Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
jdrechsel's picture
Update README.md
f68fb43 verified
---
dataset_info:
- config_name: christian_to_jewish
features:
- name: text
dtype: string
- name: swapped
dtype: string
- name: masked
dtype: string
- name: source
dtype: string
- name: target
dtype: string
- name: source_id
dtype: string
- name: target_id
dtype: string
splits:
- name: train
num_bytes: 12230768
num_examples: 7822
- name: val
num_bytes: 12230768
num_examples: 7822
- name: test
num_bytes: 12230768
num_examples: 7822
download_size: 23423057
dataset_size: 36692304
- config_name: christian_to_muslim
features:
- name: text
dtype: string
- name: swapped
dtype: string
- name: masked
dtype: string
- name: source
dtype: string
- name: target
dtype: string
- name: source_id
dtype: string
- name: target_id
dtype: string
splits:
- name: train
num_bytes: 10232762
num_examples: 6412
- name: val
num_bytes: 10232762
num_examples: 6412
- name: test
num_bytes: 10232762
num_examples: 6412
download_size: 19573651
dataset_size: 30698286
- config_name: jewish_to_muslim
features:
- name: text
dtype: string
- name: swapped
dtype: string
- name: masked
dtype: string
- name: source
dtype: string
- name: target
dtype: string
- name: source_id
dtype: string
- name: target_id
dtype: string
splits:
- name: train
num_bytes: 10317346
num_examples: 6412
- name: val
num_bytes: 10317346
num_examples: 6412
- name: test
num_bytes: 10317346
num_examples: 6412
download_size: 19654828
dataset_size: 30952038
configs:
- config_name: christian_to_jewish
data_files:
- split: train
path: christian_to_jewish/train-*
- split: val
path: christian_to_jewish/val-*
- split: test
path: christian_to_jewish/test-*
- config_name: christian_to_muslim
data_files:
- split: train
path: christian_to_muslim/train-*
- split: val
path: christian_to_muslim/val-*
- split: test
path: christian_to_muslim/test-*
- config_name: jewish_to_muslim
data_files:
- split: train
path: jewish_to_muslim/train-*
- split: val
path: jewish_to_muslim/val-*
- split: test
path: jewish_to_muslim/test-*
license: cc-by-sa-4.0
language:
- en
---
# GRADIEND Religion Data
<!-- Provide a quick summary of the dataset. -->
This dataset consists of templated sentences with the masked word being sensitive to religion, e.g., *Jewish*.
```
```
See [GENTER](https://huggingface.co/datasets/aieng-lab/genter) and [GRADIEND Race Data](https://huggingface.co/datasets/aieng-lab/gradiend_race_data) for similar datasets.
## Usage
```python
genter = load_dataset('aieng-lab/gradiend_religion_data', pair_of_religions, trust_remote_code=True, split=split)
```
`split` can be either `train`, `val`, `test`, or `all`.
`pair_of_religions` can be `christian_to_jewish`, `christian_to_muslim`, or `jewish_to_muslim`.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
This dataset is a filtered version of [Wikipedia-10](https://drive.google.com/file/d/1boQTn44RnHdxWeUKQAlRgQ7xrlQ_Glwo/view?usp=sharing) containing only sentences that contain a religion bias sensitive word of the `source_id` religion. We used the same bias sensitive words as defined by [Maede et al. (2021)](https://arxiv.org/abs/2110.08527) ([bias attribute words](https://github.com/McGill-NLP/bias-bench/blob/main/data/bias_attribute_words.json)).
Based on the masked term (`source`), an associated `target` is derived from a corresponding bias attribute pair, matching the casing of `source` (e.g., `JEWISH` gets to `CHRISTIAN` and not `christian`).
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** [github.com/aieng-lab/gradiend](https://github.com/aieng-lab/gradiend)
- **Paper:** [![arXiv](https://img.shields.io/badge/arXiv-2502.01406-blue.svg)](https://arxiv.org/abs/2502.01406)
- **Original Data**: [Wikipedia-10](https://drive.google.com/file/d/1boQTn44RnHdxWeUKQAlRgQ7xrlQ_Glwo) (a subset of [English Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia))
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
- `text`: the original entry of Wikipedia-10
- `masked`: the masked version of `text`, i.e., with template masks for the name (`[NAME]`) and the pronoun (`[PRONOUN]`)
- `swapped`: like `masked` but with inserted `target` for `[MASK]`
- `source`: the word at the position of `[MASK]` in `masked` (e.g., `Jewish`)
- `source_id`: a normalized identifier for the `source` (e.g., `jewish`). All entries of the same `pair_of_religions` have the same `source_id`.
- `target`: the word inserted for `[MASK]` in `swapped`
- `target_id`: a normalized identifier for the `target`. All entries of the same `pair_of_religions`have the same `target_id`.
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
For the training of a religion bias [GRADIEND models](https://github.com/aieng-lab/gradiend), a diverse dataset is required to asses model gradients relevant to bias-sensitive information.
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
The dataset is derived from [Wikipedia-10](https://drive.google.com/file/d/1boQTn44RnHdxWeUKQAlRgQ7xrlQ_Glwo) by filtering it and extracting the template structure. Whe Wikipedia-10 dump is derived from [English Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) by [Maede et al. 2021](https://arxiv.org/pdf/2110.08527).
### Limitations
Note that the splitting is performed entirely random. Thus, the same masked text might occur in other splits (in combination with other target words). The same limitation holds across different `pair_of_religions`.
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@misc{drechsel2025gradiendfeaturelearning,
title={{GRADIEND}: Feature Learning within Neural Networks Exemplified through Biases},
author={Jonathan Drechsel and Steffen Herbold},
year={2025},
eprint={2502.01406},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2502.01406},
}
```
## Dataset Card Authors
[jdrechsel](https://huggingface.co/jdrechsel)