id
stringlengths 14
16
| text
stringlengths 20
3.26k
| source
stringlengths 65
181
|
|---|---|---|
a69a69886761-22
|
on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) –
Return type
Runnable[Input, Output]
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Example:
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert (count == 2)
Parameters
retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on
wait_exponential_jitter (bool) – Whether to add jitter to the wait time
between retries
stop_after_attempt (int) – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
Return type
Runnable[Input, Output]
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
Parameters
input_type (Optional[Type[Input]]) –
output_type (Optional[Type[Output]]) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.web_research.QuestionListOutputParser.html
|
a69a69886761-23
|
output_type (Optional[Type[Output]]) –
Return type
Runnable[Input, Output]
property InputType: Any¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[T]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
name: Optional[str] = None¶
The name of the runnable. Used for debugging and tracing.
property output_schema: Type[BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.web_research.QuestionListOutputParser.html
|
ca235dce4790-0
|
langchain_community.retrievers.docarray.DocArrayRetriever¶
class langchain_community.retrievers.docarray.DocArrayRetriever[source]¶
Bases: BaseRetriever
DocArray Document Indices retriever.
Currently, it supports 5 backends:
InMemoryExactNNIndex, HnswDocumentIndex, QdrantDocumentIndex,
ElasticDocIndex, and WeaviateDocumentIndex.
Parameters
index – One of the above-mentioned index instances
embeddings – Embedding model to represent text as vectors
search_field – Field to consider for searching in the documents.
Should be an embedding/vector/tensor.
content_field – Field that represents the main content in your document schema.
Will be used as a page_content. Everything else will go into metadata.
search_type – Type of search to perform (similarity / mmr)
filters – Filters applied for document retrieval.
top_k – Number of documents to return
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param content_field: str [Required]¶
param embeddings: Embeddings [Required]¶
param filters: Optional[Any] = None¶
param index: Any = None¶
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param search_field: str [Required]¶
param search_type: SearchType = SearchType.similarity¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-1
|
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param top_k: int = 1¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
List[Output]
async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶
Run ainvoke in parallel on a list of inputs,
yielding results as they complete.
Parameters
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-2
|
Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
[Deprecated] Asynchronously get documents relevant to a query.
Users should favor using .ainvoke or .abatch rather than
aget_relevant_documents directly.
Parameters
query (str) – string to find relevant documents for
callbacks (Callbacks) – Callback manager or list of callbacks
tags (Optional[List[str]]) – Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
run_name (Optional[str]) – Optional name for the run.
kwargs (Any) –
Returns
List of relevant documents
Return type
List[Document]
Notes
Deprecated since version langchain-core==0.1.46: Use ainvoke instead.
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Document]¶
Asynchronously invoke the retriever to get relevant documents.
Main entry point for asynchronous retriever invocations.
Parameters
input (str) – The query string
config (Optional[RunnableConfig]) – Configuration for the retriever
**kwargs (Any) – Additional arguments to pass to the retriever
Returns
List of relevant documents
Return type
List[Document]
Examples:
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-3
|
Returns
List of relevant documents
Return type
List[Document]
Examples:
await retriever.ainvoke("query")
assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶
Assigns new fields to the dict output of this runnable.
Returns a new runnable.
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | llm | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | llm)
print(chain_with_assign.input_schema.schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.schema()) #
{'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
Parameters
kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) –
Return type
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-4
|
Return type
RunnableSerializable[Any, Any]
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
Parameters
input (Input) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶
[Beta] Generate a stream of events.
Use to create an iterator over StreamEvents that provide real-time information
about the progress of the runnable, including StreamEvents from intermediate
results.
A StreamEvent is a dictionary with the following schema:
event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name: str - The name of the runnable that generated the event.
run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event.
A child runnable that gets invoked as part of the execution of a
parent runnable is assigned its own unique ID.
parent_ids: List[str] - The IDs of the parent runnables thatgenerated the event. The root runnable will have an empty list.
The order of the parent IDs is from the root to the immediate parent.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-5
|
The order of the parent IDs is from the root to the immediate parent.
Only available for v2 version of the API. The v1 version of the API
will return an empty list.
tags: Optional[List[str]] - The tags of the runnable that generatedthe event.
metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event.
data: Dict[str, Any]
Below is a table that illustrates some evens that might be emitted by various
chains. Metadata fields have been omitted from the table for brevity.
Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
event
name
chunk
input
output
on_chat_model_start
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=”hello”)
on_chat_model_end
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[model name]
{‘input’: ‘hello’}
on_llm_stream
[model name]
‘Hello’
on_llm_end
[model name]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[retriever name]
{“query”: “hello”}
on_retriever_end
[retriever name]
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-6
|
on_retriever_end
[retriever name]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[template_name]
{“question”: “hello”}
on_prompt_end
[template_name]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
Here are declarations associated with the events shown above:
format_docs:
def format_docs(docs: List[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
@tool
def some_tool(x: int, y: str) -> dict:
'''Some_tool.'''
return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages(
[("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [
event async for event in chain.astream_events("hello", version="v2")
]
# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-7
|
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1.
Users should use v2.
v1 is for backwards compatibility and will be deprecated
in 0.4.0.
No default will be assigned until the API is stabilized.
include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names.
include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types.
include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags.
exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names.
exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types.
exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.
kwargs (Any) – Additional keyword arguments to pass to the runnable.
These will be passed to astream_log as this implementation
of astream_events is built on top of astream_log.
Returns
An async stream of StreamEvents.
Return type
AsyncIterator[StreamEvent]
Notes
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-8
|
An async stream of StreamEvents.
Return type
AsyncIterator[StreamEvent]
Notes
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
diff (bool) – Whether to yield diffs between each step, or the current state.
with_streamed_output_list (bool) – Whether to yield the streamed_output list.
include_names (Optional[Sequence[str]]) – Only include logs with these names.
include_types (Optional[Sequence[str]]) – Only include logs with these types.
include_tags (Optional[Sequence[str]]) – Only include logs with these tags.
exclude_names (Optional[Sequence[str]]) – Exclude logs with these names.
exclude_types (Optional[Sequence[str]]) – Exclude logs with these types.
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-9
|
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
kwargs (Any) –
Return type
Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
Parameters
input (AsyncIterator[Input]) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
List[Output]
batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶
Run invoke in parallel on a list of inputs,
yielding results as they complete.
Parameters
inputs (Sequence[Input]) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-10
|
yielding results as they complete.
Parameters
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
Iterator[Tuple[int, Union[Output, Exception]]]
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
Useful when a runnable in a chain requires an argument that is not
in the output of the previous runnable or included in the user input.
Example:
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
llm = ChatOllama(model='llama2')
# Without bind.
chain = (
llm
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind.
chain = (
llm.bind(stop=["three"])
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
Parameters
kwargs (Any) –
Return type
Runnable[Input, Output]
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include (Optional[Sequence[str]]) – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
Return type
Type[BaseModel]
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-11
|
Return type
Type[BaseModel]
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
Configure alternatives for runnables that can be set at runtime.
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI()
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(
configurable={"llm": "openai"}
).invoke("which organization created you?").content
)
Parameters
which (ConfigurableField) –
default_key (str) –
prefix_keys (bool) –
kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) –
Return type
RunnableSerializable[Input, Output]
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
Configure particular runnable fields at runtime.
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-12
|
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print(
"max_tokens_20: ",
model.invoke("tell me something about chess").content
)
# max_tokens = 200
print("max_tokens_200: ", model.with_config(
configurable={"output_token_number": 200}
).invoke("tell me something about chess").content
)
Parameters
kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) –
Return type
RunnableSerializable[Input, Output]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-13
|
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
get_graph(config: Optional[RunnableConfig] = None) → Graph¶
Return a graph representation of this runnable.
Parameters
config (Optional[RunnableConfig]) –
Return type
Graph
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-14
|
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config (Optional[RunnableConfig]) – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
Return type
Type[BaseModel]
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
Return type
List[str]
get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶
Get the name of the runnable.
Parameters
suffix (Optional[str]) –
name (Optional[str]) –
Return type
str
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config (Optional[RunnableConfig]) – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
Return type
Type[BaseModel]
get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶
Parameters
config (Optional[RunnableConfig]) –
Return type
List[BasePromptTemplate]
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-15
|
config (Optional[RunnableConfig]) –
Return type
List[BasePromptTemplate]
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
[Deprecated] Retrieve documents relevant to a query.
Users should favor using .invoke or .batch rather than
get_relevant_documents directly.
Parameters
query (str) – string to find relevant documents for
callbacks (Callbacks) – Callback manager or list of callbacks
tags (Optional[List[str]]) – Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
run_name (Optional[str]) – Optional name for the run.
kwargs (Any) –
Returns
List of relevant documents
Return type
List[Document]
Notes
Deprecated since version langchain-core==0.1.46: Use invoke instead.
invoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Document]¶
Invoke the retriever to get relevant documents.
Main entry point for synchronous retriever invocations.
Parameters
input (str) – The query string
config (Optional[RunnableConfig]) – Configuration for the retriever
**kwargs (Any) – Additional arguments to pass to the retriever
Returns
List of relevant documents
Return type
List[Document]
Examples:
retriever.invoke("query")
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-16
|
Return type
List[Document]
Examples:
retriever.invoke("query")
classmethod is_lc_serializable() → bool¶
Is this class serializable?
Return type
bool
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
Return type
List[str]
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
Example
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-17
|
by calling invoke() with each input.
Example
from langchain_core.runnables import RunnableLambda
def _lambda(x: int) -> int:
return x + 1
runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4]
Return type
Runnable[List[Input], List[Output]]
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶
Pick keys from the dict output of this runnable.
Pick single key:import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-18
|
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
Pick list of keys:from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(
str=as_str,
json=as_json,
bytes=RunnableLambda(as_bytes)
)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
Parameters
keys (Union[str, List[str]]) –
Return type
RunnableSerializable[Any, Any]
pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶
Compose this Runnable with Runnable-like objects to make a RunnableSequence.
Equivalent to RunnableSequence(self, *others) or self | others[0] | …
Example
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-19
|
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
Parameters
others (Union[Runnable[Any, Other], Callable[[Any], Other]]) –
name (Optional[str]) –
Return type
RunnableSerializable[Input, Other]
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
Parameters
input (Input) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-20
|
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
Iterator[Output]
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
Serialize the runnable to JSON.
Return type
Union[SerializedConstructor, SerializedNotImplemented]
to_json_not_implemented() → SerializedNotImplemented¶
Return type
SerializedNotImplemented
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
Parameters
input (Iterator[Input]) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
Iterator[Output]
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
with_alisteners(*, on_start: Optional[AsyncListener] = None, on_end: Optional[AsyncListener] = None, on_error: Optional[AsyncListener] = None) → Runnable[Input, Output]¶
Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Asynchronously called before the runnable starts running.
on_end: Asynchronously called after the runnable finishes running.
on_error: Asynchronously called if the runnable throws an error.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
Example:
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-21
|
added to the run.
Example:
Parameters
on_start (Optional[AsyncListener]) –
on_end (Optional[AsyncListener]) –
on_error (Optional[AsyncListener]) –
Return type
Runnable[Input, Output]
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
Parameters
config (Optional[RunnableConfig]) –
kwargs (Any) –
Return type
Runnable[Input, Output]
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Example
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print(''.join(runnable.stream({}))) #foo bar
Parameters
fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle.
exception_key (Optional[str]) – If string is specified then handled exceptions will be passed
to fallbacks as part of the input under the specified key. If None,
exceptions will not be passed to fallbacks. If used, the base runnable
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-22
|
exceptions will not be passed to fallbacks. If used, the base runnable
and its fallbacks must accept a dictionary as input.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
Return type
RunnableWithFallbacksT[Input, Output]
with_listeners(*, on_start: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_end: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_error: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
Example:
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep : int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start,
on_end=fn_end
)
chain.invoke(2)
Parameters
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-23
|
on_end=fn_end
)
chain.invoke(2)
Parameters
on_start (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) –
on_end (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) –
on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) –
Return type
Runnable[Input, Output]
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Example:
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert (count == 2)
Parameters
retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on
wait_exponential_jitter (bool) – Whether to add jitter to the wait time
between retries
stop_after_attempt (int) – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
Return type
Runnable[Input, Output]
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
ca235dce4790-24
|
Return type
Runnable[Input, Output]
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
Parameters
input_type (Optional[Type[Input]]) –
output_type (Optional[Type[Output]]) –
Return type
Runnable[Input, Output]
property InputType: Type[Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
name: Optional[str] = None¶
The name of the runnable. Used for debugging and tracing.
property output_schema: Type[BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using DocArrayRetriever¶
DocArray
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
b5bba070d406-0
|
langchain_aws.retrievers.kendra.DocumentAttribute¶
class langchain_aws.retrievers.kendra.DocumentAttribute[source]¶
Bases: BaseModel
Document attribute.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param Key: str [Required]¶
The key of the attribute.
param Value: DocumentAttributeValue [Required]¶
The value of the attribute.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
|
https://api.python.langchain.com/en/latest/retrievers/langchain_aws.retrievers.kendra.DocumentAttribute.html
|
b5bba070d406-1
|
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
|
https://api.python.langchain.com/en/latest/retrievers/langchain_aws.retrievers.kendra.DocumentAttribute.html
|
b5bba070d406-2
|
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain_aws.retrievers.kendra.DocumentAttribute.html
|
b5bba070d406-3
|
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
|
https://api.python.langchain.com/en/latest/retrievers/langchain_aws.retrievers.kendra.DocumentAttribute.html
|
141eb38a4012-0
|
langchain.retrievers.document_compressors.chain_extract.default_get_input¶
langchain.retrievers.document_compressors.chain_extract.default_get_input(query: str, doc: Document) → Dict[str, Any][source]¶
Return the compression chain input.
Parameters
query (str) –
doc (Document) –
Return type
Dict[str, Any]
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.chain_extract.default_get_input.html
|
2be8a62abdae-0
|
langchain_aws.retrievers.kendra.combined_text¶
langchain_aws.retrievers.kendra.combined_text(item: ResultItem) → str[source]¶
Combine a ResultItem title and excerpt into a single string.
Parameters
item (ResultItem) – the ResultItem of a Kendra search.
Returns
A combined text of the title and excerpt of the given item.
Return type
str
|
https://api.python.langchain.com/en/latest/retrievers/langchain_aws.retrievers.kendra.combined_text.html
|
901c9a866309-0
|
langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever¶
class langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever[source]¶
Bases: BaseRetriever
Tavily Search API retriever.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_key: Optional[str] = None¶
param exclude_domains: Optional[List[str]] = None¶
param include_domains: Optional[List[str]] = None¶
param include_generated_answer: bool = False¶
param include_images: bool = False¶
param include_raw_content: bool = False¶
param k: int = 10¶
param kwargs: Optional[Dict[str, Any]] = {}¶
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param search_depth: SearchDepth = SearchDepth.BASIC¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-1
|
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
List[Output]
async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶
Run ainvoke in parallel on a list of inputs,
yielding results as they complete.
Parameters
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
[Deprecated] Asynchronously get documents relevant to a query.
Users should favor using .ainvoke or .abatch rather than
aget_relevant_documents directly.
Parameters
query (str) – string to find relevant documents for
callbacks (Callbacks) – Callback manager or list of callbacks
tags (Optional[List[str]]) – Optional list of tags associated with the retriever. Defaults to None
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-2
|
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
run_name (Optional[str]) – Optional name for the run.
kwargs (Any) –
Returns
List of relevant documents
Return type
List[Document]
Notes
Deprecated since version langchain-core==0.1.46: Use ainvoke instead.
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Document]¶
Asynchronously invoke the retriever to get relevant documents.
Main entry point for asynchronous retriever invocations.
Parameters
input (str) – The query string
config (Optional[RunnableConfig]) – Configuration for the retriever
**kwargs (Any) – Additional arguments to pass to the retriever
Returns
List of relevant documents
Return type
List[Document]
Examples:
await retriever.ainvoke("query")
assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶
Assigns new fields to the dict output of this runnable.
Returns a new runnable.
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-3
|
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | llm | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | llm)
print(chain_with_assign.input_schema.schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.schema()) #
{'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
Parameters
kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) –
Return type
RunnableSerializable[Any, Any]
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
Parameters
input (Input) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-4
|
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶
[Beta] Generate a stream of events.
Use to create an iterator over StreamEvents that provide real-time information
about the progress of the runnable, including StreamEvents from intermediate
results.
A StreamEvent is a dictionary with the following schema:
event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name: str - The name of the runnable that generated the event.
run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event.
A child runnable that gets invoked as part of the execution of a
parent runnable is assigned its own unique ID.
parent_ids: List[str] - The IDs of the parent runnables thatgenerated the event. The root runnable will have an empty list.
The order of the parent IDs is from the root to the immediate parent.
Only available for v2 version of the API. The v1 version of the API
will return an empty list.
tags: Optional[List[str]] - The tags of the runnable that generatedthe event.
metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event.
data: Dict[str, Any]
Below is a table that illustrates some evens that might be emitted by various
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-5
|
Below is a table that illustrates some evens that might be emitted by various
chains. Metadata fields have been omitted from the table for brevity.
Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
event
name
chunk
input
output
on_chat_model_start
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=”hello”)
on_chat_model_end
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[model name]
{‘input’: ‘hello’}
on_llm_stream
[model name]
‘Hello’
on_llm_end
[model name]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[retriever name]
{“query”: “hello”}
on_retriever_end
[retriever name]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[template_name]
{“question”: “hello”}
on_prompt_end
[template_name]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
Here are declarations associated with the events shown above:
format_docs:
def format_docs(docs: List[Document]) -> str:
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-6
|
format_docs:
def format_docs(docs: List[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
@tool
def some_tool(x: int, y: str) -> dict:
'''Some_tool.'''
return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages(
[("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [
event async for event in chain.astream_events("hello", version="v2")
]
# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
Parameters
input (Any) – The input to the runnable.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-7
|
},
]
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1.
Users should use v2.
v1 is for backwards compatibility and will be deprecated
in 0.4.0.
No default will be assigned until the API is stabilized.
include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names.
include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types.
include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags.
exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names.
exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types.
exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.
kwargs (Any) – Additional keyword arguments to pass to the runnable.
These will be passed to astream_log as this implementation
of astream_events is built on top of astream_log.
Returns
An async stream of StreamEvents.
Return type
AsyncIterator[StreamEvent]
Notes
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-8
|
An async stream of StreamEvents.
Return type
AsyncIterator[StreamEvent]
Notes
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
diff (bool) – Whether to yield diffs between each step, or the current state.
with_streamed_output_list (bool) – Whether to yield the streamed_output list.
include_names (Optional[Sequence[str]]) – Only include logs with these names.
include_types (Optional[Sequence[str]]) – Only include logs with these types.
include_tags (Optional[Sequence[str]]) – Only include logs with these tags.
exclude_names (Optional[Sequence[str]]) – Exclude logs with these names.
exclude_types (Optional[Sequence[str]]) – Exclude logs with these types.
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-9
|
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
kwargs (Any) –
Return type
Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
Parameters
input (AsyncIterator[Input]) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
List[Output]
batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶
Run invoke in parallel on a list of inputs,
yielding results as they complete.
Parameters
inputs (Sequence[Input]) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-10
|
yielding results as they complete.
Parameters
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
Iterator[Tuple[int, Union[Output, Exception]]]
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
Useful when a runnable in a chain requires an argument that is not
in the output of the previous runnable or included in the user input.
Example:
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
llm = ChatOllama(model='llama2')
# Without bind.
chain = (
llm
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind.
chain = (
llm.bind(stop=["three"])
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
Parameters
kwargs (Any) –
Return type
Runnable[Input, Output]
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include (Optional[Sequence[str]]) – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
Return type
Type[BaseModel]
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-11
|
Return type
Type[BaseModel]
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
Configure alternatives for runnables that can be set at runtime.
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI()
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(
configurable={"llm": "openai"}
).invoke("which organization created you?").content
)
Parameters
which (ConfigurableField) –
default_key (str) –
prefix_keys (bool) –
kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) –
Return type
RunnableSerializable[Input, Output]
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
Configure particular runnable fields at runtime.
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-12
|
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print(
"max_tokens_20: ",
model.invoke("tell me something about chess").content
)
# max_tokens = 200
print("max_tokens_200: ", model.with_config(
configurable={"output_token_number": 200}
).invoke("tell me something about chess").content
)
Parameters
kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) –
Return type
RunnableSerializable[Input, Output]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-13
|
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
get_graph(config: Optional[RunnableConfig] = None) → Graph¶
Return a graph representation of this runnable.
Parameters
config (Optional[RunnableConfig]) –
Return type
Graph
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-14
|
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config (Optional[RunnableConfig]) – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
Return type
Type[BaseModel]
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
Return type
List[str]
get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶
Get the name of the runnable.
Parameters
suffix (Optional[str]) –
name (Optional[str]) –
Return type
str
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config (Optional[RunnableConfig]) – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
Return type
Type[BaseModel]
get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶
Parameters
config (Optional[RunnableConfig]) –
Return type
List[BasePromptTemplate]
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-15
|
config (Optional[RunnableConfig]) –
Return type
List[BasePromptTemplate]
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
[Deprecated] Retrieve documents relevant to a query.
Users should favor using .invoke or .batch rather than
get_relevant_documents directly.
Parameters
query (str) – string to find relevant documents for
callbacks (Callbacks) – Callback manager or list of callbacks
tags (Optional[List[str]]) – Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
run_name (Optional[str]) – Optional name for the run.
kwargs (Any) –
Returns
List of relevant documents
Return type
List[Document]
Notes
Deprecated since version langchain-core==0.1.46: Use invoke instead.
invoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Document]¶
Invoke the retriever to get relevant documents.
Main entry point for synchronous retriever invocations.
Parameters
input (str) – The query string
config (Optional[RunnableConfig]) – Configuration for the retriever
**kwargs (Any) – Additional arguments to pass to the retriever
Returns
List of relevant documents
Return type
List[Document]
Examples:
retriever.invoke("query")
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-16
|
Return type
List[Document]
Examples:
retriever.invoke("query")
classmethod is_lc_serializable() → bool¶
Is this class serializable?
Return type
bool
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
Return type
List[str]
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
Example
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-17
|
by calling invoke() with each input.
Example
from langchain_core.runnables import RunnableLambda
def _lambda(x: int) -> int:
return x + 1
runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4]
Return type
Runnable[List[Input], List[Output]]
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶
Pick keys from the dict output of this runnable.
Pick single key:import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-18
|
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
Pick list of keys:from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(
str=as_str,
json=as_json,
bytes=RunnableLambda(as_bytes)
)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
Parameters
keys (Union[str, List[str]]) –
Return type
RunnableSerializable[Any, Any]
pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶
Compose this Runnable with Runnable-like objects to make a RunnableSequence.
Equivalent to RunnableSequence(self, *others) or self | others[0] | …
Example
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-19
|
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
Parameters
others (Union[Runnable[Any, Other], Callable[[Any], Other]]) –
name (Optional[str]) –
Return type
RunnableSerializable[Input, Other]
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
Parameters
input (Input) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-20
|
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
Iterator[Output]
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
Serialize the runnable to JSON.
Return type
Union[SerializedConstructor, SerializedNotImplemented]
to_json_not_implemented() → SerializedNotImplemented¶
Return type
SerializedNotImplemented
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
Parameters
input (Iterator[Input]) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
Iterator[Output]
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
with_alisteners(*, on_start: Optional[AsyncListener] = None, on_end: Optional[AsyncListener] = None, on_error: Optional[AsyncListener] = None) → Runnable[Input, Output]¶
Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Asynchronously called before the runnable starts running.
on_end: Asynchronously called after the runnable finishes running.
on_error: Asynchronously called if the runnable throws an error.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
Example:
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-21
|
added to the run.
Example:
Parameters
on_start (Optional[AsyncListener]) –
on_end (Optional[AsyncListener]) –
on_error (Optional[AsyncListener]) –
Return type
Runnable[Input, Output]
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
Parameters
config (Optional[RunnableConfig]) –
kwargs (Any) –
Return type
Runnable[Input, Output]
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Example
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print(''.join(runnable.stream({}))) #foo bar
Parameters
fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle.
exception_key (Optional[str]) – If string is specified then handled exceptions will be passed
to fallbacks as part of the input under the specified key. If None,
exceptions will not be passed to fallbacks. If used, the base runnable
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-22
|
exceptions will not be passed to fallbacks. If used, the base runnable
and its fallbacks must accept a dictionary as input.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
Return type
RunnableWithFallbacksT[Input, Output]
with_listeners(*, on_start: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_end: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_error: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
Example:
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep : int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start,
on_end=fn_end
)
chain.invoke(2)
Parameters
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-23
|
on_end=fn_end
)
chain.invoke(2)
Parameters
on_start (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) –
on_end (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) –
on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) –
Return type
Runnable[Input, Output]
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Example:
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert (count == 2)
Parameters
retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on
wait_exponential_jitter (bool) – Whether to add jitter to the wait time
between retries
stop_after_attempt (int) – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
Return type
Runnable[Input, Output]
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
901c9a866309-24
|
Return type
Runnable[Input, Output]
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
Parameters
input_type (Optional[Type[Input]]) –
output_type (Optional[Type[Output]]) –
Return type
Runnable[Input, Output]
property InputType: Type[Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
name: Optional[str] = None¶
The name of the runnable. Used for debugging and tracing.
property output_schema: Type[BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using TavilySearchAPIRetriever¶
Tavily Search API
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html
|
ad09af2d7345-0
|
langchain.retrievers.re_phraser.RePhraseQueryRetriever¶
class langchain.retrievers.re_phraser.RePhraseQueryRetriever[source]¶
Bases: BaseRetriever
Given a query, use an LLM to re-phrase it.
Then, retrieve docs for the re-phrased query.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param llm_chain: LLMChain [Required]¶
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param retriever: BaseRetriever [Required]¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
Parameters
inputs (List[Input]) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-1
|
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
List[Output]
async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶
Run ainvoke in parallel on a list of inputs,
yielding results as they complete.
Parameters
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
[Deprecated] Asynchronously get documents relevant to a query.
Users should favor using .ainvoke or .abatch rather than
aget_relevant_documents directly.
Parameters
query (str) – string to find relevant documents for
callbacks (Callbacks) – Callback manager or list of callbacks
tags (Optional[List[str]]) – Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-2
|
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
run_name (Optional[str]) – Optional name for the run.
kwargs (Any) –
Returns
List of relevant documents
Return type
List[Document]
Notes
Deprecated since version langchain-core==0.1.46: Use ainvoke instead.
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Document]¶
Asynchronously invoke the retriever to get relevant documents.
Main entry point for asynchronous retriever invocations.
Parameters
input (str) – The query string
config (Optional[RunnableConfig]) – Configuration for the retriever
**kwargs (Any) – Additional arguments to pass to the retriever
Returns
List of relevant documents
Return type
List[Document]
Examples:
await retriever.ainvoke("query")
assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶
Assigns new fields to the dict output of this runnable.
Returns a new runnable.
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | llm | {"str": StrOutputParser()}
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-3
|
chain: Runnable = prompt | llm | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | llm)
print(chain_with_assign.input_schema.schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.schema()) #
{'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
Parameters
kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) –
Return type
RunnableSerializable[Any, Any]
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
Parameters
input (Input) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-4
|
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶
[Beta] Generate a stream of events.
Use to create an iterator over StreamEvents that provide real-time information
about the progress of the runnable, including StreamEvents from intermediate
results.
A StreamEvent is a dictionary with the following schema:
event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name: str - The name of the runnable that generated the event.
run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event.
A child runnable that gets invoked as part of the execution of a
parent runnable is assigned its own unique ID.
parent_ids: List[str] - The IDs of the parent runnables thatgenerated the event. The root runnable will have an empty list.
The order of the parent IDs is from the root to the immediate parent.
Only available for v2 version of the API. The v1 version of the API
will return an empty list.
tags: Optional[List[str]] - The tags of the runnable that generatedthe event.
metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event.
data: Dict[str, Any]
Below is a table that illustrates some evens that might be emitted by various
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-5
|
Below is a table that illustrates some evens that might be emitted by various
chains. Metadata fields have been omitted from the table for brevity.
Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
event
name
chunk
input
output
on_chat_model_start
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=”hello”)
on_chat_model_end
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[model name]
{‘input’: ‘hello’}
on_llm_stream
[model name]
‘Hello’
on_llm_end
[model name]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[retriever name]
{“query”: “hello”}
on_retriever_end
[retriever name]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[template_name]
{“question”: “hello”}
on_prompt_end
[template_name]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
Here are declarations associated with the events shown above:
format_docs:
def format_docs(docs: List[Document]) -> str:
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-6
|
format_docs:
def format_docs(docs: List[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
@tool
def some_tool(x: int, y: str) -> dict:
'''Some_tool.'''
return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages(
[("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [
event async for event in chain.astream_events("hello", version="v2")
]
# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
Parameters
input (Any) – The input to the runnable.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-7
|
},
]
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1.
Users should use v2.
v1 is for backwards compatibility and will be deprecated
in 0.4.0.
No default will be assigned until the API is stabilized.
include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names.
include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types.
include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags.
exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names.
exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types.
exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.
kwargs (Any) – Additional keyword arguments to pass to the runnable.
These will be passed to astream_log as this implementation
of astream_events is built on top of astream_log.
Returns
An async stream of StreamEvents.
Return type
AsyncIterator[StreamEvent]
Notes
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-8
|
An async stream of StreamEvents.
Return type
AsyncIterator[StreamEvent]
Notes
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
diff (bool) – Whether to yield diffs between each step, or the current state.
with_streamed_output_list (bool) – Whether to yield the streamed_output list.
include_names (Optional[Sequence[str]]) – Only include logs with these names.
include_types (Optional[Sequence[str]]) – Only include logs with these types.
include_tags (Optional[Sequence[str]]) – Only include logs with these tags.
exclude_names (Optional[Sequence[str]]) – Exclude logs with these names.
exclude_types (Optional[Sequence[str]]) – Exclude logs with these types.
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-9
|
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
kwargs (Any) –
Return type
Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
Parameters
input (AsyncIterator[Input]) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
List[Output]
batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶
Run invoke in parallel on a list of inputs,
yielding results as they complete.
Parameters
inputs (Sequence[Input]) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-10
|
yielding results as they complete.
Parameters
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
Iterator[Tuple[int, Union[Output, Exception]]]
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
Useful when a runnable in a chain requires an argument that is not
in the output of the previous runnable or included in the user input.
Example:
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
llm = ChatOllama(model='llama2')
# Without bind.
chain = (
llm
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind.
chain = (
llm.bind(stop=["three"])
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
Parameters
kwargs (Any) –
Return type
Runnable[Input, Output]
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include (Optional[Sequence[str]]) – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
Return type
Type[BaseModel]
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-11
|
Return type
Type[BaseModel]
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
Configure alternatives for runnables that can be set at runtime.
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI()
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(
configurable={"llm": "openai"}
).invoke("which organization created you?").content
)
Parameters
which (ConfigurableField) –
default_key (str) –
prefix_keys (bool) –
kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) –
Return type
RunnableSerializable[Input, Output]
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
Configure particular runnable fields at runtime.
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-12
|
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print(
"max_tokens_20: ",
model.invoke("tell me something about chess").content
)
# max_tokens = 200
print("max_tokens_200: ", model.with_config(
configurable={"output_token_number": 200}
).invoke("tell me something about chess").content
)
Parameters
kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) –
Return type
RunnableSerializable[Input, Output]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-13
|
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
classmethod from_llm(retriever: BaseRetriever, llm: BaseLLM, prompt: PromptTemplate = PromptTemplate(input_variables=['question'], template='You are an assistant tasked with taking a natural language query from a user and converting it into a query for a vectorstore. In this process, you strip out information that is not relevant for the retrieval task. Here is the user query: {question}')) → RePhraseQueryRetriever[source]¶
Initialize from llm using default template.
The prompt used here expects a single input: question
Parameters
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-14
|
The prompt used here expects a single input: question
Parameters
retriever (BaseRetriever) – retriever to query documents from
llm (BaseLLM) – llm for query generation using DEFAULT_QUERY_PROMPT
prompt (PromptTemplate) – prompt template for query generation
Returns
RePhraseQueryRetriever
Return type
RePhraseQueryRetriever
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
get_graph(config: Optional[RunnableConfig] = None) → Graph¶
Return a graph representation of this runnable.
Parameters
config (Optional[RunnableConfig]) –
Return type
Graph
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config (Optional[RunnableConfig]) – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
Return type
Type[BaseModel]
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
Return type
List[str]
get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶
Get the name of the runnable.
Parameters
suffix (Optional[str]) –
name (Optional[str]) –
Return type
str
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-15
|
name (Optional[str]) –
Return type
str
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config (Optional[RunnableConfig]) – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
Return type
Type[BaseModel]
get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶
Parameters
config (Optional[RunnableConfig]) –
Return type
List[BasePromptTemplate]
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
[Deprecated] Retrieve documents relevant to a query.
Users should favor using .invoke or .batch rather than
get_relevant_documents directly.
Parameters
query (str) – string to find relevant documents for
callbacks (Callbacks) – Callback manager or list of callbacks
tags (Optional[List[str]]) – Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-16
|
and passed as arguments to the handlers defined in callbacks.
run_name (Optional[str]) – Optional name for the run.
kwargs (Any) –
Returns
List of relevant documents
Return type
List[Document]
Notes
Deprecated since version langchain-core==0.1.46: Use invoke instead.
invoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Document]¶
Invoke the retriever to get relevant documents.
Main entry point for synchronous retriever invocations.
Parameters
input (str) – The query string
config (Optional[RunnableConfig]) – Configuration for the retriever
**kwargs (Any) – Additional arguments to pass to the retriever
Returns
List of relevant documents
Return type
List[Document]
Examples:
retriever.invoke("query")
classmethod is_lc_serializable() → bool¶
Is this class serializable?
Return type
bool
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-17
|
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
Return type
List[str]
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
Example
from langchain_core.runnables import RunnableLambda
def _lambda(x: int) -> int:
return x + 1
runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4]
Return type
Runnable[List[Input], List[Output]]
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-18
|
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶
Pick keys from the dict output of this runnable.
Pick single key:import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
Pick list of keys:from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(
str=as_str,
json=as_json,
bytes=RunnableLambda(as_bytes)
)
chain.invoke("[1, 2, 3]")
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-19
|
)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
Parameters
keys (Union[str, List[str]]) –
Return type
RunnableSerializable[Any, Any]
pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶
Compose this Runnable with Runnable-like objects to make a RunnableSequence.
Equivalent to RunnableSequence(self, *others) or self | others[0] | …
Example
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
Parameters
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-20
|
# -> [4, 6, 8]
Parameters
others (Union[Runnable[Any, Other], Callable[[Any], Other]]) –
name (Optional[str]) –
Return type
RunnableSerializable[Input, Other]
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
Parameters
input (Input) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
Iterator[Output]
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
Serialize the runnable to JSON.
Return type
Union[SerializedConstructor, SerializedNotImplemented]
to_json_not_implemented() → SerializedNotImplemented¶
Return type
SerializedNotImplemented
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
Parameters
input (Iterator[Input]) –
config (Optional[RunnableConfig]) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-21
|
input (Iterator[Input]) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
Iterator[Output]
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
with_alisteners(*, on_start: Optional[AsyncListener] = None, on_end: Optional[AsyncListener] = None, on_error: Optional[AsyncListener] = None) → Runnable[Input, Output]¶
Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Asynchronously called before the runnable starts running.
on_end: Asynchronously called after the runnable finishes running.
on_error: Asynchronously called if the runnable throws an error.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
Example:
Parameters
on_start (Optional[AsyncListener]) –
on_end (Optional[AsyncListener]) –
on_error (Optional[AsyncListener]) –
Return type
Runnable[Input, Output]
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
Parameters
config (Optional[RunnableConfig]) –
kwargs (Any) –
Return type
Runnable[Input, Output]
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-22
|
kwargs (Any) –
Return type
Runnable[Input, Output]
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Example
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print(''.join(runnable.stream({}))) #foo bar
Parameters
fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle.
exception_key (Optional[str]) – If string is specified then handled exceptions will be passed
to fallbacks as part of the input under the specified key. If None,
exceptions will not be passed to fallbacks. If used, the base runnable
and its fallbacks must accept a dictionary as input.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
Return type
RunnableWithFallbacksT[Input, Output]
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-23
|
Return type
RunnableWithFallbacksT[Input, Output]
with_listeners(*, on_start: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_end: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_error: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
Example:
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep : int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start,
on_end=fn_end
)
chain.invoke(2)
Parameters
on_start (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) –
on_end (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-24
|
on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) –
Return type
Runnable[Input, Output]
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Example:
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert (count == 2)
Parameters
retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on
wait_exponential_jitter (bool) – Whether to add jitter to the wait time
between retries
stop_after_attempt (int) – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
Return type
Runnable[Input, Output]
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
Parameters
input_type (Optional[Type[Input]]) –
output_type (Optional[Type[Output]]) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ad09af2d7345-25
|
output_type (Optional[Type[Output]]) –
Return type
Runnable[Input, Output]
property InputType: Type[Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
name: Optional[str] = None¶
The name of the runnable. Used for debugging and tracing.
property output_schema: Type[BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using RePhraseQueryRetriever¶
RePhraseQuery
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
5469f61cdbca-0
|
langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever¶
class langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever[source]¶
Bases: BaseRetriever
LangChain API retriever.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param headers: Optional[dict] = None¶
Headers to use for the request.
param input_key: str = 'message'¶
Key to use for the input in the request.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param metadata_key: str = 'metadata'¶
Key to use for the metadata in the response.
param page_content_key: str = 'page_content'¶
Key to use for the page content in the response.
param response_key: str = 'response'¶
Key to use for the response in the request.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param url: str [Required]¶
URL of the remote LangChain API.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-1
|
param url: str [Required]¶
URL of the remote LangChain API.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
List[Output]
async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶
Run ainvoke in parallel on a list of inputs,
yielding results as they complete.
Parameters
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
[Deprecated] Asynchronously get documents relevant to a query.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-2
|
[Deprecated] Asynchronously get documents relevant to a query.
Users should favor using .ainvoke or .abatch rather than
aget_relevant_documents directly.
Parameters
query (str) – string to find relevant documents for
callbacks (Callbacks) – Callback manager or list of callbacks
tags (Optional[List[str]]) – Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
run_name (Optional[str]) – Optional name for the run.
kwargs (Any) –
Returns
List of relevant documents
Return type
List[Document]
Notes
Deprecated since version langchain-core==0.1.46: Use ainvoke instead.
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Document]¶
Asynchronously invoke the retriever to get relevant documents.
Main entry point for asynchronous retriever invocations.
Parameters
input (str) – The query string
config (Optional[RunnableConfig]) – Configuration for the retriever
**kwargs (Any) – Additional arguments to pass to the retriever
Returns
List of relevant documents
Return type
List[Document]
Examples:
await retriever.ainvoke("query")
assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-3
|
Assigns new fields to the dict output of this runnable.
Returns a new runnable.
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | llm | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | llm)
print(chain_with_assign.input_schema.schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.schema()) #
{'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
Parameters
kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) –
Return type
RunnableSerializable[Any, Any]
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
Parameters
input (Input) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-4
|
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶
[Beta] Generate a stream of events.
Use to create an iterator over StreamEvents that provide real-time information
about the progress of the runnable, including StreamEvents from intermediate
results.
A StreamEvent is a dictionary with the following schema:
event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name: str - The name of the runnable that generated the event.
run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event.
A child runnable that gets invoked as part of the execution of a
parent runnable is assigned its own unique ID.
parent_ids: List[str] - The IDs of the parent runnables thatgenerated the event. The root runnable will have an empty list.
The order of the parent IDs is from the root to the immediate parent.
Only available for v2 version of the API. The v1 version of the API
will return an empty list.
tags: Optional[List[str]] - The tags of the runnable that generatedthe event.
metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event.
data: Dict[str, Any]
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-5
|
data: Dict[str, Any]
Below is a table that illustrates some evens that might be emitted by various
chains. Metadata fields have been omitted from the table for brevity.
Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
event
name
chunk
input
output
on_chat_model_start
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=”hello”)
on_chat_model_end
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[model name]
{‘input’: ‘hello’}
on_llm_stream
[model name]
‘Hello’
on_llm_end
[model name]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[retriever name]
{“query”: “hello”}
on_retriever_end
[retriever name]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[template_name]
{“question”: “hello”}
on_prompt_end
[template_name]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
Here are declarations associated with the events shown above:
format_docs:
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-6
|
Here are declarations associated with the events shown above:
format_docs:
def format_docs(docs: List[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
@tool
def some_tool(x: int, y: str) -> dict:
'''Some_tool.'''
return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages(
[("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [
event async for event in chain.astream_events("hello", version="v2")
]
# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
Parameters
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-7
|
"tags": [],
},
]
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1.
Users should use v2.
v1 is for backwards compatibility and will be deprecated
in 0.4.0.
No default will be assigned until the API is stabilized.
include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names.
include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types.
include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags.
exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names.
exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types.
exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.
kwargs (Any) – Additional keyword arguments to pass to the runnable.
These will be passed to astream_log as this implementation
of astream_events is built on top of astream_log.
Returns
An async stream of StreamEvents.
Return type
AsyncIterator[StreamEvent]
Notes
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-8
|
An async stream of StreamEvents.
Return type
AsyncIterator[StreamEvent]
Notes
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
diff (bool) – Whether to yield diffs between each step, or the current state.
with_streamed_output_list (bool) – Whether to yield the streamed_output list.
include_names (Optional[Sequence[str]]) – Only include logs with these names.
include_types (Optional[Sequence[str]]) – Only include logs with these types.
include_tags (Optional[Sequence[str]]) – Only include logs with these tags.
exclude_names (Optional[Sequence[str]]) – Exclude logs with these names.
exclude_types (Optional[Sequence[str]]) – Exclude logs with these types.
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-9
|
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
kwargs (Any) –
Return type
Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
Parameters
input (AsyncIterator[Input]) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
List[Output]
batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶
Run invoke in parallel on a list of inputs,
yielding results as they complete.
Parameters
inputs (Sequence[Input]) –
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-10
|
yielding results as they complete.
Parameters
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
Iterator[Tuple[int, Union[Output, Exception]]]
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
Useful when a runnable in a chain requires an argument that is not
in the output of the previous runnable or included in the user input.
Example:
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
llm = ChatOllama(model='llama2')
# Without bind.
chain = (
llm
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind.
chain = (
llm.bind(stop=["three"])
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
Parameters
kwargs (Any) –
Return type
Runnable[Input, Output]
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include (Optional[Sequence[str]]) – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
Return type
Type[BaseModel]
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-11
|
Return type
Type[BaseModel]
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
Configure alternatives for runnables that can be set at runtime.
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI()
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(
configurable={"llm": "openai"}
).invoke("which organization created you?").content
)
Parameters
which (ConfigurableField) –
default_key (str) –
prefix_keys (bool) –
kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) –
Return type
RunnableSerializable[Input, Output]
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
Configure particular runnable fields at runtime.
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-12
|
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print(
"max_tokens_20: ",
model.invoke("tell me something about chess").content
)
# max_tokens = 200
print("max_tokens_200: ", model.with_config(
configurable={"output_token_number": 200}
).invoke("tell me something about chess").content
)
Parameters
kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) –
Return type
RunnableSerializable[Input, Output]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-13
|
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
Return type
DictStrAny
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
get_graph(config: Optional[RunnableConfig] = None) → Graph¶
Return a graph representation of this runnable.
Parameters
config (Optional[RunnableConfig]) –
Return type
Graph
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-14
|
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config (Optional[RunnableConfig]) – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
Return type
Type[BaseModel]
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
Return type
List[str]
get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶
Get the name of the runnable.
Parameters
suffix (Optional[str]) –
name (Optional[str]) –
Return type
str
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config (Optional[RunnableConfig]) – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
Return type
Type[BaseModel]
get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶
Parameters
config (Optional[RunnableConfig]) –
Return type
List[BasePromptTemplate]
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
5469f61cdbca-15
|
config (Optional[RunnableConfig]) –
Return type
List[BasePromptTemplate]
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
[Deprecated] Retrieve documents relevant to a query.
Users should favor using .invoke or .batch rather than
get_relevant_documents directly.
Parameters
query (str) – string to find relevant documents for
callbacks (Callbacks) – Callback manager or list of callbacks
tags (Optional[List[str]]) – Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
run_name (Optional[str]) – Optional name for the run.
kwargs (Any) –
Returns
List of relevant documents
Return type
List[Document]
Notes
Deprecated since version langchain-core==0.1.46: Use invoke instead.
invoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Document]¶
Invoke the retriever to get relevant documents.
Main entry point for synchronous retriever invocations.
Parameters
input (str) – The query string
config (Optional[RunnableConfig]) – Configuration for the retriever
**kwargs (Any) – Additional arguments to pass to the retriever
Returns
List of relevant documents
Return type
List[Document]
Examples:
retriever.invoke("query")
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.remote_retriever.RemoteLangChainRetriever.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.