person(name, count):
# print(f"my name is {name} {count}")
# count = count + 1
# return count
# count = Person("Lisa", 0)
# print(count)
# count = 67
# count = Person("Veronica", count)
# print(count)
# countPeter = Person("Peter", 5)
# print(countPeter)
# countPeter = Person("Bob", countPeter)
# print(countPeter)
# Cindy = Person("Cindy")
# class Person(object):
# def __init__(self, name):
# self.name = name
# self.count = 0
# print(f"my name is {self.name}")
# def change_name(new_name):
# self.count = self.count + 1
# self.name = new_name
# print(f"name is {self.name} I've changed my name {self.count} times")
# class Person(object):
# def __init__(self, name, whoAmI):
# self.name = name
# self.count = 0
# self.whoAmI = whoAmI
# # print(f"hello {self.name}")
# def change_name(self, new_name):
# self.name = new_name
# self.count = self.count + 1
# print(f"who: {self.whoAmI} name:{self.name} count: {self.count}")
# student = Person("veronica", "student")
# atlanta_student = Person("Michael", "atlanta_student")
# student.change_name("Matt")
# student.change_name("Katy")
# student.change_name("Chris")
# atlanta_student.change_name("Jake")
# student.change_name("Andrew")
# student.change_name("Sabrina")
# student.change_name("Garrett")
# atlanta_student.change_name("Jason")
# class Phone(object):
# def __init__(self, phone_type):
# self.phone_type = phone_type
# self.status = "off"
# print(f"my phone is a {self.phone_type}")
# def print_phone(self):
# print(self.phone_type)
# def on(self):
# print('on')
# self.status = "on"
# def off(self):
# print('off')
# self.status = "off"
# def get_status(self):
# print(f'your {self.phone_type} phone is currently: {self.status}')
# android = Phone("android")
# iPhone = Phone("iPhone")
# blackberry = Phone("blackberry")
# android.get_status()
# android.on()
# android.get_status()
# iPhone.get_status()
# blackberry.get_status()
# import datetime # we will use this for date objects
# class Person:
# def __init__(self, name, surname, birthdate, address, telephone, email):
# self.name = name
# self.surname = surname
# self.birthdate = birthdate
# self.address = address
# self.telephone = telephone
# self.email = email
# def age(self):
# today = datetime.date.today()
# age = today.year - self.birthdate.year
# if today < datetime.date(today.year, self.birthdate.month,
# self.birthdate.day):
# age -= 1
# return age
# person = Person(
# "Jane",
# "Doe",
# datetime.date(1992, 3, 12), # year, month, day
# "No. 12 Short Street, Greenville",
# "555 456 0987",
# "[email protected]"
# )
# print(person.name)
# print(person.email)
# print(person.age())
class Car:
pi = 0
def __init__(self, make, model, color):
self.make = make
self.model = model
self.color = color
self.doorStatus = "closed"
print(f"make: {self.make} model:{self.model} color:{self.color}")
self.myList = []
Car.pi = 5
def ChangeColor(self, newColor):
self.color = newColor
return (self.color)
def openDoor(self):
self.doorStatus = "open"
def displayColor(self):
print(f"The color of your {self.make} is {self.color}")
def displayInfo(self):
print(f"make: {self.make} model:{self.model} color:{self.color}")
def cir(self, length):
return 2 * Car.pi * length
def override(self):
print("override of car class")
def altered(self):
print("altered of car class")
class ElectricCar(Car):
def __init__(self, electricMotor, make, model, color):
self.electricMotor = electricMotor
super(ElectricCar, self).__init__(make, model, color)
def printCarType(self):
print("I'm an electric car")
def override(self):
print("override of electric car class")
def altered(self):
print("BEFPRE altered of electric car class")
super(ElectricCar, self).altered()
print("After altered of electric car class")
def motorType(self):
print(self.electricMotor)
ec = ElectricCar("ac motor", "tesla", "s", "red")
ec.printCarType()
ec.ChangeColor("green")
ec.displayInfo()
ec.override()
ec.altered()
ec.motorType()
ec2 = ElectricCar("dc motor", "nissan", "leaf", "yellow")
ec2.printCarType()
ec2.ChangeColor("blue")
ec2.displayInfo()
ec2.override()
ec2.altered()
ec2.motorType()
# class HybridCar(Car):
# def printCarType(self):
# print("I'm a hybrid car")
# print(Car.pi)
# Car.greeting
# toyota = Car("toyota", "prius", "green")
# toyota.greeting
# honda = Car("honda", "civic", "purple")
# Car.pi =4
# print(honda.cir(2))
# print(toyota.pi)
# print(honda.pi)
# jeep = Car("jeep", "wrangler", "white")
# print(jeep.pi)
# f150 = Car("Ford", "f150", "marble")
# print(f150.cir(3))
# f150.ChangeColor("Midnight Red")
# f150.displayColor()
# toyota.displayInfo()
# honda.displayInfo()
# jeep.displayInfo()
# f150.displayInfo()
# fleet = [toyota, honda, jeep, f150]
# for carObject in fleet:
# # print(carObject.displayInfo())
# class Person:
# def __init__ (self, name):
# self.name = name
# self.count = 0
# self._a = 1
# self.__b = 5
# def greet (self):
# self._greet()
# def _greet (self):
# self.count += 1
# if self.count > 1:
# print("Stop being so nice")
# self.__reset_count()
# else:
# print("Hello", self.name)
# def __reset_count(self):
# self.count = 0
# person = Person("Sabrina")
# person.greet()
# person.greet()
# person.greet()
# print(person._a)
# print(person._Person__b)
# class Animal:
# def __init__ (self, name):
# self.name = name
# def fourleggs(self):
# print("i have 4 legs")
# class Dog(Animal):
# def woof(self):
# print("Woof")
# puppy = Dog("pickle")
# print(puppy.name)
# puppy.woof()
# puppy.fourleggs()
# puppy2 = Dog("john luke")
# print(puppy2.name)
# puppy2.woof()
# puppy2.fourleggs()
# class Cat (Animal):
# def meow (self):
# print("Meow")
# cat1 = Cat("misty")
# cat2 = Cat("bubbles")
# print(cat1.name)
# cat1.meow()
# cat1.fourleggs()
# print(cat2.name)
# cat2.meow()
# cat2.fourleggs()
|
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import sys
if len(sys.argv) < 1:
exit()
#def line_split_by_label_vecgtor(line):
def line_split(line):
sents_split = line.strip().split(" ") #['ラベル', 'a:x', 'b:y', ...]
label = sents_split[0] #ラベル
#print(label)
sentence = sents_split[1:] #ラベル以外の部分
return(label, sentence)
def sentence_to_idx_freq(sentence):
dic = []
for idx_and_freq in sentence: #x:y
split_idx_freq = idx_and_freq.split(":") #['x', 'y']
idx = split_idx_freq[0]
freq = split_idx_freq[1]
for i in range(int(freq)):#idxの繰り返し数分だけリストにidxを追加
#print(idx)
dic.append(idx)
return dic
#dic.appeend(split_idx_freq[0])
#split_idx_freq[1])
#return split_idx_freq
#print(split_idx_time)
#return split_idx_time
#def read_instance(label, sentence):
#def lab_sents_to_read_instance(lab_sents):
# for sents in lab_sents: #sents:文のラベル+素性ベクトル1つ分(x:y)
# dic = []
# sents_split = sents.strip().split(" ")
# label = sents_split[0] #ラベル
# #print(label)
# sents_delete_label = sents_split[1:] #ラベル削除
# for idx_and_time in sents_delete_label: #x:yを一つずつ取り出し
# #print(idx_and_time)
# split_idx_time = idx_and_time.split(":") #:で区切ってリスト表示
# #print(split_idx_time)
#
# idx = split_idx_time[0]
# time = split_idx_time[1] #頻度回数の取り出し
# #print(idx)
#
# for i in range(int(time)):#idxの繰り返し数分だけリストにidxを追加
# #print(idx)
# dic.append(idx)
# tuple = (label,dic)
#
# return tuple
txt = sys.argv[1]
f = open(txt, "r")
lab_sents = f.read().strip().split("\n")
label_list=[]
idx_freq_list=[]
for line in lab_sents: #1行分のラベルと素性
label, sentence = line_split(line) #ラベルと文に分ける
#print(label,sentence)
label_list.append(label)
idx_freq_list.append(sentence_to_idx_freq(sentence))
"""
for idx_freq in sentence_to_idx_freq(sentence):
#print(idx_freq)
idx_freq_list.append(idx_freq)
#print(label_list,idx_freq_list)
"""
x = [label_list,idx_freq_list]
#print(x)
#idx_list = sentence_to_idx_times(sentence)
#print(lab_sents)
#a = lab_sents_to_read_instance(lab_sents)
#print(a)
|
# to check if the selected path valid path (not 0 (wall), and the path hasn't been travelled yet)
def isValidPath(maze, row, col, solutions):
if (maze[row][col] != 0) and \
((row >= 0 and row < len(maze)) and (col >= 0 and col < len(maze[0])) ) and \
solutions[row][col] == 0:
return True
else:
return False
# move the row and column given the direction
def move(row, col, dir):
newrow = row
newcol = col
if dir == "up":
newrow -= 1
elif dir == "down":
newrow += 1
elif dir == "left":
newcol -= 1
elif dir == "right":
newcol += 1
return newrow, newcol
# solve the maze
def solveMaze(maze, row, col, solutions):
# directions
arah = ["up","down","left","right"]
# check if our position is at the goal
if maze[row][col] == 2:
solutions[row][col] = 2
return True
# if we havent reached the goal yet
else:
# if we havent reached the goal yet
solutions[row][col] = 1
for dir in arah:
# we move to another cell
newrow, newcol = move(row, col, dir)
# check if path taken is valid
if isValidPath(maze, newrow, newcol, solutions):
oldrow, oldcol = row, col
row, col = newrow, newcol
if solveMaze(maze, row, col, solutions):
return True
else:
solutions[row][col] = 0
row, col = oldrow, oldcol
return False
def print_maze(maze):
for i in range(len(maze)):
for j in maze[i]:
print(j, end=" ")
print()
# main function to test the maze solver
if __name__ == '__main__':
maze = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,1,1,1,1,1,0,1,1,1,1,1,1,1,2],
[0,1,0,0,0,1,0,1,0,0,0,0,0,0,0],
[0,1,0,1,0,1,0,1,1,1,1,1,1,1,0],
[0,1,0,1,0,1,0,0,0,1,0,1,0,0,0],
[0,1,0,1,1,1,1,1,0,1,0,1,0,1,0],
[0,1,0,1,0,0,0,1,0,0,0,1,0,1,0],
[0,1,0,1,0,1,1,1,0,1,1,1,0,1,0],
[0,1,0,1,0,1,0,0,0,1,0,0,0,1,0],
[0,1,0,1,0,1,0,1,1,1,0,1,1,1,0],
[0,1,0,1,0,1,0,1,0,0,0,1,0,1,0],
[0,1,0,1,0,1,1,1,1,1,1,1,0,1,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
start_row = 1
start_col = 0
solutions = [[0 for a in range(len(maze[0]))] for b in range(len(maze))]
print("\nis this maze solvable? = ", solveMaze(maze, start_row, start_col, solutions))
print_maze(solutions)
|
'''
Created on Oct 2, 2017
@author: [email protected]
Pledge: I pledge my honor that I have abided by the Stevens Honor System
'''
def helper(l):
if l == [] or l[1:] == []:
return []
return [l[0]+l[1]] + helper(l[1:])
def pascal_row(n):
'''The pascal row function takes a single integer, which represents a row number and it returns that row. '''
if n == 0:
return [1]
return [1] + helper(pascal_row(n-1)) + [1]
def pascal_triangle(n):
'''The pascal triangle function takes in a single integer and returns a list
containing the values of all the rows up to and including row n'''
if n == 0:
return [[1]]
return pascal_triangle(n-1) + [pascal_row(n)]
|
# Two Sum
from typing import List
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
sort_nums = sorted(nums)
l = 0
r = len(sort_nums)-1
while r > l:
summ = sort_nums[l] + sort_nums[r]
if summ > target:
r -= 1
elif summ < target:
l += 1
else:
break
# sort_nums[l],sort_nums[r]
res = []
for i in range(len(nums)):
if nums[i] == sort_nums[l] or nums[i] == sort_nums[r]:
res.append(i)
if len(res) == 2:
break
else:
continue
return(res)
number = [2,7,11,5]
target = 9
a = Solution()
print(a.twoSum(number,target))
#===========================================================================================================
# 15. 3Sum
def threeSum(self, nums):
nums.sort()
ans = []
if len(nums) < 3:
return ans
for i in range(len(nums)):
if i >= 1 and nums[i-1] == nums[i]:
continue
left = i + 1
right = len(nums) -1
while left < right:
sum3 = nums[i] + nums[left] + nums[right]
if sum3 < 0:
left += 1
elif sum3 > 0:
right -= 1
else:
ans.append([nums[i], nums[left], nums[right]])
left += 1
while nums[left] == nums[left - 1] and left < right:
left += 1
return ans
# 18. 4Sum
|
from typing import List
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
sort_nums = sorted(nums)
l = 0
r = len(sort_nums)-1
while r > l:
summ = sort_nums[l] + sort_nums[r]
if summ > target:
r -= 1
elif summ < target:
l += 1
else:
break
# sort_nums[l],sort_nums[r]
res = []
for i in range(len(nums)):
if nums[i] == sort_nums[l] or nums[i] == sort_nums[r]:
res.append(i)
if len(res) == 2:
break
else:
continue
return(res)
number = [2,7,11,5]
target = 9
a = Solution()
print(a.twoSum(number,target))
|
'''
REINFORCE Monte Carlo Policy Gradient AI Player
Author: Lei Mao
Date: 5/2/2017
Introduction:
The REINFORCE_AI used REINFORCE, one of the Monte Carlo Policy Gradient methods, to optimize the AI actions in certain environment. It is extremely complicated to implement the loss function of REINFORCE in Keras. Tensorflow, though it takes time to construct the neural network, makes it easier to customize different loss functions.
'''
import os
import numpy as np
import tensorflow as tf
GAMMA = .99# decay rate of past observations
LEARNING_RATE = 0.00005 # learning rate in deep learning
RAND_SEED = 0 # random seed
SAVE_PERIOD = 100 # period of time steps to save the model
LOG_PERIOD = 100 # period of time steps to save the log of training
MODEL_DIR = 'model/' # path for saving the model
LOG_DIR = 'log/' # path for saving the training log
np.random.seed(RAND_SEED)
tf.set_random_seed(RAND_SEED)
class REINFORCE():
def __init__(self, num_actions, num_features):
# Initialize the number of player actions available in the game
self.num_actions = num_actions
# Initialize the number of features in the observation
self.num_features = num_features
# Initialize the model
self.model = self.REINFORCE_FC_Setup()
# Initialize tensorflow session
self.saver = tf.train.Saver()
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
# Initialize the episode number
self.episode = 0
# Initialize episode replays used for caching game transitions in one single episode
self.episode_observations = list() # observation feature list
self.episode_actions = list() # one-hot encoded action
self.episode_rewards = list() # immediate reward
def Softmax_Cross_Entropy(softmax_label, softmax_pred):
# Calculate cross entropy for softmaxed label and prediction matrices
# This function is not used in Tensorflow version of the code
return (-1.) * np.dot(softmax_label, np.log(softmax_pred.T))
def One_Hot_Encoding(labels, num_class):
# Transform labels to one-hot encoded array
# This function is not used in Tensorflow version of the code
matrix_encoded = np.zeros(len(labels), num_class, dtype = np.bool)
matrix_encoded[np.arrange(len(labels)), labels] = 1
return matrix_encoded
def REINFORCE_FC_Setup(self):
# Set up REINFORCE Tensorflow environment
with tf.name_scope('inputs'):
self.tf_observations = tf.placeholder(tf.float32, [None, self.num_features], name = 'observations')
self.tf_actions = tf.placeholder(tf.int32, [None,], name = 'num_actions')
self.tf_values = tf.placeholder(tf.float32, [None,], name = 'state_values')
# FC1
fc1 = tf.layers.dense(
inputs = self.tf_observations,
units = 16,
activation = tf.nn.tanh, # tanh activation
kernel_initializer = tf.random_normal_initializer(mean=0, stddev=0.5),
bias_initializer = tf.constant_initializer(0.1),
name='FC1'
)
# FC2
fc2 = tf.layers.dense(
inputs = fc1,
units = 32,
activation = tf.nn.tanh, # tanh activation
kernel_initializer = tf.random_normal_initializer(mean=0, stddev=0.4),
bias_initializer = tf.constant_initializer(0.1),
name='FC2'
)
# FC3
# fc3 = tf.layers.dense(
# inputs = fc2,
# units = 8,
# activation = tf.nn.sigmoid, # tanh activation
# kernel_initializer = tf.random_normal_initializer(mean=0, stddev=0.3),
# bias_initializer = tf.constant_initializer(0.1),
# name='FC3'
# )
# fc4 = tf.layers.dense(
# inputs = fc3,
# units = 8,
# activation = tf.nn.leaky_relu, # tanh activation
# kernel_initializer = tf.random_normal_initializer(mean=0, stddev=0.3),
# bias_initializer = tf.constant_initializer(0.1),
# name='FC4'
# )
# FC3
logits = tf.layers.dense(
inputs = fc2,
units = self.num_actions,
activation = None,
kernel_initializer = tf.random_normal_initializer(mean=0, stddev=0.3),
bias_initializer = tf.constant_initializer(0.1),
name='FC5'
)
# Softmax
self.action_probs = tf.nn.softmax(logits, name='action_probs')
with tf.name_scope('loss'):
# To maximize (log_p * V) is equal to minimize -(log_p * V)
# Construct loss function mean(-(log_p * V)) to be minimized by tensorflow
neg_log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits = logits, labels = self.tf_actions) # this equals to -log_p
self.loss = tf.reduce_mean(neg_log_prob * self.tf_values)
with tf.name_scope('train'):
self.optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
def REINFORCE_FC_Restore(self):
# Restore the trained model
self.saver.restore(self.sess, MODEL_DIR + 'AI_model')
def Store_Transition(self, observation, action, reward):
# Store game transitions used for updating the weights in the Policy Neural Network
self.episode_observations.append(observation)
self.episode_actions.append(action)
self.episode_rewards.append(reward)
def Clear_Episode_Replays(self):
# Clear game transitions
self.episode_observations = list()
self.episode_actions = list()
self.episode_rewards = list()
def Calculate_Value(self):
# The estimate of v(St) is updated in the direction of the complete return:
# Gt = Rt+1 + gamma * Rt+2 + gamma^2 * Rt+3 + ... + gamma^(T-t+1)RT;
# where T is the last time step of the episode.
state_values = np.zeros_like(self.episode_rewards, dtype=np.float64)
state_values[-1] = self.episode_rewards[-1]
for t in reversed(range(0, len(self.episode_rewards)-1)):
state_values[t] = GAMMA * state_values[t+1] + self.episode_rewards[t]
# Normalization to help the control of the gradient estimator variance
state_values -= np.mean(state_values)
state_values /= np.std(state_values)
return state_values
def REINFORCE_FC_Train(self):
# Train model using data from one episode
inputs = np.array(self.episode_observations)
state_values = self.Calculate_Value()
# Start gradient descent
_, train_loss = self.sess.run([self.optimizer, self.loss], feed_dict = {
self.tf_observations: np.vstack(self.episode_observations),
self.tf_actions: np.array(self.episode_actions),
self.tf_values: state_values})
# Print train_loss
print('Episode train loss: %f' %train_loss)
# Clear episode replays after training for one episode
self.Clear_Episode_Replays()
return train_loss
def AI_Action(self, observation):
# Calculate action probabilities when given observation
prob_weights = self.sess.run(self.action_probs, feed_dict = {self.tf_observations: observation[np.newaxis, :]})
# Randomly choose action according to the probabilities
action = np.random.choice(range(prob_weights.shape[1]), p=prob_weights.ravel())
return action
|
def is_triangle(func):
"""Tests, if given 3 sides, they make up a triangle.
For a shape to be a triangle at all, all sides have to be of length > 0,
and the sum of the lengths of any two sides must be greater than or equal
to the length of the third side.
Input: list with 3 integers
Returns: True or False
"""
def wrapper(arg):
if all(v == 0 for v in arg) or sorted(arg)[0] + sorted(arg)[1] < sorted(arg)[2]:
return False
else:
return func(arg)
return wrapper
@is_triangle
def is_equilateral(sides):
"""Tests if all three sides of a triangle have the same length.
Input: list with 3 integers
Returns: True or False
"""
return sides[0] == sides[1] == sides[2]
@is_triangle
def is_isosceles(sides):
"""Tests if at least two sides of a triangle have the same length.
Input: list with 3 integers
Returns: True or False
"""
return sides[0] == sides[1] or sides[0] == sides[2] or sides[1] == sides[2]
@is_triangle
def is_scalene(sides):
"""Tests if all sides of a triangle have different lengths.
Input: list with 3 integers
Returns: True or False
"""
return sides[0] != sides[1] and sides[0] != sides[2] and sides[1] != sides[2]
|
def prime_factors(natural_number):
"""Prime factorisation of an integer
"""
prime_factors = []
i = 2
while natural_number > 1:
if natural_number % i == 0: # check if i is a factor
if is_prime_number(i): # if i is a factor, check if i is a prime
prime_factors.append(i)
natural_number = natural_number / i
else:
i += 1
return prime_factors
def is_prime_number(x):
if x >= 2:
for y in range(2,x):
if not ( x % y ):
return False
else:
return False
return True
|
#!/usr/bin/env python
"""
Ask for a string and print the lenght of that string.
"""
#import
__author__ = "Stijn Janssen"
__email__ = "[email protected]"
__status__ = "Development"
def main():
#Ask for a word
word = input("Give me a word.\n")
#Give the lenght of the word
print(len(word))
if __name__ == '__main__': # code to execute if called from command-line
main()
|
#!/usr/bin/env python3
"""
each layer should be given the name layer
"""
import tensorflow as tf
def create_layer(prev, n, activation):
"""
prev: is the tensor output of the previous layer
n: is the number of nodes in the layer to create
activation: is the activation function that the layer should use
tf.contrib.layers.variance_scaling_initializer(mode="FAN_AVG") to implement He et. al initialization for the layer weights
each layer have the name 'layer'
Returns: the tensor output of the layer
"""
i = tf.contrib.layers.variance_scaling_initializer(mode="FAN_AVG")
la = tf.layers.Dense(
units=n,
activation=activation,
kernel_initializer=i,
name='layer'
)
return la(prev)
|
def cal_room(people):
room6=0
room4=0
room2=0
total_price=10000
for room6_num in range(0,6):
for room4_num in range(0,8):
for room2_num in range(0,14):
if((room6_num*6+room4_num*4+room2_num*2)>=people):
num=room6_num*120+room4_num*100+room2_num*80
if num <= total_price:
total_price=num
room6=room6_num
room4=room4_num
room2=room2_num
print (room6, room4, room2, total_price)
print (room6, room4, room2)
cal_room(16)
cal_room(26)
|
class Student(object):
def __init__(self, name, age):
self.name = name
self.age = age
def introduce(self):
print("I am", self.name, " And"," I am", self.age )
class Student_Sport(Student):
def sport(self):
print(self.name," likes Swimming !!!")
maidou = Student("Maidou", 11)
Luke = Student("Luke", 9)
maidou.introduce()
Luke.introduce()
Luke1 = Student_Sport("Luke", 9)
Luke1.introduce()
Luke1.sport()
maidou.sport() |
def isprime(y):
isprime=True
#print(y)
if y == 0:
return False
if y == 1:
return True
for a in range(2,y):
if y%a==0:
isprime=False
break
return isprime
#x=int(input("input a number"))
y=int(input("input a number"))
for a in range(y):
if(isprime(a)):
print (a,end=" ")
|
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
def remainder() :
evenList = [x for x in range(1, 21) if x % 2 == 0 ]
return evenList
def oddNumber() :
oddList = [ x for x in range(1, 21) if x % 2 != 0]
return oddList
def divisible(num1 , num2) :
if isNumber(num1) and isNumber(num2):
return num1 % num2 == 0
def isNumber(obj) :
return isinstance(obj, (int, long))
if __name__ == '__main__':
print remainder()
print oddNumber()
num1 = int(raw_input("Enter num1 > "))
num2 = int(raw_input("Enter num2 > "))
print divisible(num1, num2)
|
# Спортсмен занимается ежедневными пробежками. В первый день его результат составил a километров.
# Каждый день спортсмен увеличивал результат на 10 % относительно предыдущего.
# Требуется определить номер дня, на который результат спортсмена составит не менее b километров.
# Программа должна принимать значения параметров a и b и выводить одно натуральное число — номер дня.
# Например: a = 2, b = 3.
# Результат:
# 1-й день: 2
# 2-й день: 2,2
# 3-й день: 2,42
# 4-й день: 2,66
# 5-й день: 2,93
# 6-й день: 3,22
# Ответ: на 6-й день спортсмен достиг результата — не менее 3 км.
point_a = int(input('Введите начальное значение дистанции: '))
point_b = int(input('Введите конечное значение дистанции: '))
day = 1
while point_a < point_b:
point_a = point_a + point_a * 0.1
day += 1
print(f'Ответ: на {day}-й день спортсмен достиг результата - не менее {point_b} км')
|
# Реализовать программу работы с органическими клетками, состоящими из ячеек.
# Необходимо создать класс Клетка. В его конструкторе инициализировать параметр,
# соответствующий количеству ячеек клетки (целое число). В классе должны быть реализованы методы перегрузки арифметических операторов:
# сложение (__add__()), вычитание (__sub__()), умножение (__mul__()), деление (__truediv__()).
# Данные методы должны применяться только к клеткам и выполнять увеличение, уменьшение, умножение и целочисленное (с округлением до целого) деление клеток, соответственно.
# Сложение. Объединение двух клеток. При этом число ячеек общей клетки должно равняться сумме ячеек исходных двух клеток.
# Вычитание. Участвуют две клетки. Операцию необходимо выполнять только если разность количества ячеек двух клеток больше нуля, иначе выводить соответствующее сообщение.
# Умножение. Создается общая клетка из двух. Число ячеек общей клетки определяется как произведение количества ячеек этих двух клеток.
# Деление. Создается общая клетка из двух. Число ячеек общей клетки определяется как целочисленное деление количества ячеек этих двух клеток.
# В классе необходимо реализовать метод make_order(), принимающий экземпляр класса и количество ячеек в ряду. Данный метод позволяет организовать ячейки по рядам.
# Метод должен возвращать строку вида *****\n*****\n*****..., где количество ячеек между \n равно переданному аргументу. Если ячеек на формирование ряда не хватает, то в последний ряд записываются все оставшиеся.
# Например, количество ячеек клетки равняется 12, количество ячеек в ряду — 5. Тогда метод make_order() вернет строку: *****\n*****\n**.
# Или, количество ячеек клетки равняется 15, количество ячеек в ряду — 5. Тогда метод make_order() вернет строку: *****\n*****\n*****.
class Cell:
def __init__(self, amount_cell):
self.amount_cell = amount_cell
@staticmethod
def make_order(count_row, cell):
while True:
print('*' * count_row)
cell -= count_row
if cell < count_row:
print('*' * cell)
break
def __add__(self, other):
return self.amount_cell + other.amount_cell
def __sub__(self, other):
if self.amount_cell - other.amount_cell > 0:
return self.amount_cell - other.amount_cell
else:
print('Результат вычетания мееньше 0')
def __mul__(self, other):
return self.amount_cell * other.amount_cell
def __truediv__(self, other):
return self.amount_cell // other.amount_cell
c1 = Cell(17)
c2 = Cell(3)
print(c1 + c2)
print(c1 - c2)
print(c1 * c2)
print(c1 / c2)
Cell.make_order(5, c1.amount_cell)
|
# 2. Пользователь вводит время в секундах.
# Переведите время в часы, минуты и секунды и выведите в формате чч:мм:сс.
# Используйте форматирование строк.
person_time = int(input('Введите время в секундах: '))
hours = person_time // 3600
minutes = person_time // 60 - hours * 60
seconds = person_time - 3600 * hours - 60 * minutes
if hours > 9:
zero_hours = ''
else:
zero_hours = 0
if minutes > 9:
zero_minutes = ''
else:
zero_minutes = 0
if seconds > 9:
zero_seconds = ''
else:
zero_seconds = 0
print(f'{zero_hours}{hours}:{zero_minutes}{minutes}:{zero_seconds}{seconds}') |
# Реализовать генератор с помощью функции с ключевым словом yield, создающим очередное значение.
# При вызове функции должен создаваться объект-генератор.
# Функция должна вызываться следующим образом: for el in fact(n).
# Функция отвечает за получение факториала числа, а в цикле необходимо выводить только первые n чисел, начиная с 1! и до n!.
# Подсказка: факториал числа n — произведение чисел от 1 до n. Например, факториал четырёх 4! = 1 * 2 * 3 * 4 = 24.
def fact(num1):
i = 0
result = []
fac = 1
while i < num1:
i += 1
fac = fac * i
result.append(fac)
for el in result:
yield el
g = fact(5)
print(g)
for el in fact(5):
print(el)
|
def isBalanced(mystring):
result = mystring.count("(") == mystring.count(")")
print(result)
return(result)
isBalanced("a(bcd)d")
isBalanced("(kjds(hfkj)sdhf")
isBalanced("(sfdsf)(fsfsf")
isBalanced("{[]}()")
isBalanced("{[}]")
with open("input.txt", 'r') as f:
inputArray = []
for line in f:
print(line)
inputArray.append(line.split(","))
inputArray = sorted(inputArray, key=lambda x: x[1])
print(inputArray)
def fib(n):
a, b = 0, 1
for i in range(n-1):
a, b = b, a+b
print(a)
return a
print(fib(5))
def int2str(numb):
return str(numb)
print(int2str(1234))
|
import unittest
from .game import Game
class TestGameResults(unittest.TestCase):
def testResults(self):
data = [[2, 13, 8, 'RYGPBRYGBRPOP', 'R,B,GG,Y,P,B,P,RR', 'Player 1 won after 7 cards.'],
[2, 6, 5, 'RYGRYB', 'R,YY,G,G,B', 'Player 2 won after 4 cards.'],
[3, 9, 6, 'QQQQQQQQQ', 'Q,QQ,Q,Q,QQ,Q', 'No player won after 6 cards.']]
for case in data:
game = Game(case[0], case[1], case[2], case[3], case[4])
result = game.run_game()
self.assertEquals(result, case[5]) |
class Language:
en="english"
ua="українська"
ru="русский"
de="deutsche"
class Human:
def __init__(self, name, age, language):
self.name = name
self.age = age
self.language = language
def __str__(self):
return "Name: {:>10}, age:{:3}, language:{}".format(self.name,
self.age,
self.language)
def speak(self):
if self.language == Language.en:
print("Hello, {}!".format(self.name))
elif self.language == Language.ua:
print("Привіт, {}!".format(self.name))
elif self.language == Language.ru:
print("Привет, {}!".format(self.name))
elif self.language == Language.de:
print("Guten Tag, {}!".format(self.name))
if __name__=="__main__":
humans=[]
humans.append(Human("Broderick", 45, Language.en))
humans.append(Human("Кирил", 15, Language.ru))
humans.append(Human("Софія", 18, Language.ua))
humans.append(Human("Otto", 32, Language.de))
for thishuman in humans:
print(thishuman)
thishuman.speak()
print()
|
def text_year(old):
# для чисел, которые заканчиваются на 11,12,13,14 - пишется "лет"
year = old%10
dyear = old%100//10
if year in [2,3,4] and dyear != 1:
return "года"
elif year == 1 and dyear !=1:
return "год"
else:
return "лет"
def human(name, sex):
def how_old():
old = int(input("\n{}, cколько Вам полных лет: ".format(name.title())))
print("Добрый день, {0} {1}. Вам {2} {3}.".format(_sexWrite[sex],
name.title(), old, text_year(old)))
return how_old
def input_sex():
man = ["m","м","man"]
sex = input("Ваш пол ({}/{}): ".format(*_sex))
if sex.lower() in man:
return _sex[0]
else:
return _sex[1]
def main():
fhello = []
for num in range(1,4):
name = input("Как зовут {}-го пользователя: ".format(num))
sex = input_sex()
fhello.append(human(name, sex))
for fn in fhello:
fn()
_sex = ("м","ж")
_sexWrite = {"м":"г-н","ж":"г-жа"}
main()
|
l = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
print list(l) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
print max(l) # 9
print min(l) # 0
# index(l) # NameError: name 'index' is not defined
# count(l) # NameError: name 'count' is not defined
print len(l) # 10
print sorted(l) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# remove(l) # NameError: name 'remove' is not defined
# append(l) # NameError: name 'append' is not defined
print l.index(5) # 5
print l.count(6) # 1
print l.remove(5) # None
print l.append(5) # None |
#https://leetcode.com/problems/find-numbers-with-even-number-of-digits/
class Solution(object):
def findNumbers(self, nums):
even = 0
for i, num in enumerate(nums):
if len(str(nums[i]))%2 == 0:
even += 1
else:
even += 0
return even |
'efficiently compute median of a set of numbers given one by one'
from __future__ import division
from heapq import heappush, heappop
import unittest
class RunningMedian:
def __init__(self):
self.left_max_heap = []
self.right_min_heap = []
def insert(self, item):
left_len = len(self.left_max_heap)
right_len = len(self.right_min_heap)
if left_len == right_len == 0:
heappush(self.left_max_heap, -item)
return
if item < -self.left_max_heap[0]:
heappush(self.left_max_heap, -item)
else:
heappush(self.right_min_heap, item)
left_len = len(self.left_max_heap)
right_len = len(self.right_min_heap)
if right_len < left_len:
l_pop = -heappop(self.left_max_heap)
heappush(self.right_min_heap, l_pop)
elif right_len > left_len:
r_pop = heappop(self.right_min_heap)
heappush(self.left_max_heap, -r_pop)
def getMedian(self):
left_len = len(self.left_max_heap)
right_len = len(self.right_min_heap)
if left_len > right_len:
return -self.left_max_heap[0]
elif left_len < right_len:
return self.right_min_heap[0]
else:
return (-self.left_max_heap[0] + self.right_min_heap[0]) / 2
class Test_RunningMedian(unittest.TestCase):
def setUp(self):
self.rm = RunningMedian()
def test_insert1(self):
elems_to_inset = [
(4, 4),
(0, 2),
(3, 3),
(5, 3.5),
(1, 3),
(2, 2.5),
(6, 3)]
for elem, exp_median in elems_to_inset:
self.rm.insert(elem)
self.assertEquals(exp_median, self.rm.getMedian(),
"expected median = {exp_median}; got = {calc_median} "
"after inserting element = {elem}".format(
exp_median = exp_median,
calc_median= self.rm.getMedian(),
elem = elem))
def test_insert2(self):
elems_to_inset = [
(1, 1),
(3, 2),
(8, 3),
(9, 5.5),
(6, 6),
(4, 5),
(5, 5),
(7, 5.5),
(2, 5),
(0, 4.5)]
for elem, exp_median in elems_to_inset:
self.rm.insert(elem)
self.assertEquals(exp_median, self.rm.getMedian(),
"expected median = {exp_median}; got = {calc_median} "
"after inserting element = {elem}".format(
exp_median = exp_median,
calc_median= self.rm.getMedian(),
elem = elem))
if __name__ == '__main__':
unittest.main()
|
'write a program to print pre-order binary tree traversal non-recursively'
from binary_tree import BinaryTree, get_toy_binary_tree2
import unittest
def pre_order_non_recur(n):
if n == None:
return []
result = []
util_stack = [n]
while len(util_stack) != 0:
top = util_stack.pop()
result.append(top['data'])
if top['right']:
util_stack.append(top['right'])
if top['left']:
util_stack.append(top['left'])
return result
class Test_pre_order_non_recur(unittest.TestCase):
def test_basic_functionality(self):
in_ordr = [1, 3, 16, 29, 14, 86, 4, 18, 69, 63, 141]
pre_ordr = [4, 3, 1, 29, 16, 86, 14, 69, 18, 141, 63]
post_order = [1, 16, 14, 86, 29, 3, 18, 63, 141, 69, 4]
tr = BinaryTree.from_in_and_pre_order_traversal(in_ordr, pre_ordr)
curr_pre_order = pre_order_non_recur(tr.root)
self.assertEqual(curr_pre_order, pre_ordr)
def test_basic_functionality1(self):
tr = get_toy_binary_tree2()
expecte_pre_order = [5, 3, 9, 6, 8, 8, 42, 7, 98, 23, 28, 0, 86]
self.assertEqual(expecte_pre_order, pre_order_non_recur(tr.root))
if __name__ == '__main__':
unittest.main()
|
'compute the k closest stars to earth. Assume earth is a (0, 0, 0)'
import unittest
from heapq import heappush, heappushpop, heappop
def get_k_closest(lst, k = 3):
h = []
for p in lst:
dist = p[0] ** 2 + p[1] ** 2 + p[2] ** 2
if len(h) < k:
heappush(h, (-dist, p))
else:
heappushpop(h, (-dist, p))
result = []
while len(h) != 0:
result.append(heappop(h)[1])
return result
class TestKClosest(unittest.TestCase):
def test_basic_functionality(self):
stars = [ (1, 0, 9), (-1, 1, 3), (3, 4, 0), (3, 1, 2), (3, 1, 1)]
k = 3
expected_out = [(3, 1, 2), (-1, 1, 3), (3, 1, 1)]
self.assertEqual(expected_out, get_k_closest(stars, k))
def test_test_all_dist_equal(self):
stars = [(3, 4, 0), (4, 3, 0), (4, 0, 3), (0, 3, 4), (3, 0, 4)]
expected_out = [(3, 4, 0), (4, 0, 3), (4, 3, 0)]
k = 3
self.assertEqual(expected_out, get_k_closest(stars, k))
def test_k_greater_than_len(self):
stars = [(3, 4, 0), (4, 3, 0)]
expected_out = [(3, 4, 0), (4, 3, 0)]
k = 3
self.assertEqual(expected_out, get_k_closest(stars, k))
if __name__ == '__main__':
unittest.main()
|
'''Write a program which takes as input an integer and a binary tree with
integer weights, and checks if there exists a leaf whose path weight
equals the given integer.
path-weight: pw of a node is the sum of the integers on the unique path from the
root to that node
'''
|
"find the i'th order statistic in an array A"
from random import randint
def randomized_partition(A, start_ind, end_ind):
'partition array A randomly by choosing a random pivot'
piv_ind = randint(start_ind, end_ind)
A[start_ind], A[piv_ind] = A[piv_ind], A[start_ind]
i = start_ind + 1
pivot = A[start_ind]
for j in range(start_ind + 1, end_ind + 1):
if A[j] < pivot:
A[i], A[j] = A[j], A[i]
i += 1
A[start_ind], A[i - 1] = A[i - 1], A[start_ind]
return i - 1
def random_select(A, start_ind, end_ind, i_order_to_find):
'find the ith order statistic from array A'
if start_ind == end_ind:
return A[start_ind]
j = randomized_partition(A, start_ind, end_ind)
k = j - start_ind
if k + 1 == i_order_to_find:
return A[j]
elif k + 1 > i_order_to_find:
return random_select(A, start_ind, j - 1, i_order_to_find)
else:
return random_select(A, j + 1, end_ind, i_order_to_find -k -1)
|
'''We are given items 1, 2, 3, 4, 5...
with integral weights w1, w2, w3, w4, w5...
and values of items v1, v2, v3, v4, v5...
W -> maximum weight the knapsack can carry
We would like to find what is the maximum value and what items to pack if
Case 1) There is only 1 count of each item (art gallery)
Case 2) There is unlimited numbers of each item (supermarket)
'''
import unittest
def get_max_val(d, W):
'''
given data d of form
d = {
1 : {'weight':4, 'value':5},
.
.
}
and W (maximum knapsack capacity)
find the maximum value of goods that can be packed
'''
item_weight_value_table = [ [None] * (W + 1) for i in range((len(d) + 1))]
for item in range(len(d) + 1):
item_weight_value_table[item][0] = 0
for weight in range(W + 1):
item_weight_value_table[0][weight] = 0
for item in range(1, len(d) + 1):
for wt in range(1, W + 1):
if d[item]['weight'] > wt:
item_weight_value_table[item][wt] = item_weight_value_table[item - 1][wt]
else:
item_weight_value_table[item][wt] = max(
item_weight_value_table[item - 1][wt],
d[item]['value'] + item_weight_value_table[item - 1][wt - d[item]['weight']])
return item_weight_value_table[-1][-1]
class Test_knapsack_case1(unittest.TestCase):
def setUp(self):
self.data1 = {
1 : {'weight': 3, 'value': 5},
2 : {'weight': 2, 'value': 6},
3 : {'weight': 5, 'value': 7},
4 : {'weight': 10, 'value': 15},
5 : {'weight': 8, 'value': 12},
}
def test_1(self):
W = 1
self.assertEqual(get_max_val(self.data1, W), 0)
W = 2
self.assertEqual(get_max_val(self.data1, W), 6)
W = 3
self.assertEqual(get_max_val(self.data1, W), 6)
W = 5
self.assertEqual(get_max_val(self.data1, W), 11)
W = 8
self.assertEqual(get_max_val(self.data1, W), 13)
W = 10
self.assertEqual(get_max_val(self.data1, W), 18)
W = 11
self.assertEqual(get_max_val(self.data1, W), 18)
W = 12
self.assertEqual(get_max_val(self.data1, W), 21) # items 10 + 2 -> 15 + 6
W = 13
self.assertEqual(get_max_val(self.data1, W), 23) # items 8 + 2 + 3 -> 12 + 6 + 5
if __name__ == '__main__':
unittest.main()
|
#!/usr/bin/env python3
'tests for binary_tree.py'
from binary_tree import BinaryTree, BinarySearchTree,\
get_toy_binary_tree, get_empty_tree, get_toy_binary_search_tree, \
BinaryTreeWithPrarent
import unittest
class TestBinaryTree(unittest.TestCase):
def setUp(self):
self.tr = get_toy_binary_tree()
self.empty_tr = get_empty_tree()
self.bst = get_toy_binary_search_tree()
def test_basic_functionality(self):
self.assertTrue(self.tr)
self.assertTrue(self.bst)
def test_size(self):
self.assertEqual(0, self.empty_tr.size())
self.assertEqual(9, self.tr.size())
self.assertEqual(12, self.bst.size())
def test_maxDepth(self):
self.assertEqual(0, self.empty_tr.maxDepth())
self.assertEqual(4, self.tr.maxDepth())
self.assertEqual(5, self.bst.maxDepth())
def test_printInOrder(self):
print("printing bst -->")
self.bst.printInOrder()
print("printing normal tree -->")
self.tr.printInOrder()
print("printing empty tree")
self.empty_tr.printInOrder()
def test_build_binary_tree(self):
in_ordr = [1, 3, 16, 29, 14, 86, 4, 18, 69, 63, 141]
pre_ordr = [4, 3, 1, 29, 16, 86, 14, 69, 18, 141, 63]
post_order = [1, 16, 14, 86, 29, 3, 18, 63, 141, 69, 4]
tr = BinaryTree.from_in_and_pre_order_traversal(in_ordr, pre_ordr)
print("printing post order -->")
tr.printPostOrder()
print("expected order -->")
print("(" + " ".join(map(str, post_order)) + " )")
self.assertEqual(5, tr.maxDepth())
def test_binary_tree_in_order_path(self):
in_ordr = [1, 3, 16, 29, 14, 86, 4, 18, 69, 63, 141]
pre_ordr = [4, 3, 1, 29, 16, 86, 14, 69, 18, 141, 63]
tr = BinaryTree.from_in_and_pre_order_traversal(in_ordr, pre_ordr)
self.assertEqual(tr.getInOrderPath(), in_ordr)
class TestBinarySearchTree(unittest.TestCase):
def setUp(self):
self.empty_bst = BinarySearchTree()
self.single_node_bst = BinarySearchTree()
self.single_node_bst.insert(-1)
self.small_bst = BinarySearchTree()
self.small_bst.insert(43)
self.small_bst.insert(43)
self.small_bst.insert(-2)
self.small_bst.insert(102)
self.toy_bst = get_toy_binary_search_tree()
def test_maxValue(self):
self.assertRaises(TypeError, self.empty_bst.maxValue)
self.assertEqual(-1, self.single_node_bst.maxValue())
self.assertEqual(102, self.small_bst.maxValue())
self.assertEqual(102, self.toy_bst.maxValue())
def test_minValue(self):
self.assertRaises(TypeError, self.empty_bst.minValue)
self.assertEqual(-1, self.single_node_bst.minValue())
self.assertEqual(-2, self.small_bst.minValue())
self.assertEqual(-1, self.toy_bst.minValue())
def test_delete_node(self):
values = [7, 3, 23, 1, 5, 9, 52, 2, 4, 36]
tr = BinarySearchTree()
for v in values:
tr.insert(v)
tr.populate_parent()
expected_in_order_tree_after_7_delete = \
[1, 2, 3, 4, 5, 9, 23, 36, 52]
tr.delete_data(7)
self.assertEquals(tr.getInOrderPath(), expected_in_order_tree_after_7_delete)
self.assertRaises(Exception, tr.delete_data, 6)
expected_in_order = \
[1, 3, 4, 5, 9, 23, 36, 52]
tr.delete_data(2)
self.assertEquals(tr.getInOrderPath(), expected_in_order)
expected_in_order = \
[1, 4, 5, 9, 23, 36, 52]
tr.delete_data(3)
self.assertEquals(tr.getInOrderPath(), expected_in_order)
expected_in_order = \
[1, 4, 5, 9, 23, 36]
tr.delete_data(52)
self.assertEquals(tr.getInOrderPath(), expected_in_order)
expected_in_order = \
[1, 5, 9, 23, 36]
tr.delete_data(4)
self.assertEquals(tr.getInOrderPath(), expected_in_order)
class TestBinaryTreeWithParent(unittest.TestCase):
def test_populate_parent(self):
in_ordr = [1, 3, 16, 29, 14, 86, 4, 18, 69, 63, 141]
pre_ordr = [4, 3, 1, 29, 16, 86, 14, 69, 18, 141, 63]
tr = BinaryTreeWithPrarent.from_in_and_pre_order_traversal(in_ordr, pre_ordr)
tr.populate_parent()
self.assertEqual(None, tr.root['parent'])
self.assertEqual(tr.root['left'], tr.root['left']['right']['parent'])
self.assertEqual(tr.root['left'], tr.root['left']['left']['parent'])
self.assertEqual(141, tr.root['right']['right']['left']['parent']['data'])
self.assertEqual(tr.root['right'], tr.root['right']['left']['parent'])
self.assertEqual(tr.getInOrderPath(), in_ordr)
if __name__ == '__main__':
unittest.main()
|
'tests for quicksort implementation'
from quicksort_impl import quicksort, partition
from random import randint
import unittest
class Test_Quicksort_impl(unittest.TestCase):
def test_partition(self):
lst1 = [2, 5, 4, 7, 3, 1, 6]
self.assertEqual(5, partition(lst1, 0, len(lst1) - 1))
expected_lst = [2, 5, 4, 3, 1, 6, 7]
self.assertEqual(expected_lst, lst1)
self.assertEqual(6, partition(lst1, 0, len(lst1) - 1))
self.assertEqual(expected_lst, lst1)
self.assertEqual(0, partition(lst1, 0, len(lst1) - 3))
expected_lst = [1, 5, 4, 3, 2, 6, 7]
self.assertEqual(expected_lst, lst1)
lst2 = [5] * 5
self.assertEqual(4, partition(lst2, 0, len(lst2) - 1))
def test_quicksort(self):
lst1 = [2, 5, 4, 7, 3, 1, 6]
sorted_list = sorted(lst1)
quicksort(lst1, 0, len(lst1) - 1)
self.assertEqual(sorted_list, lst1)
lst2 = [5] * 10
quicksort(lst2, 0, len(lst2) - 1)
self.assertEqual(lst2, [5] * 10)
lst3 = []
quicksort(lst3, 0, len(lst3) - 1)
self.assertEqual(lst3, [])
size = 100000
rand_arr = [randint(0, 200) for i in range(size)]
sorted_rand_arr = sorted(rand_arr)
quicksort(rand_arr, 0, size - 1)
self.assertEqual(sorted_rand_arr, rand_arr)
if __name__ == '__main__':
unittest.main()
|
'search a sorted array for the first occurence of k'
import unittest
def get_first_occur(lst, k):
l = 0
u = len(lst) - 1
while l <= u:
m = l + (u - l) // 2
if lst[m] == k:
if m == 0:
return 0
if lst[m - 1] == k:
u = m - 1
else:
return m
elif lst[m] < k:
l = m + 1
else:
u = m - 1
return -1
class Test_GetFirstOccurence(unittest.TestCase):
def test_basic_functionality(self):
lst = [-14, -10, 2, 108, 108, 243, 285, 285, 285, 401]
self.assertEqual(3, get_first_occur(lst, 108))
self.assertEqual(6, get_first_occur(lst, 285))
self.assertEqual(0, get_first_occur(lst, -14))
self.assertEqual(9, get_first_occur(lst, 401))
self.assertEqual(-1, get_first_occur(lst, -21))
self.assertEqual(-1, get_first_occur(lst, -11))
self.assertEqual(-1, get_first_occur(lst, 284))
self.assertEqual(-1, get_first_occur(lst, 402))
def test_all_inp_list_same(self):
lst = [255] * 10
tgt = 255
self.assertEqual(0, get_first_occur(lst, tgt))
if __name__ == '__main__':
unittest.main()
|
n = int(input())
for i in range(n):
A, B = map(int, input().split())
if B == 0:
print("divisao impossivel")
else:
print("{:.1f}".format(A/B))
|
entradas = input()
A, B, C = entradas.split(" ")
A = float(A)
B = float(B)
C = float(C)
print("TRIANGULO: {:.3f}".format((A*C)/2))
print("CIRCULO: {:.3f}".format(3.14159*C**2))
print("TRAPEZIO: {:.3f}".format((A+B)*(C/2)))
print("QUADRADO: {:.3f}".format(B*B))
print("RETANGULO: {:.3f}".format(A*B))
|
n = int(input())
for num in range(1, n + 1):
print(num, num ** 2, num ** 3)
print(num, num ** 2 + 1, num ** 3 + 1) |
import random
number=random.randint(1,100)
guess=0
count=0
while guess!=number and guess!="exit":
guess=int(input("whts your guess man?\n"))
if guess=="exit":
break
guess=int(guess)
count+=1
if guess<number:
print("too low!")
elif guess>number:
print("too high!")
else:
print("you got it!")
print("and it only took you",count,"tries!") |
# The in and not in operators
a = "Welcome"
if 'come' in a:
print('Inside')
if 'busy' not in a:
print('not in') |
class Rectangle:
def __init__(self, height = 1, width = 2):
self.height = height
self.width = width
def getArea(self):
return self.height* self.width
def getPerimeter(self):
return self.height * self.width*2
a = Rectangle(int(input('enter the height here: ')), int(input('enter the width here: ')))
print("The Area of the rectangle is", a.getArea())
print("The Perimeter of the rectangle is", a.getPerimeter()) |
#Creating a prime number
my_list= [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
for num in (my_list):
if num>1:
for i in range (2, num):
if num%i== 0:
print(num, ' not a prime')
break
else:
print(num, 'is a prime number') |
'''
This script allows you to INPUT countries of interest, data of interest, starting date and
an integer smoothing parameter in order to plot the time series for the given type of data
and country set using matplotlib module and parsing the information provided in the dataset
collected by "Our World in Data" organization. Credits for the dataset goes to:
Hasell, J., Mathieu, E., Beltekian, D. et al. A cross-country database of COVID-19 testing.
Sci Data 7, 345 (2020). https://doi.org/10.1038/s41597-020-00688-8
'''
import csv
import requests
import datetime
import os
import pandas as pd
import warnings
warnings.filterwarnings("ignore", "(?s).*MATPLOTLIBDATA.*", category=UserWarning)
import matplotlib.pyplot as plt
import PIL.Image as pili
import data as dt
##################################################
##### GENERIC FUNCTION rolling: dataset -> dataset
##################################################
def rolling_n_deep_avg(alist,n_deep):
'''
INPUT: a list, integer n_deep
OUTPUT: rolling "n_deep" data average list ("n_deep"-1 elements shorter).
Integer rounded result
'''
new_list = []
for elem in range(len(alist)-n_deep+1):
subsidiary_list = [alist[elem+num] for num in range(n_deep)]
new_list.append( sum(subsidiary_list)/n_deep)
return new_list
#########################
#### PARSE DATA FUNCTIONS
#########################
def transdate(string):
"""
INPUT: string of the form "YYYY-MM-DD"
OUTPUT: datetime.date object with the corresponding date
"""
day = int(string[8:])
month = int(string[5:7])
year = int(string[:4])
#print(day, month, year)
return datetime.date(year, month, day)
def parse_title(a_string):
'''
Take a string such as 'new_deaths_per_million' and return 'New deaths per million'
'''
a_list = a_string.split('_')
b_string = (' '.join(a_list)).capitalize()
return b_string
#####################################################
#####################################################
def parser_local(countries):
"""
INPUT: List of Country Names in English
OUTPUT: A dictionary of dictionaries. The key value of the outer dictionary is a tuple (date, 'country').
The inner dictionary has keys from dt.COLUMNS and their respective values.
"""
num_of_countries = len(countries)
tot_entries = ((datetime.date.today()-datetime.date(2019, 12, 31)).days+1)*num_of_countries
print('')
print('At most a total of',tot_entries,'entries expected.')
with open(dt.FILE, 'rt', newline = "", encoding='utf-8-sig') as myfile:
csvreader = csv.reader(myfile,skipinitialspace = True,
delimiter = ',', quoting = csv.QUOTE_MINIMAL)
ntable = []
num = 0
print('')
for line in csvreader:
if line[2] in countries:
ntable.append(line)
num += 1
#print(num,'\b', sep=' ', end='', flush=True)
#print('')
print(num,'entries found for selected countries ... OK')
print('')
ncolumn = dt.COLUMNS
mydic = {}
for element in ntable:
mydic[(element[2],element[3])] = {ncolumn[index]: element[index] for index in range(len(ncolumn))}
return mydic
def order_for_plot(mydic, country, init_date, type_graph, deep):
'''
INPUT: - Parsed dictionary with all the data corresponding to selected countries. Assumed the form
returned by parser_local function
- a single country (string)
- initial date to consider in format 'YYYY-MM-DD'
- type_graph data we are interested in
- integer deep level or rolling average
RETURNS: List of [date, data] elements with the moving average applied on data for single country
'''
data_table = []
date_table = []
for key, val in mydic.items():
if len(val[type_graph]) > 0 and key[0] == country and transdate(val['date']) >= transdate(init_date):
data_table.append(float(val[type_graph]))
date_table.append(transdate(val['date']))
elif len(val[type_graph]) == 0 and key[0] == country and transdate(val['date']) >= transdate(init_date):
data_table.append(0)
date_table.append(transdate(val['date']))
if len(data_table) == 0:
return []
else:
new_data = rolling_n_deep_avg(data_table,deep)
new_date = list(date_table)
for iter in range(deep-1):
new_date.pop(0)
return pd.Series(data=new_data, index=new_date)
#####################################################
#####################################################
def draw_many_lines(countries, data_type, deep=7, init_date='2019-12-31', outputfile=0):
"""
INPUT: - List of countries written as strings in English
- String with the data type
- depth of the moving average. Default being 7
- Initial date to consider in format 'YYYY-MM-DD'. Default being the whole COVID series.
- name of output file. If parameter omitted plot is rendered in the browser
OUTPUT: Produces a png plot rendered in a temporary file (unless outputfile chosen)
for the specified countries and data type with a deep-day rolling mean.
RETURN: None
"""
plt.style.use('seaborn-notebook')
if os.path.exists(dt.FILE):
statbuf = datetime.datetime.fromtimestamp((os.stat(dt.FILE)).st_mtime)
print('')
print('=====================================================================')
print('')
print("LAST DOWNLOAD OF DATA: {}".format(statbuf))
print('')
fresh_or_not = input("Want to download fresh data? Press y/n (default is 'n'): ")
if fresh_or_not == 'y':
print('')
print('Downloading fresh data from "Our World in Data" ...', end='')
my_web = requests.get(dt.WEB, allow_redirects=True)
with open('owid-covid-data.csv', 'wb') as newdatafile:
newdatafile.write(my_web.content)
elif not os.path.exists(dt.FILE):
print('')
print('Downloading fresh data from "Our World in Data" ...', end='')
my_web = requests.get(dt.WEB, allow_redirects=True)
with open('owid-covid-data.csv', 'wb') as newdatafile:
newdatafile.write(my_web.content)
print('OK')
mydic = parser_local(countries)
for pais in countries:
print('Processing data for',pais,'... ', end='')
if data_type in dt.COLUMNS:
mytable = order_for_plot(mydic, pais, init_date, data_type, deep)
else:
print('')
print('')
print('WARNING!!!!')
print('No such data type as '+data_type+'. Please check your spelling and run again.')
print('')
return
if len(mytable) > 0:
print('OK')
if deep == 1:
plot_title = parse_title(data_type)+". dataset OWID"
elif deep > 1:
plot_title = parse_title(data_type)+". "+str(deep)+" days moving average. dataset OWID"
mytable.plot(legend=True, label=pais, grid=True, logy=False, figsize=(12,6),
title=plot_title, xlabel='date')
else:
print('')
print('')
print('WARNING!!!!')
print('No such country as '+pais+'. Please check your spelling and run again.')
print('')
return
if outputfile == 0:
print('Preparing plot... ', end='')
plt.savefig('temporalMLO2511.png')
fooooo = pili.open('temporalMLO2511.png').show()
os.remove('temporalMLO2511.png')
print('OK')
else:
print('Saving plot... ', end='')
plt.savefig(outputfile)
print('OK')
print('File saved to',outputfile)
def input_output_execution():
'''
INPUT: -
RETURN: -
OUTPUT: after executing input questions to the user ir executes draw_many_lines function with the proper arguments
'''
### GENERAL INFORMATION
os.system('cls')
print('======================================================================================================')
print('')
print(' PLOT COVID-19 DATA ')
print('This program is designed to plot time series lines for different COVID-19 data of different countries.')
print('Author: Matias Leoni')
print('')
print('Credit for the dataset:')
print('Hasell, J., Mathieu, E., Beltekian, D. et al. A cross-country database of COVID-19 testing.')
print('Sci Data 7, 345 (2020). https://doi.org/10.1038/s41597-020-00688-8')
print('======================================================================================================')
### INPUT Country names in English
country_list = []
while True:
print()
print('Input country name in english (e.g. Argentina).')
print("If you would like to see a country list to check your spelling press '?'")
country = input('If no more countries are needed just press ENTER: ')
if country == '' and len(country_list) > 0:
break
elif country == '' and len(country_list) == 0:
os.system('cls')
print()
print('At least one country name is needed')
elif country == '?':
os.system('cls')
print()
if len(country_list) > 0:
print('Your set of country choices is: ',end='')
print(*country_list, sep=', ')
print('')
print(*sorted(list(dt.COUNTRIES)), sep=', ')
elif country.title() not in dt.COUNTRIES:
os.system('cls')
print()
if len(country_list) > 0:
print('Your set of country choices is: ',end='')
print(*country_list, sep=', ')
print('')
print(country, 'is non-existent. Check your spelling')
elif country.title() in dt.COUNTRIES:
country_list.append(country.title())
country_list = list(set(country_list))
os.system('cls')
print('')
print('Your set of country choices is: ',end='')
print(*country_list, sep=', ')
os.system('cls')
print('')
print('Your set of country choices is: ',end='')
print(*country_list, sep=', ')
### Present data types
print()
print('=====================================================================')
print()
print()
data_type_list = dt.data_list
data_type_obj = dt.numbered_dic(data_type_list)
data_type_dic = data_type_obj.alist
print('LIST OF DATA TYPES')
print('----------------------------------------------------------------------')
data_type_obj.printdic()
print()
print('----------------------------------------------------------------------')
print()
### INPUT Data types
more = True
while more:
print('Please choose a data type from the previous list.')
try:
data_type = data_type_dic[int(input('For example, press 2 for new_cases: '))]
more = False
except ValueError:
print('')
print('Not an integer number. Try again')
print('')
except KeyError:
print('')
print('Your number is out of range. Try again')
print('')
print()
print()
os.system('cls')
print('')
print('Your set of country choices is: ',end='')
print(*country_list, sep=', ')
print('')
print('Your choice of data type to plot: ', parse_title(data_type))
print('=====================================================================')
print('')
### INPUT integer number corresponding to the number of days for the moving average
while True:
try:
print('Input an integer number (days) for smoothing data with moving average.')
deep_avg = input('1 is the default. 7 is the recommended for daily data: ')
if deep_avg == '':
deep_avg = 1
else:
deep_avg = int(deep_avg)
break
except ValueError:
print('')
print('That was not an integer number. Please try again')
print('')
print()
print()
os.system('cls')
print('')
print('Your set of country choices is: ',end='')
print(*country_list, sep=', ')
print('')
print('Your choice of data type to plot: ', parse_title(data_type))
print('')
if deep_avg > 1:
print('You decided to plot using a', deep_avg,'days moving average ')
print('=====================================================================')
print('')
### INPUT the desired starting date
while True:
try:
print('Input starting date in format YYYY-MM-DD.')
init_date = input('For example 2020-06-30. Press ENTER for default (beginning of the pandemic):')
if init_date == '':
init_date = '2019-12-31'
else:
transdate(init_date)
break
except ValueError:
print('')
print('Non-existent date or incorrect format. Please try again')
print('')
print()
print()
os.system('cls')
print('')
print('Your set of country choices is: ',end='')
print(*country_list, sep=', ')
print('')
print('Your choice of data type to plot: ', parse_title(data_type))
print('')
if deep_avg > 1:
print('You decided to plot using a', deep_avg,'days moving average ')
print('')
print('You will plot data starting on', init_date)
print('=====================================================================')
print('')
### INPUT the name of the file to render the plot
print('Input the file name for the output (e.g: grafico.png).')
outputfile = input('Press ENTER to show the plot without saving it: ')
if outputfile == '':
outputfile = 0
os.system('cls')
print('')
print('Your set of country choices is: ',end='')
print(*country_list, sep=', ')
print('')
print('Your choice of data type to plot: ', parse_title(data_type))
print('')
if deep_avg > 1:
print('You decided to plot using a', deep_avg,'days moving average ')
print('')
print('You will plot data starting on', init_date)
print('')
if outputfile == 0:
print('The plot will be shown in a new window and will not be saved')
else:
print('The plot will be saved to the file: ', outputfile)
### EXECUTE
draw_many_lines(country_list, data_type, deep_avg, init_date, outputfile)
# while True:
# execute = input('Do you want to execute the program interactively? (y/n): ')
# if execute == 'y':
# input_output_execution()
# del(execute)
# break
# elif execute == 'n':
# del(execute)
# break
input_output_execution()
|
# Ask the user to enter their name
x = raw_input("What's your name? \n")
# Print hello + their name
print("Hello, " + x)
|
# Uses python3
# Given two integers a and b, find their greatest common divisor.
# Input.The two integers a,b are given in the same line separated by space.
# Constraints. 1 ≤ a,b ≤ 2·109.
# Output Format. Output GCD(a,b).
import sys
def gcd(a, b):
if a % b == 0:
return b
else:
return gcd(b, a % b)
#for automatic tests
if __name__ == "__main__":
input = sys.stdin.read()
a, b = map(int, input.split())
print(gcd(a, b))
|
#comment one
def do_nothing(c):
if c > 0:
do_nothing(c - 1)
def main():
# comment two
frmt = """#comment one
def do_nothing(c):
if c > 0:
do_nothing(c - 1)
def main():
# comment two
frmt = %c%c%c%s%c%c%c
print frmt %% (34,34,34,frmt,34,34,34,34,34)
if __name__ == %c__main__%c:
main()"""
print frmt % (34,34,34,frmt,34,34,34,34,34)
if __name__ == "__main__":
main()
|
file = open('text.txt', 'r')
read = file.read()
# – прочитать входной файл, считать все символы;
print('все символы: ' + read)
list1 = list()
for i in read:
if i.isdigit():
list1 += i
print('цифры в файле, с сохранением порядка: ' + str(list1)) # – вывести те символы из файла, которые обозначают цифры от 0 до 9, в том порядке, как они встречаются в файле;
print('цифры по убыванию: ' + str(sorted(list1, reverse=True))) # – вывести эти символы, упорядочив их по убыванию кода символа;
list2 = list()
for i in read:
if i.isdigit():
if i not in list2 and i !=' ':
list2 += i
print(list2) # – вывести каждый символ не более одного раза;
|
"""
Do not change the input and output format.
If our script cannot run your code or the format is improper, your code will not be graded.
The only functions you need to implement in this template is linear_regression_noreg, linear_regression_invertible,regularized_linear_regression,
tune_lambda, test_error and mapping_data.
"""
import numpy as np
import pandas as pd
def _error(y, w):
""" Simple error """
return np.subtract(y, w)
###### Q1.1 ######
def mean_absolute_error(w, X, y):
"""
Compute the mean absolute error on test set given X, y, and model parameter w.
Inputs:
- X: A numpy array of shape (num_samples, D) containing test feature.
- y: A numpy array of shape (num_samples, ) containing test label
- w: a numpy array of shape (D, )
Returns:
- err: the mean absolute error
"""
#####################################################
# TODO 1: Fill in your code here #
#####################################################
err = None
temp = np.dot(X, w)
err = np.mean(np.abs(_error(y, temp)))
return err
###### Q1.2 ######
def linear_regression_noreg(X, y):
"""
Compute the weight parameter given X and y.
Inputs:
- X: A numpy array of shape (num_samples, D) containing feature.
- y: A numpy array of shape (num_samples, ) containing label
Returns:
- w: a numpy array of shape (D, )
"""
#####################################################
# TODO 2: Fill in your code here #
#####################################################
temp = X.T
result = np.dot(temp, X)
result = np.linalg.inv(result)
result = np.dot(result, temp)
w = np.dot(result, y)
return w
###### Q1.3 ######
def linear_regression_invertible(X, y):
"""
Compute the weight parameter given X and y.
Inputs:
- X: A numpy array of shape (num_samples, D) containing feature.
- y: A numpy array of shape (num_samples, ) containing label
Returns:
- w: a numpy array of shape (D, )
"""
#####################################################
# TODO 3: Fill in your code here #
#####################################################
w = None
X_X_T = np.dot(X.T, X)
ev = 0
while ev < (10**-5):
ev = np.min((np.linalg.eig(X_X_T)[0]))
if ev < (10**-5):
X_X_T = X_X_T + (10**-1) * np.identity(X_X_T.shape[0])
w = np.dot(np.dot(np.linalg.inv(X_X_T), X.T), y)
return w
###### Q1.4 ######
def regularized_linear_regression(X, y, lambd):
"""
Compute the weight parameter given X, y and lambda.
Inputs:
- X: A numpy array of shape (num_samples, D) containing feature.
- y: A numpy array of shape (num_samples, ) containing label
- lambd: a float number containing regularization strength
Returns:
- w: a numpy array of shape (D, )
"""
#####################################################
# TODO 4: Fill in your code here #
#####################################################
w = None
X_X_T = np.dot(X.T, X)
X_X_T += lambd * np.identity(X_X_T.shape[0])
w = np.dot(np.dot(np.linalg.inv(X_X_T), X.T), y)
return w
###### Q1.5 ######
def tune_lambda(Xtrain, ytrain, Xval, yval):
"""
Find the best lambda value.
Inputs:
- Xtrain: A numpy array of shape (num_training_samples, D) containing training feature.
- ytrain: A numpy array of shape (num_training_samples, ) containing training label
- Xval: A numpy array of shape (num_val_samples, D) containing validation feature.
- yval: A numpy array of shape (num_val_samples, ) containing validation label
Returns:
- bestlambda: the best lambda you find in lambds
"""
#####################################################
# TODO 5: Fill in your code here #
#####################################################
bestlambda = None
err = 1
for v in range(-19,20):
if v>=0:
val = float("1e+"+str(v))
else:
val = float("1e"+str(v))
w = regularized_linear_regression(Xtrain,ytrain, val)
error = mean_absolute_error(w, Xval,yval)
if err > error:
err = error
bestlambda = val
return bestlambda
###### Q1.6 ######
def mapping_data(X, power):
"""
Mapping the data.
Inputs:
- X: A numpy array of shape (num_training_samples, D) containing training feature.
- power: A integer that indicate the power in polynomial regression
Returns:
- X: mapped_X, You can manully calculate the size of X based on the power and original size of X
"""
#####################################################
# TODO 6: Fill in your code here #
#####################################################
X_temp = X[:]
for i in range(2, power + 1):
x = np.power(X, i)
for col in range(0, x.shape[1]):
X_temp = np.insert(X_temp, X_temp.shape[1], x[:, col], axis=1)
return X_temp
|
# -*- coding=utf-8 -*-
import urlparse
def reverseUrl(url):
"""
examples:
http://bar.foo.com:8983/to/index.html?a=b
com.foo.bar:http:8983/to/index.html?a=b
https://www.google.com.hk:8080/home/search;12432?newwi.1.9.serpuc#1234
hk.com.google.www:https:8080/home/search;12432?newwi.1.9.serpuc#1234
"""
reverse_url = ''
url = urlparse.urlsplit(url)
reverse_host = '.'.join(url.hostname.split('.')[::-1])
reverse_url += reverse_host
reverse_url += ':'
reverse_url += url.scheme
if url.port:
reverse_url += ':'
reverse_url += str(url.port)
if url.path:
reverse_url += url.path
if url.query:
reverse_url += '?'
reverse_url += url.query
if url.fragment:
reverse_url += '#'
reverse_url += url.fragment
return reverse_url
if __name__ == '__main__':
url = 'http://www.tianyancha.com/company/2313776032'
url = 'http://www.11467.com/foshan/co/444200.htm'
print reverseUrl(url)
|
"""
- 9/28/2016
"""
from random import randrange
from typing import List
def bsort(array: List[int]):
modified = False
size = len(array) - 1
for i in range(size):
if array[i] > array[i+1]:
array[i], array[i+1] = array[i+1], array[i]
modified = True
i += 1
if modified:
bsort(array)
def main():
to_sort = [randrange(0, 50) for _ in range(50, 0, -1)]
print(to_sort)
bsort(to_sort)
print(to_sort)
return 0
if __name__ == "__main__":
main()
|
"""
Mike McMahon
"""
from typing import List
class LinkedList(object):
class Node(object):
def __init__(self, data: any = None, next_node=None):
self._data = data
self._next = next_node
def get_next(self):
return self._next
def set_next(self, next_node):
self._next = next_node
def set_data(self, data):
self._data = data
def get_data(self):
return self._data
def __str__(self):
return str(self._data)
def __init__(self, initial: List=None):
self._size = len(initial) if initial else 0
self._root = None
self._tail = None
if initial:
for i in range(len(initial)):
if i == 0:
self._root = LinkedList.Node(initial[i])
self._tail = self._root
else:
self._tail.set_next(LinkedList.Node(initial[i]))
self._tail = self._tail.get_next()
def add(self, value):
if self._root is None:
self._root = LinkedList.Node(value)
else:
node = self.get(self._size)
node.set_next(LinkedList.Node(value))
self._tail = node.get_next()
self._size += 1
def __len__(self):
return self._size
def remove(self, i=None):
"""
Removes the element at a given position, if no position
:param i:
:return:
"""
if i:
if i > self._size or self._size == 0:
raise IndexError
if i == 0:
self._root = self._root.get_next()
prev = None
to_remove = self._root
for _ in range(0, i):
prev = to_remove
to_remove = to_remove.get_next()
prev.set_next(prev.get_next().get_next())
self._size -= 1
else:
self.remove(self._size)
def get(self, i) -> Node:
"""
O(N)
:param i:
:return:
"""
if i > self._size or self._size == 0:
raise IndexError
if i == 0:
return self._root
node = self._root
for _ in range(0, i):
node = node.get_next()
return node
def search(self, value):
"""
Given the nature of linked list we're working with O(N) time here...
:param value:
:return:
"""
node = self._root
for _ in range(0, self._size):
if node.get_data() == value:
return node
node = node.get_next()
raise ValueError("Value not found in linked list")
def __str__(self):
node = self._root
str_rpr = "["
for _ in range(0, self._size):
str_rpr += str(node.get_data()) + ","
node = node.get_next()
return str_rpr[:-1] + "]"
def main():
arr = [1, 2, 3, 4, 5, 6, 7]
llist = LinkedList(arr)
print(len(llist))
print(llist)
llist.remove(3)
print(len(llist))
print(llist)
if __name__ == "__main__":
main()
|
#!/usr/bin/env python
import sys
# input comes from STDIN (standard input)
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# Calculate the length of the line
vlen = len(line)
# TODO: Students to output <lineLength, 1>
print('%s\t%s' % (vlen, 1))
|
# import os, csv, datetime and openpyxl libraries
import os
import csv
from datetime import datetime
from openpyxl import Workbook
folder = './data'
# function to scan folder for xlsx and csv files
def scan_folder(folder):
print(os.getcwd())
files = os.listdir(folder)
xlsx_files = []
csv_files = []
# categorize file types
for f in files:
fcomp = f.split('.')
if fcomp[-1] == 'xlsx':
xlsx_files.append(f)
if fcomp[-1] == 'csv':
csv_files.append(f)
return {'XLSX': xlsx_files, 'CSV':csv_files}
# function to extract CSV contents
def extract_csv(files):
records = []
for f in files:
print(f + ' is CSV file')
return records
def gen_sumfile(records):
print(records)
# main program
if __name__=='__main__':
files = scan_folder(folder)
if len(files['CSV']) > 0:
records = extract_csv(files['CSV'])
gen_sumfile(records) |
''' Ask the user what their Favorite ganmeis and
say that you also like to play that game'''
game = input('what is your Favourite game?\n')
print("i like to paly",game,"too") |
class Parser:
def __init__(self, grammar, word):
self.grammar = grammar
self.alpha = word + '$'
self.pif = self.readPIF("PIF.txt")
self.st = self.readFile("ST.txt")
self.codificationTable = self.readCodificationTable()
def parseSequence(self):
beta = self.grammar.S + '$'
pi = ''
accepted = True
ok = True
while ok:
if beta[0] == 'e':
value = self.grammar.TABLE[('$', self.alpha[0])]
else:
value = self.grammar.TABLE[(beta[0], self.alpha[0])]
if len(value) == 2:
value[0] = value[0].replace(' ', '')
beta = beta[1:]
if value[0] != 'e':
beta = str(value[0]) + beta
pi += str(value[1])
print(self.grammar.P[value[1]])
else:
if len(value) == 1:
if value[0] == "POP":
beta = beta[1:]
self.alpha = self.alpha[1:]
elif value[0] == "ACC":
ok = False
accepted = True
else:
ok = False
accepted = False
return accepted
def readCodificationTable(self):
filepath = 'codificationTable.txt'
codificationTable = {}
with open(filepath) as file:
line = file.readline()
while line:
line = line.strip().split(' ')
codificationTable[line[1]] = line[0]
line = file.readline()
return codificationTable
def readFile(self, filename):
st = {}
with open(filename) as file:
line = file.readline()
while line:
line = line.strip().replace(' ', '').split("|")
st[line[0]] = line[1]
file.readline()
line = file.readline()
return st
def readPIF(self, filename):
pif = []
with open(filename) as file:
line = file.readline()
while line:
line = line.strip().replace(' ', '').split("|")
pif.append(line)
file.readline()
line = file.readline()
return pif
def parseByPIF(self):
word = []
for code, posST in self.pif:
if posST == "-1":
word.append(self.codificationTable[code])
else:
word.append(self.st[posST])
word.append('$')
print(word)
beta = []
beta.append(self.grammar.S)
beta.append('$')
pi = ''
accepted = True
ok = True
while ok:
if beta[0] == 'e':
value = self.grammar.TABLE[('$', word[0])]
else:
value = self.grammar.TABLE[(beta[0], word[0])]
if len(value) == 2:
value[0] = value[0].split(' ')
beta = beta[1:]
if value[0] != 'e':
beta[0:0] = value[0]
pi += str(value[1])
print(self.grammar.P[value[1]])
else:
if len(value) == 1:
if value[0] == "POP":
beta = beta[1:]
word = word[1:]
elif value[0] == "ACC":
ok = False
accepted = True
else:
ok = False
accepted = False
return accepted
|
#Description: Build a movie recommendation engine (more specifically a content based recommendation engine)
#Import Libraries
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
#Load the data
from google.colab import files # Use to load data on Google Colab
uploaded = files.upload() # Use to load data on Google Colab
df = pd.read_csv("movie_dataset.csv")
#Print the first 3 rows of the data set
df.head(3)
#Get a count of the number of rows/movies in the data set and the number of columns
df.shape
#Create a list of important columns to keep a.k.a. the main content of the movie
features = ['keywords','cast','genres','director']
df[features].head(3)
#Clean and preprocess the data
for feature in features:
df[feature] = df[feature].fillna('') #Fill any missing values with the empty string
# print(df[feature])
#A function to combine the values of the important columns into a single string
def combine_features(row):
return row['keywords'] +" "+row['cast']+" "+row["genres"]+" "+row["director"]
#Apply the function to each row in the dataset to store the combined strings into a new column called combined_features
df["combined_features"] = df.apply(combine_features,axis=1)
#df["combined_features"]
#Print the data frame to show the new column 'combined_features'
df.head(3)
#Convert a collection of text to a matrix/vector of token counts
count_matrix = CountVectorizer().fit_transform(df["combined_features"])
#Print the count matrix
#print(count_matrix.toarray())
#Get the cosine similarity matrix from the count matrix (cos(theta))
cosine_sim = cosine_similarity(count_matrix)
#Print the cosine similarity matrix
print(cosine_sim)
#Get the number of rows and columns in the data set
cosine_sim.shape
#Helper function to get the title from the index
def get_title_from_index(index):
return df[df.index == index]["title"].values[0]
#Helper function to get the index from the title
def get_index_from_title(title):
return df[df.title == title]["index"].values[0]
#Get the title of the movie that the user likes
movie_user_likes = "The Amazing Spider-Man"
#Find that movies index
movie_index = get_index_from_title(movie_user_likes)
#Access the row, through the movies index, corresponding to this movie (the liked movie) in the similarity matrix,
# by doing this we will get the similarity scores of all other movies from the current movie
#Enumerate through all the similarity scores of that movie to make a tuple of movie index and similarity scores.
# This will convert a row of similarity scores like this- [5 0.6 0.3 0.9] to this- [(0, 5) (1, 0.6) (2, 0.3) (3, 0.9)] .
# Note this puts each item in the list in this form (movie index, similarity score)
similar_movies = list(enumerate(cosine_sim[movie_index]))
#Sort the list of similar movies according to the similarity scores in descending order
#Since the most similar movie is itself, we will discard the first element after sorting.
sorted_similar_movies = sorted(similar_movies,key=lambda x:x[1],reverse=True)[1:]
#Print the sorted similar movies to the movie the user like
# The tuples are in the form (movie_index, similarity value)
print(sorted_similar_movies)
#Create a loop to print the first 5 entries from the sorted similar movies list
i=0
print("Top 5 similar movies to "+movie_user_likes+" are:")
for element in sorted_similar_movies:
print(get_title_from_index(element[0]) )
i=i+1
if i>=5:
break
#Create a loop to print the first 5 entries from the sorted similar movies list
# and similarity scores
i=0
print("Top 5 similar movies to "+movie_user_likes+" are:")
for i in range( len(sorted_similar_movies)):
print('Movie title:',get_title_from_index(sorted_similar_movies[i][0]), ', Similarity Score: ', sorted_similar_movies[i][1] )
i=i+1
if i>=5:
break
|
#Created by: Justin Bronson
#Created on: Sept, 2017.
#Created for: ICS3U
#This program calculates the height of an
# object in mid air using the gravity formula
import ui
def calculate_button_touch_up_inside(sender):
#calculate circumference
#constant
GRAVITY = 9.8
#input
seconds = int(view['seconds_textbox'].text)
#process
height = 100 - (0.5 * GRAVITY * seconds ** 2)
#output
view['answer_label'].text = 'The height is: ' + str(height) + ' cm'
view = ui.load_view()
view.present('full_screen')
|
#!/usr/bin/env python3
import os, glob
def main():
rootDir = input('Enter parent directory to run script: ') + '/'
keywords = input('Enter words in filename to be replaced (multiple words separated by space): ').split(" ")
replaceInFileName = input('Enter string to take its place (Enter to remove keywords): ')
print('replacing with ', replaceInFileName)
for keyword in keywords:
print('changing for keyword ', keyword)
for filename in os.listdir(rootDir):
print('scanning ' + filename)
if "." and keyword in filename:
newFileName = filename.replace(keyword, replaceInFileName)
print('new file name: ', newFileName)
src = rootDir + filename
dst = rootDir + newFileName
print("src: " + src)
print("dst: " + dst)
os.rename(src, dst)
print(filename + " changed to " + newFileName)
print(' ')
if __name__ == '__main__':
main()
|
from tkinter import *
from functools import partial
from NewWordPage import NewWordPage
class Startpage:
#-------------------------------#
#----------CONSTRUCTOR----------#
#-------------------------------#
def __init__(self, window):
Button(window, text="Add a new word",
command=lambda: self.show_new_word_page(window)).grid(row=1)
#--------------------------------------#
#----------SHOW NEW WORD PAGE----------#
#--------------------------------------#
def show_new_word_page(self, window):
for element in window.grid_slaves(): # Removing all the window's content.
element.grid_forget()
newWordPage = NewWordPage(window) # Showing the NewWordPage.
|
# We maintain a stack of active rectangles.
# One could store them as pairs (start, height)
# Here an optimization is to store rightmost locations of bottleneck heights.
# Then both start and height are encoded in same queue:
# the height is just heights[bottleneck location],
# and the start of the rectangle is just after
# the location of the rightmost bottleneck
# for the next shorter rectangle in the queue!
class Solution:
def largestRectangleArea(self, heights: list[int]) -> int:
heights.append(0)
rightmost_locations_of_bottleneck = [-1]
max_area = 0
for end, next_height in enumerate(heights):
# Close off non-extendable rectangles.
while next_height < heights[rightmost_locations_of_bottleneck[-1]]:
# Remove and compute height.
height = heights[rightmost_locations_of_bottleneck.pop()]
area = (end-(rightmost_locations_of_bottleneck[-1]+1))*height
if area > max_area:
max_area = area
# If needed, move the bottleneck.
if next_height == heights[rightmost_locations_of_bottleneck[-1]]:
rightmost_locations_of_bottleneck[-1] = end
# If needed, add a new rectangle.
else:
rightmost_locations_of_bottleneck.append(end)
return max_area
if __name__ == "__main__":
solution = Solution()
heights = [2]
found = solution.largestRectangleArea(heights)
print(found)
|
# Reading an excel file using Python
import xlrd
import pandas as pd
import sys
class ExcelFileParser:
def parseFile(self, inputFilePath, outPutFilePath):
csv = pd.read_csv(inputFilePath, error_bad_lines=False)
csv = csv.rename(columns={'Team 1': 'home_team'})
csv = csv.rename(columns={'Team 2': 'away_team'})
csv = csv.drop(columns='HT')
home_score = csv['FT']
new_home_scores = []
new_away_scores = []
for str in home_score:
ind = str.index('-')
new_home_scores.append(str[:ind])
new_away_scores.append(str[ind+1:])
csv['home_score'] = new_home_scores
csv['away_score'] = new_away_scores
csv.to_csv(outPutFilePath, index=None, header=True)
if __name__ == "__main__":
excelParser = ExcelFileParser()
excelParser.parseFile("./season/%s" % sys.argv[1], "./season/%s" % sys.argv[2])
|
entrada = input ("Entre com um valor: ")
print "Voce entrou com o valor: " + str (entrada)
|
def prime(n):
prime = True
for el in range(2, n//2):
if n % el == 0:
prime = False
break
return prime
number = int(input())
for i in range(2, number//2+1):
if prime(i) and prime(number - i):
print(i, number-i)
break
|
from typing import Sequence
import warnings
import matplotlib.pyplot as plt
import numpy as np
__all__ = [
'calculate_enrichment_factor',
'convert_label_to_zero_or_one',
'plot_predictiveness_curve',
]
def _normalize(arr):
return (arr - arr.min()) / (arr.max() - arr.min())
def _set_axes(ax, lim, fontsize: int):
ax.set_xlim(left=lim[0], right=lim[1])
ax.grid(True)
ax.xaxis.label.set_fontsize(fontsize)
ax.yaxis.label.set_fontsize(fontsize)
def plot_predictiveness_curve(risks,
labels,
classes: Sequence = [0, 1],
normalize: bool = False,
points: int = 100,
figsize: Sequence = (4.5, 10),
fontsize: int = 14,
kind: str = 'TPR',
xlabel: str = None,
top_ylabel: str = None,
bottom_ylabel: str = None,
**kwargs):
"""
Plot predictiveness curve. Predictiveness curve is a method to display two
graphs simultaneously. In both figures, the x-axis is risk percentile, the
y-axis of one figure is the value of risk, and the y-axis of the other
figure is true positive fractions. See Am. J. Epidemiol. 2008; 167:362–368
for details.
The plot of EF at the threshold value where the product with the sample
data is less than 1 are not displayed.
Parameters
----------
risks : array_like, shape = [n_samples]
Risks or probabilities for something happens
labels : array_like, shape = [n_samples]
Labels for sample data. The argument classes can set negative and
postive values respectively. In default, 0 means negative and 1 means
positive.
classes : array_like, default [0, 1]
Represents the names of the negative class and the positive class.
Give in the order of [negative, positive]. In default, 0 means negative
and 1 means positive.
normalize : boolean, default False
If the risk data is not normalized to the 0-1 range, normalize it.
points : int, default 100
Determine the fineness of the plotted points. The larger the number,
the finer the detail.
figsize : tuple, default (4.5, 10)
Width, height in inches. If not provided, defaults to = (4.5, 10).
fontsize : int, default 14
Font size for labels in plots.
kind : str, default TPR
* TPR : plot risk percentile vs TPR at bottom.
* EF : plot risk percentile vs EF at bottom. The risk percentile of
the upper plot is also in descending order.
xlabel : str, default Risk percentiles
Set the label for the x-axis.
top_ylabel : str, default Risk
Set the label for the y-axis in the top plot.
bottom_ylabel : str, default value of kind.
Set the label for the y-axis in the bottom plot.
**kwargs : matplotlib.pyplot.Line2D properties, optional
This function internally calls matplotlib.pyplot.plot. The argument
kwargs is passed to this function.
See https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
for details.
Returns
-------
figure : matplotlib.figure.Figure
A figure instance is returned. You can also assign this figure instant
attribute and customize it yourself.
"""
risks = np.array(risks)
labels = np.array(labels)
thresholds = np.linspace(0, 1, points + 1)[1:]
points = np.linspace(0, 1, points + 1)
if not np.all(np.unique(labels) == np.unique(classes)):
raise ValueError('The values of labels and classes do not match')
default_classes = [0, 1] # Sequence
if not np.array_equal(classes, default_classes):
labels = convert_label_to_zero_or_one(labels, classes)
if normalize:
risks = _normalize(risks)
if xlabel is None:
xlabel = 'Risk percentiles'
if top_ylabel is None:
top_ylabel = 'Risk'
if bottom_ylabel is None:
bottom_ylabel = kind
labels = labels[np.argsort(risks)]
risks = np.sort(risks)
num_positive: int = labels.sum()
if kind.upper() == 'TPR':
def f(point):
count: int = np.count_nonzero(risks <= point)
return count / len(risks) if count > 0 else 0
calculate_risk_percentiles = np.frompyfunc(f, 1, 1)
risk_percentiles = calculate_risk_percentiles(points)
risk_percentiles = np.append(0, risk_percentiles)
points = np.append(0, points)
elif kind.upper() == 'EF':
def f(point):
count: int = np.count_nonzero(risks >= point)
return count / len(risks) if count > 0 else 0
labels = labels[::-1]
risks = risks[::-1]
calculate_risk_percentiles = np.frompyfunc(f, 1, 1)
risk_percentiles = calculate_risk_percentiles(points)
risk_percentiles = np.append(risk_percentiles, 0)
points = np.append(points, 1)
else:
raise ValueError(f'kind must be either TPR or EF, not {kind}')
margin: float = 0.03
lim: Sequence = (0 - margin, 1 + margin)
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(2, 1, 1)
_set_axes(ax, lim, fontsize)
ax.set_ylim(bottom=lim[0], top=lim[1])
ax.plot(risk_percentiles, points, **kwargs)
ax.yaxis.set_label_text(top_ylabel)
ax = fig.add_subplot(2, 1, 2)
if kind.upper() == 'TPR':
calculate_true_positive_fractions = np.frompyfunc(
lambda p: np.count_nonzero(labels[risks >= p]) / num_positive, 1,
1)
true_positive_fractions = calculate_true_positive_fractions(points)
_set_axes(ax, lim, fontsize)
ax.set_ylim(bottom=lim[0], top=lim[1])
ax.plot(risk_percentiles, true_positive_fractions, **kwargs)
elif kind.upper() == 'EF':
n = np.floor(risks.shape[0] * thresholds).astype('int32')
if np.any(n == 0):
warning_message = (
'The plot of EF at the threshold value where the product with '
'the sample data is less than 1 is not displayed.')
warnings.warn(warning_message)
thresholds = thresholds[n != 0]
enrichment_factors = calculate_enrichment_factor(risks,
labels,
threshold=thresholds)
_set_axes(ax, lim, fontsize)
ax.plot(thresholds, enrichment_factors, **kwargs)
ax.xaxis.set_label_text(xlabel)
ax.yaxis.set_label_text(bottom_ylabel)
return fig
def calculate_enrichment_factor(scores, labels, classes=[0, 1],
threshold=0.01):
"""
Calculate enrichment factor. Returns one as the value of enrichment factor
when the product of sample data and threshold is less than one.
Parameters
----------
scores : array_like, shape = [n_samples]
Scores, risks or probabilities for something happens
labels : array_like, shape = [n_samples]
Labels for sample data. The argument classes can set negative and
postive values respectively. In default, 0 means negative and 1 means
positive.
classes : array_like, default [0, 1]
Represents the names of the negative class and the positive class.
Give in the order of [negative, positive]. In default, 0 means negative
and 1 means positive.
threshold : int, float, array_like of int or float, default is 0.01
If the value of threshold is 1 or more, it means percent, and if it is
less than 1, it simply assumes that it represents a ratio. In addition,
it returns one value for int or float, and broadcast for array_like.
Returns
-------
enrichment factors : float or ndarray
Return enrichment factors. If threshold is int or float, return one
value. If threshold is array_like, return ndarray.
"""
def f(threshold):
n = int(np.floor(scores.size * threshold))
if n == 0:
return np.nan
return (np.count_nonzero(labels[-n:]) / n) / positive_ratio
scores = np.array(scores)
labels = np.array(labels)
threshold = np.array(threshold)
if np.any(threshold <= 0) | np.any(threshold > 100):
raise ValueError('Invalid value for threshold. Threshold should be '
'either positive and smaller a int or ints than 100 '
'or a float in the (0, 1) range')
elif threshold.dtype.kind == 'f' and (np.any(threshold <= 0)
or np.any(threshold > 1)):
raise ValueError('Invalid value for threshold. Threshold should be '
'either positive and a float or floats in the (0, 1) '
'range')
elif threshold.dtype.kind == 'i':
threshold = threshold.astype('float32') / 100
if not np.all(np.unique(labels) == np.unique(classes)):
raise ValueError('The values of labels and classes do not match')
default_classes: Sequence = [0, 1]
if not np.array_equal(classes, default_classes):
labels = convert_label_to_zero_or_one(labels, classes)
labels = labels[np.argsort(scores)]
scores = np.sort(scores)
positive_ratio = np.count_nonzero(labels) / scores.size
_calculate_enrichment_factor = np.frompyfunc(f, 1, 1)
enrichment_factors = _calculate_enrichment_factor(threshold)
if isinstance(enrichment_factors, float):
return_float: bool = True
enrichment_factors = np.array([enrichment_factors], dtype='float32')
else:
return_float: bool = False
enrichment_factors = enrichment_factors.astype('float32')
if np.any(np.isnan(enrichment_factors)):
warning_message = (
'Returns one as the value of enrichment factor because '
'the product of sample data and threshold is less than one')
warnings.warn(warning_message)
enrichment_factors[np.isnan(enrichment_factors)] = 1.0
if return_float:
enrichment_factors = enrichment_factors[0]
return enrichment_factors
def convert_label_to_zero_or_one(labels, classes):
"""
Convert label data of specified class into 0 or 1 data.
Parameters
----------
labels : array_like, shape = [n_samples]
Labels for sample data.
classes : array_like
Represents the names of the negative class and the positive class.
Give in the order of [negative, positive].
Returns
-------
converted label : ndarray, shape = [n_samples]
Return ndarray which converted labels to 0 and 1.
"""
if not np.all(np.unique(labels) == np.unique(classes)):
raise ValueError('The values of labels and classes do not match')
labels = np.asarray(labels)
return (labels == classes[1]).astype('int16')
|
# remove() method - If the item to remove does not exist, it will throw an error
set1 = {"apple", "banana", "cherry"}
set1.remove("banana")
print(set1)
# discard() method - If the item to remove does not exist, it will not throw an error
set2 = {"apple", "banana", "cherry"}
set2.discard("banana")
print(set2)
# pop() method - This method will remove the last item.
# Return value of the pop() method is the removed item.
set3 = {"apple", "banana", "cherry"}
x = set3.pop()
print(x)
print(set3)
# clear() method - This empties the set
set4 = {"apple", "banana", "cherry"}
set4.clear()
print(set4)
# del keyword - Will delete the set completely
set5 = {"apple", "banana", "cherry"}
del set5
print(set5)
|
# Note: Both union() and update() will exclude any duplicate items.
# union() method - used to join items from two sets and returns a new set
set1 = {"a", "b" , "c"}
set2 = {1, 2, 3}
set3 = set1.union(set2)
print(set3)
# update() method - inserts all the items from one set into another
setA = {"a", "b" , "c"}
setB = {1, 2, 3}
setA.update(setB)
print(setA)
# intersection_update() - will keep only the items that are present in both sets
x1 = {"apple", "banana", "cherry"}
y1 = {"google", "microsoft", "apple"}
x1.intersection_update(y1)
print(x1)
# intersection() - will return a new set, that only contains the items that are present in both sets
x2 = {"apple", "banana", "cherry"}
y2 = {"google", "microsoft", "apple"}
z2 = x2.intersection(y2)
print(z2)
# symmetric_difference_udpate() - will keep only the elements that are NOT present in both sets
x3 = {"apple", "banana", "cherry"}
y3 = {"google", "microsoft", "apple"}
x3.symmetric_difference_update(y3)
print(x3)
# symmetric_difference() - will return a new set,
# that contains only the elements that are NOT present in both sets
x4 = {"apple", "banana", "cherry"}
y4 = {"google", "microsoft", "apple"}
z4 = x4.symmetric_difference(y4)
print(z4)
|
# if - else
a = 90
if (a < 10):
print ("a is less than 10")
else:
print ("a is greater than 10")
# if - elif - else
a = 50
if (a == 10):
print(a)
elif ( a == 50):
print(a)
else:
print ("a is undefined")
# Nested if
a = 35
if (a != 0):
if(a < 40):
print("a is less than 40")
else:
print("a is greater than 40")
else:
print("a is zero")
|
# For loop
tuple4 = ("summer", "winter", "spring")
for x in tuple4:
print (x)
# Loop Through the Index Numbers - loop through the tuple items by referring to their index number.
# Use the range() and len() functions to create a suitable iterable.
tuple4 = ("summer", "winter", "spring")
for x in range(len(tuple4)):
print (str(x) +":"+ tuple4[x])
# While loop
"""
Use the len() function to determine the length of the tuple,
then start at 0 and loop your way through the tuple items by referring to their indexes.
increase the index by 1 after each iteration.
"""
tuple5 = ("summer", "winter", "spring")
i = 0
while i < len(tuple5):
print (tuple5[i])
i = i + 1 |
choice = raw_input('rock(r), paper(p),scissors(s), lizard(l), or spock(sp)? ')
from random import randint
com_choice = randint(1,5)
if com_choice == 1:
computer = 'r'
elif com_choice == 2:
computer = 'p'
elif com_choice == 3:
computer = 's'
elif com_choice == 4:
computer = 'l'
elif com_choice == 5:
computer = 'sp'
#DRAW
if choice == computer:
print('We have a draw')
#ROCK
elif choice == 'r' and computer == 's':
print('''Rock crushes scissors
you win ''')
elif choice == 'r' and computer == 'p':
print('''paper covers rock
you lose''')
elif choice == 'r' and computer == 'l':
print('''rock crushes lizard
you win''')
elif choice == 'r' and computer == 'sp':
print('''Spock vaporizes rock
you lose''')
#SCISSORS
elif choice == 's'and computer == 'r':
print('''Rock crushes scissors
you lose''')
elif choice == 's' and computer == 'p':
print('''Scissors cuts paper
you win''')
elif choice == 's' and computer == 'l':
print('''Scissors decapitates lizard
you win''')
elif choice == 's' and computer == 'sp':
print('''Spock smashes scissors
you lose''')
#PAPER
elif choice == 'p' and computer == 's':
print('''Scissors cuts paper
you lose''')
elif choice == 'p' and computer == 'r':
print('''Paper covers rock
you win''')
elif choice == 'p' and computer == 'l':
print('''Lizard eats paper
you lose''')
elif choice == 'p' and computer == 'sp':
print('''paper disproves spock
you win''')
#LIZARD
elif choice == 'l' and computer == 'r':
print('''Rock crushes lizard
you lose''')
elif choice == 'l' and computer == 'p':
print('''Lizard eats paper
you win''')
elif choice == 'l' and computer == 's':
print('''Scissors decapitates lizard
you lose''')
elif choice == 'l' and computer == 'sp':
print('''Lizard poisons spock
you win''')
#SPOCK
elif choice == 'sp' and computer == 'r':
print('''Spock vaporizes rock
you win''')
elif choice == 'sp' and computer == 'p':
print('''Spock disproves paper
you lose''')
elif choice == 'sp' and computer == 's':
print('''Spock crushes scissors
you win''')
elif choice == 'sp'and computer == 'l':
print('''Lizard poisons spock
you lose''')
|
#prueba para método resta
def resta(num1, num2):
return num1 - num2
resultado_1 = resta(num1 = 60, num2 = 30)
resultado_2 = resta(num1 = 0, num2 = 0)
resultado_3 = resta(num1 = 1000, num2 = 4000)
print(f'El resultado de la resta 1 es: {resultado_1}')
print(f'El resultado de la resta 2 es: {resultado_2}')
print(f'El resultado de la resta 3 es: {resultado_3}') |
print('0~100までの得点(整数値)を2つ入力して下さい')
n1=int(input('1つ目の得点:'))
n2=int(input('2つ目の得点:'))
if n1>=80 and n2>=80:
print('合格です')
elif n1>=80 or n2>=80:
print('補欠合格です')
else:
print('不合格です') |
n=int(input('0~100までの得点(整数値)を入力して下さい'))
if n>=80:
print('合格です')
n=int(input('0~100までの得点(整数値)を入力して下さい'))
if n>=60:
print('合格です')
else:
print('不合格です') |
x=int(input('0~100までの国語の得点(整数値)を入力して下さい'))
if x>80:
y=int(input('0~100までの英語の得点(整数値)を入力して下さい'))
if y>=80:
print('合格です')
else :
print('不合格です')
else:
z=int(input('0~100までの数学の得点(整数値)を入力して下さい'))
if z>=80:
print('合格です')
else:
print('不合格です') |
n=int(input('0~100までの得点(整数値)を入力して下さい'))
if n<0 or n>100 :
print('入力値が不正です')
else :
print('正しい入力値です') |
a=0
b=100
while a<b:
a+=1
if a%3==0:
continue
print(a)
|
def write(dic):
for i,c in dic.items():
print(i,":",c)
dic={"赤":"red",
"白":"white",
"黒":"black",
"青":"blue",
"緑":"green"}
write(dic) |
# -------------------
# Background Information
#
# In this problem, you will build a planner that helps a robot
# find the shortest way in a warehouse filled with boxes
# that he has to pick up and deliver to a drop zone.
#For example:
#
#warehouse = [[ 1, 2, 3],
# [ 0, 0, 0],
# [ 0, 0, 0]]
#dropzone = [2,0]
#todo = [2, 1]
# Robot starts at the dropzone.
# Dropzone can be in any free corner of the warehouse map.
# todo is a list of boxes to be picked up and delivered to dropzone.
# Robot can move diagonally, but the cost of diagonal move is 1.5
# Cost of moving one step horizontally or vertically is 1.0
# If the dropzone is at [2, 0], the cost to deliver box number 2
# would be 5.
# To pick up a box, robot has to move in the same cell with the box.
# When a robot picks up a box, that cell becomes passable (marked 0)
# Robot can pick up only one box at a time and once picked up
# he has to return it to the dropzone by moving on to the cell.
# Once the robot has stepped on the dropzone, his box is taken away
# and he is free to continue with his todo list.
# Tasks must be executed in the order that they are given in the todo.
# You may assume that in all warehouse maps all boxes are
# reachable from beginning (robot is not boxed in).
# -------------------
# User Instructions
#
# Design a planner (any kind you like, so long as it works).
# This planner should be a function named plan() that takes
# as input three parameters: warehouse, dropzone and todo.
# See parameter info below.
#
# Your function should RETURN the final, accumulated cost to do
# all tasks in the todo list in the given order and this cost
# must which should match with our answer).
# You may include print statements to show the optimum path,
# but that will have no effect on grading.
#
# Your solution must work for a variety of warehouse layouts and
# any length of todo list.
# Add your code at line 76.
#
# --------------------
# Parameter Info
#
# warehouse - a grid of values. where 0 means that the cell is passable,
# and a number between 1 and 99 shows where the boxes are.
# dropzone - determines robots start location and place to return boxes
# todo - list of tasks, containing box numbers that have to be picked up
#
# --------------------
# Testing
#
# You may use our test function below, solution_check
# to test your code for a variety of input parameters.
warehouse = [[ 1, 2, 3],
[ 0, 0, 0],
[ 0, 0, 0]]
dropzone = [2,0]
todo = [2, 1]
def compute_cost_to_goal(grid, init, goal, cost_step_adj, cost_step_diag):
delta = [[-1, 0 ], # 0 go up
[ 0, -1], # 1 go left
[ 1, 0 ], # 2 go down
[ 0, 1 ], # 3 go right
[-1, -1], # 4 diag up-left
[-1, 1], # 5 diag up-right
[1, -1], # 6 diag down-left
[1, 1],] # 7 diag down-right
value = [[999 for row in range(len(grid[0]))] for col in range(len(grid))]
value[goal[0]][goal[1]] = 0
open = []
open.append([ 0, goal[0], goal[1]])
visited = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
visited[goal[0]][goal[1]] = 1
while(1):
if len(open) == 0:
break;
else:
open.sort()
open.reverse()
next = open.pop()
x = next[1]
y = next[2]
for i in range(len(delta)):
x2 = x + delta[i][0]
y2 = y + delta[i][1]
if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]):
if visited[x2][y2] == 0 and grid[x2][y2] == 0:
if i < 4:
cost = cost_step_adj
else:
cost = cost_step_diag
value[x2][y2] = value[x][y] + cost
open.append([value[x2][y2], x2, y2])
visited[x2][y2] = 1
#for i in range(len(value)):
# print value[i]
return value[init[0]][init[1]] # return cost to the goal from the init state
def find_box_location(warehouse, box_number):
for i in range(len(warehouse)):
for j in range(len(warehouse[0])):
if warehouse[i][j] == box_number:
return [i, j]
# ------------------------------------------
# plan - Returns cost to take all boxes in the todo list to dropzone
#
# ----------------------------------------
# modify code below
# ----------------------------------------
def plan(warehouse, dropzone, todo):
cost = 0
wh = warehouse
wh[dropzone[0]][dropzone[1]] = 0
for i in range(len(todo)):
box_number = todo[i]
box_location = find_box_location(wh, box_number)
#print '\nbox location', box_location[0], box_location[1]
box_cost = compute_cost_to_goal(wh, dropzone, box_location, 1.0, 1.5);
cost += 2. * box_cost
#remove the box from the warehouse
wh[box_location[0]][box_location[1]] = 0
return cost
################# TESTING ##################
# ------------------------------------------
# solution check - Checks your plan function using
# data from list called test[]. Uncomment the call
# to solution_check to test your code.
#
def solution_check(test, epsilon = 0.00001):
answer_list = []
import time
start = time.clock()
correct_answers = 0
for i in range(len(test[0])):
user_cost = plan(test[0][i], test[1][i], test[2][i])
true_cost = test[3][i]
if abs(user_cost - true_cost) < epsilon:
print "\nTest case", i+1, "passed!"
answer_list.append(1)
correct_answers += 1
#print "#############################################"
else:
print "\nTest case ", i+1, "unsuccessful. Your answer ", user_cost, "was not within ", epsilon, "of ", true_cost
answer_list.append(0)
runtime = time.clock() - start
if runtime > 1:
print "Your code is too slow, try to optimize it! Running time was: ", runtime
return False
if correct_answers == len(answer_list):
print "\nYou passed all test cases!"
return True
else:
print "\nYou passed", correct_answers, "of", len(answer_list), "test cases. Try to get them all!"
return False
#Testing environment
# Test Case 1
warehouse1 = [[ 1, 2, 3],
[ 0, 0, 0],
[ 0, 0, 0]]
dropzone1 = [2,0]
todo1 = [2, 1]
true_cost1 = 9
# Test Case 2
warehouse2 = [[ 1, 2, 3, 4],
[ 0, 0, 0, 0],
[ 5, 6, 7, 0],
[ 'x', 0, 0, 8]]
dropzone2 = [3,0]
todo2 = [2, 5, 1]
true_cost2 = 21
# Test Case 3
warehouse3 = [[ 1, 2, 3, 4, 5, 6, 7],
[ 0, 0, 0, 0, 0, 0, 0],
[ 8, 9,10,11, 0, 0, 0],
[ 'x', 0, 0, 0, 0, 0, 12]]
dropzone3 = [3,0]
todo3 = [5, 10]
true_cost3 = 18
# Test Case 4
warehouse4 = [[ 1,17, 5,18, 9,19, 13],
[ 2, 0, 6, 0,10, 0, 14],
[ 3, 0, 7, 0,11, 0, 15],
[ 4, 0, 8, 0,12, 0, 16],
[ 0, 0, 0, 0, 0, 0, 'x']]
dropzone4 = [4,6]
todo4 = [13, 11, 6, 17]
true_cost4 = 41
testing_suite = [[warehouse1, warehouse2, warehouse3, warehouse4],
[dropzone1, dropzone2, dropzone3, dropzone4],
[todo1, todo2, todo3, todo4],
[true_cost1, true_cost2, true_cost3, true_cost4]]
solution_check(testing_suite) #UNCOMMENT THIS LINE TO TEST YOUR CODE
#print plan(warehouse1, dropzone1, todo1)
#print plan(warehouse2, dropzone2, todo2) |
def words(param):
result = {}
# Deal with multiple spaces
proper_sentence = ' '.join(param.split())
# Create a list containing word items
proper_words = proper_sentence.split(" ")
for my_word in proper_words:
if my_word in result:
continue
try:
result[int(my_word)] = proper_words.count(my_word)
except:
result[my_word] = proper_words.count(my_word)
return result
|
import Board
import AIplayer
class TicTacToe():
def __init__(self, initial_turn=True):
self.board = Board.Board()
self.board.reset
self.initial_turn = initial_turn
self.player_mark, self.ai_mark = None, None
self.ai = None
def setAI(self, mode, my_mark, opponent_mark):
if mode == 'random':
self.ai = AIplayer.RandomPlay(self.board, my_mark, opponent_mark)
elif mode == 'minmax':
self.ai = AIplayer.MinMaxPlay(self.board, my_mark, opponent_mark)
else:
print "Unknown ai mode is input."
exit
self.ai_mark = my_mark
def setPlayerMark(self, mark):
self.player_mark = mark
def resetBoard(self):
self.board.reset()
def getInputFromStdin(self):
print "It's your turn, please input the next position. ie 0 0."
while True:
input = raw_input().split()
if len(input) != 2:
print "incorrect input, incorrect input size."
continue
elif not input[0].isdigit() or not input[1].isdigit():
print "incorrect input, not integer input."
continue
row, col = map(int, input)
ret = self.board.checkInput(row, col)
if ret[0]:
return(row, col)
else:
print ret[1]
continue
def play(self):
player_turn = self.initial_turn # if true: player, false: ai
while True:
if player_turn:
row, col = self.getInputFromStdin()
self.board.setMark(row, col, self.player_mark)
else: # ai turn
row, col = self.ai.getInput()
print row, col, "is input."
self.board.setMark(row, col, self.ai_mark)
self.board.dump()
flg = self.board.checkGoal()
if flg == 1: # one of the player win
if player_turn:
print "You win"
else:
print "You loose"
break
elif flg == -1:
print "Draw"
break
player_turn = not player_turn
if __name__ == '__main__':
game = TicTacToe(True)
game.setPlayerMark('o')
#game.setAI("random", 'x', 'o')
game.setAI("minmax", 'x', 'o')
game.play()
|
while True:
print(" ************MENU************ ")
print("1.Pixel 1")
print("2.Pixel 2")
print("3.Pixel 3")
print("4.Salir")
op=int((input("INGRESE LA OPCION QUE DESEA EJECUTAR:")))
if op==1:
print("1.Completa")
print("2.En partes")
op1 = input("Ingrese la opcion que desea: ")
if op1==1:
#pega el codigo completo
else:
#pega elcodigo por partes
elif op==2:
print("1.Completa")
print("2.En partes")
op1 = input("Ingrese la opcion que desea: ")
if op1 == 1:
# pega el codigo completo
else:
# pega elcodigo por partes
elif op==3:
print("1.Completa")
print("2.En partes")
op1 = input("Ingrese la opcion que desea: ")
if op1 == 1:
# pega el codigo completo
else:
# pega elcodigo por partes
else:
break |
"""
Interpreting Chi^2
Author: Sheila Kannappan
excerpted/adapted from CAP REU tutorial September 2016
"""
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import numpy.random as npr
# experiment to illustrate Monte Carlo creation of chi^2
# distributions for two values of N
#i=0
#if i == 0:
for i in xrange(2):
narr=30*(1+9*i) #30 first time, 300 second time
chisqs=[]
iters=1000 # experiment with rerunning the plots many times
# to see how the random variations change the chi^2
# start w/ iters=100 then change iters to 1000 and repeat
for j in xrange(iters):
# create a data set with random errors whose underlying
# functional form is y=1/x
xvals = np.zeros(narr)
yvals = np.zeros(narr)
xvals = np.arange(narr)/(1.+9.*i) + 1.
errs=0.1
yvals = 1./xvals + npr.normal(0,errs,narr)
# what does npr.normal do?
#It adds a certain amount of error to our "measurements" because in the
#real world we may not know what that error might be, but we might know
#it falls within a certain confidence interval.
resids = np.abs(yvals - 1./xvals)
# why are we subtracting 1./xvals?
# because 1./xvals represents our expected values and the residual is
#defined by the [(observed value)-(expected value)].
chisq = np.sum(resids**2 / errs**2)
# roughly, how is chisq related to N?
#chisq is approximately equal to N, and in this case N is equal to the
#number of data points because there are no free parameters.
# what if we didn't know the errors and overestimated
# them as 0.2 -- how would chi^2 change?
#chi^2 would decrease if we increased errs to 0.2 which would make it look
#as if the reduced chi^2 had a better fit.
chisqs.append(chisq) # building up iters trial values of chi^2
if i==0:
redchisqdist1 = np.array(chisqs)/narr
# compute array of "reduced chi^2" values found for 1st N
# what does "reduced" mean? why are we dividing by narr?
#"Reduced" chi^2 is a way of determining if a model is a good fit.
#We are dividing by narr because in this model y=1/x has no free parameters,
#so N=narr, or the number of data points.
if i==1:
redchisqdist2 = np.array(chisqs)/narr
# same thing for 2nd N
plt.figure(2)
plt.clf()
n1, bins1, patches1 = plt.hist(redchisqdist1,bins=0.05*iters,normed=1,histtype='stepfilled')
n2, bins2, patches2 = plt.hist(redchisqdist2,bins=0.05*iters,normed=1,histtype='step')
plt.setp(patches1,'facecolor','g','alpha',0.75)
plt.xlim(0,2.5)
plt.setp(patches2,'hatch','///','alpha',0.75,color='blue')
# what good plotting strategies are being used here?
#When overplotting the 2nd plot, N=300, the histogram was made such that it is hatched so you can
#still see the first, N=30, plot beneath it. They are also labeled well so you can easily distinguish
#between which plot represents which set of data.
plt.title('comparison of reduced chi-squared distributions')
#plt.title('reduced chi-squared distribution')
# switch titles above when you add N=300 case
plt.text(1.4,1,"N=30",size=11,color='g')
plt.text(1.2,3,"N=300",size=11,color='b')
# Q: how can we determine the confidence level associated with
# a certain deviation of reduced chi^2 from 1?
# A: we have to do the integral under the distribution --
# e.g. for 3sigma (99.8%) confidence find x such that
# the integral up to x contains 99.8% of the area
# how can you approximate this using np.argsort?
#This can be approximated by using np.argsort to sort the data such that indices
#assigned to each red chi^2 will be listed from least to greatest. Then we use the
#998 element from the array inds, that is inds[998] that correspondes to the 99.8%
#confidence interval. The output of inds[998] will be the element we have to search
#for in redchisqdist1[inds[998]] & redchisqdist2[inds[998]] to obtain the reduced
#chi^2 for 99.8% confidence for both N=30 and N=300.
# make sure to set iters=1000 for this exercise....
inds=np.argsort(redchisqdist1)
print("Reduced chi^2 for 99.8% confidence for N=30:", redchisqdist1[inds[998]]) # fill in to print red. chi^2 for 99.8% conf. for N=30
inds=np.argsort(redchisqdist2)
print('Reduced chi^2 for 99.8% confidence for N=300:', redchisqdist2[inds[998]]) # fill in to print red. chi^2 for 99.8% conf. for N=300
# look at the graph and verify your answers make visual sense
|
import pygame
import math
amigo = []
# menuLetras
q = 0
q == int(1)
# cores
rosa = (255, 228, 196)
azul = (0, 0, 255)
verde = (34, 139, 34)
preto = (0, 0, 0)
branco = (255, 255, 255)
vermelho = (255, 0, 0)
ouro = (218, 165, 32)
magenta = (255, 0, 255)
PI = math.pi
pygame.init()
largura = 640
altura = 480
pos_x = int(largura/2)
pos_y = int(altura/2)
# Seta o tamanho da janela
fundo = pygame.display.set_mode((largura, altura))
# define um título na janela.
pygame.display.set_caption("Desenhos geometricos")
def menu():
while True:
print('''Menu:
Tecla ‘q’ para desenhar o primeiro retângulo.
Tecla ‘w’ para desenhar o segundo retângulo.
Tecla ‘e’ para desenhar a primeira elipse.
Tecla ‘r’ para desenhar a segunda elipse.
Tecla ‘t’ para desenhar o polígono.
Tecla ‘y’ para desenhar o círculo.
Tecla ‘u’ para desenhar o arco.
Tecla 'x' para sair.''')
op = input("Opção selecionada: ")
if(op == 'q'):
primerioRetangulo()
elif(op == 'w'):
segundoRetangulo()
elif(op == 'e'):
primeiraElipse()
elif(op == 'r'):
segundoElipse()
elif(op == 't'):
poligono()
elif(op == 'y'):
circulo()
elif(op == 'u'):
arco()
else:
break
def primerioRetangulo():
fundo.fill(rosa)
pygame.draw.rect(fundo, vermelho, (150, 10, 20, 50))
pygame.display.update()
def segundoRetangulo():
fundo.fill(rosa)
pygame.draw.rect(fundo, ouro, (150, 10, 20, 50))
pygame.display.update()
def primeiraElipse():
fundo.fill(rosa)
pygame.draw.ellipse(fundo, vermelho, [300, 10, 50, 20])
pygame.display.update()
def segundoElipse():
fundo.fill(rosa)
pygame.draw.ellipse(fundo, magenta, [300, 10, 50, 20])
pygame.display.update()
def poligono():
fundo.fill(rosa)
pygame.draw.polygon(fundo, preto, [[100, 100], [0, 200], [200, 200]], 2)
pygame.display.update()
def arco():
fundo.fill(rosa)
pygame.draw.arc(fundo, vermelho, [250, 75, 150, 125], PI/2, 3*PI/2, 2)
pygame.display.update()
def circulo():
fundo.fill(rosa)
pygame.draw.circle(fundo, azul, [60, 250], 40)
pygame.display.update()
def main():
menu()
main()
|
import pandas as pd
def calcfreq(mylist):
freq={}
for i,items in enumerate(mylist):
freq[(i,items)]=mylist.count(items)
for key,value in freq.items():
print(key,":",value)
return freq
doc1="Cosine similarity is a metric, helpful in determining, how similar the data objects are irrespective of their size."
doc2="Cosine similarity is a measure of similarity between two non-zero vectors of an inner product space."
doc3="Cosine similarity is a metric used to measure how similar the documents are irrespective of their size."
doc=[doc1,doc2,doc3]
worddict={}
i=1
for ele in doc:
words=ele.split(" ")
data=calcfreq(words)
i=i+1
df=pd.DataFrame(data) |
"""
容器序列:list、tuple、collections.deque
扁平序列:str、bytes、bytearray、memoryview、array.array
容器序列和扁平序列的区别?
容器序列可以存放不同类型的数据。即可以存放任意类型对象的引用。
扁平序列只能容纳一种类型。也就是说其存放的是值而不是引用。换句话说扁平序列其实是一段连续的内存空间,由此可见扁平序列其实更加紧凑。但是它里面只能存放诸如字符、字节和数值这种基础类型。
可变序列:列表,字典
不可变序列:元组,字符串
"""
def my_map(func,iterables):
if hasattr(iterables,'__iter__'):
for i in iterables:
yield func(i)
else:
raise TypeError('{} object is not iterable'.format(iterables.__class__.__name__))
import time
from functools import wraps
def timer(func,*args,**kwargs):
def wrapper(*args,**kwargs):
start_time = time.time()
func(*args,**kwargs)
end_time = time.time()
print ("运行时间: {}".format(end_time-start_time))
return wrapper
|
# => SELECTION SORT ALGORITHM FILE
def selection_sort(elements, change):
for i in range(len(elements)):
min_index = i
for j in range(i + 1, len(elements)):
if elements[min_index].size_Y > elements[j].size_Y: min_index = j
elements[i], elements[min_index] = elements[min_index], elements[i]
# => UPDATE A WINDOW
change(elements[min_index], elements[i])
return True
|
class CoffeeMachine:
def __init__(self, water_: int, milk_: int, coffee_beans_: int, disposable_cups_: int, money_: int, exit_: bool):
self.water = water_
self.milk = milk_
self.coffee_beans = coffee_beans_
self.disposable_cups = disposable_cups_
self.money = money_
self.actual_state = 0
# 0 - choosing option, 1 - printing ingredient to add, 2 - adding ingredient
# 3 - print with coffee to serve, 4 - serve coffee , 5 - back to options
self.added_ingredients = 0 # status in order of added ingredient
self.exit = exit_
def check_resources(self, water_c, milk_c, coffee_beans_c, disposable_cups_c) -> bool:
"""
Checking coffee machine if it has enough resources to server coffee
:param water_c: int
:param milk_c: int
:param coffee_beans_c:int
:param disposable_cups_c:int
:return: bool
"""
if self.water < water_c:
print("Sorry, not enough water!")
return False
elif self.milk < milk_c:
print("Sorry, not enough milk!")
return False
elif self.coffee_beans < coffee_beans_c:
print("Sorry, not enough coffee beans!")
return False
elif self.disposable_cups < disposable_cups_c:
print("Sorry, not enough disposable cups!")
return False
else:
return True
def choose_option(self, option) -> None:
"""
Main menu
"""
if option == "buy":
self.actual_state = 3
self.serve_coffee(option)
elif option == "fill":
self.actual_state = 1
self.print_ingredient_to_add()
elif option == "take":
self.take_money()
elif option == "remaining":
self.print_eq()
elif option == "exit":
self.on_off_machine()
else:
print("I don't know that command")
self.print_menu()
def fill_coffee_machine(self, option_) -> None:
"""
Fill coffee machine
"""
option = int(option_)
if self.added_ingredients == 0:
self.water += option
self.added_ingredients += 1
self.print_ingredient_to_add()
elif self.added_ingredients == 1:
self.milk += option
self.added_ingredients += 1
self.print_ingredient_to_add()
elif self.added_ingredients == 2:
self.coffee_beans += option
self.added_ingredients += 1
self.print_ingredient_to_add()
elif self.added_ingredients == 3:
self.disposable_cups += option
self.added_ingredients = 0
self.print_menu()
self.actual_state = 0
else:
self.added_ingredients = 0
self.print_menu()
self.actual_state = 0
def on_off_machine(self):
"""
Switching state of the machine
"""
if not self.exit:
self.exit = True
else:
self.exit = False
def operate(self, user_input: str):
"""
Main operate function changing state of machine, and passing input
"""
if self.actual_state == 0:
self.choose_option(user_input)
elif self.actual_state == 1:
self.print_ingredient_to_add()
elif self.actual_state == 2:
self.fill_coffee_machine(user_input)
elif self.actual_state == 3 or 4:
self.serve_coffee(user_input)
else:
self.actual_state = 0
@staticmethod
def print_choose_coffee():
print("What do you want to buy? 1 - espresso, 2 - latte, 3 - cappuccino, back - to main menu:")
def print_eq(self) -> None:
print(f"""The coffee machine has:
{self.water}, of water
{self.milk}, of milk
{self.coffee_beans}, of coffee beans
{self.disposable_cups}, of disposable cups
{self.money}, of money""")
self.print_menu()
def print_ingredient_to_add(self):
if self.added_ingredients == 0:
print("Write how many ml of water do you want to add:")
elif self.added_ingredients == 1:
print("Write how many ml of milk do you want to add:")
elif self.added_ingredients == 2:
print("Write how many grams of coffee beans do you want to add:")
elif self.added_ingredients == 3:
print("Write how many disposable cups of coffee do you want to add:")
else:
print("Unknown error in 'print_ingredient_add'")
self.actual_state = 2
@staticmethod
def print_menu():
print("Write action (buy, fill, take, remaining, exit):")
def serve_coffee(self, coffee_t_) -> None:
if self.actual_state == 3:
self.print_choose_coffee()
self.actual_state = 4
elif self.actual_state == 4:
if coffee_t_ == "back":
self.actual_state = 0
self.print_menu()
else:
coffee_t = int(coffee_t_)
cups = 1 # temporary
if coffee_t == 1: # espresso
if self.check_resources(250, 0, 16, cups):
print("I have enough resources, making you a coffee!")
self.water -= 250 * cups
self.coffee_beans -= 16 * cups
self.disposable_cups -= 1
self.money += 4
self.print_menu()
self.actual_state = 0
else:
self.print_menu()
self.actual_state = 0
elif coffee_t == 2: # latte
if self.check_resources(350, 75, 20, cups):
print("I have enough resources, making you a coffee!")
self.water -= 350 * cups
self.milk -= 75 * cups
self.coffee_beans -= 20 * cups
self.money += 7
self.disposable_cups -= 1
self.print_menu()
self.actual_state = 0
else:
self.print_menu()
self.actual_state = 0
elif coffee_t == 3: # cappuccino
if self.check_resources(200, 100, 12, cups):
print("I have enough resources, making you a coffee!")
self.water -= 200 * cups
self.milk -= 100 * cups
self.coffee_beans -= 12 * cups
self.money += 6
self.disposable_cups -= 1
self.print_menu()
self.actual_state = 0
else:
self.print_menu()
self.actual_state = 0
else:
print("No such coffee")
self.print_menu()
self.actual_state = 0
def take_money(self):
print("I gave you", self.money)
self.money = 0
self.print_menu()
coffee_m = CoffeeMachine(400, 540, 120, 9, 550, False)
print("Write action (buy, fill, take, remaining, exit):")
while not coffee_m.exit:
u_input = input()
coffee_m.operate(u_input)
|
age = int(input('What is your age?\n'))
if age < 18:
print('You are still a child!')
else:
print('You are an adult now!')
|
print('Let\'s play a game! Try to guess my number...')
try:
guess = int(input('Enter a number between 0 and 100: '))
except NumberFormatException:
print('Uh oh, that\'s not a number.')
if not (guess <= 100 and guess >= 0):
print('Hey! You\'re cheating! The number must be between 0 and 100.')
elif guess < 78:
print('Try entering a higher number...')
elif guess > 78:
print('Try entering a lower number...')
else:
print('You win!')
|
for i in range(34):
if i % 2 = 0:
print(i)
else if i % 3 = 3:
print(i % 3)
else
print(3)
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.