File size: 6,112 Bytes
e75efae
 
 
 
0e57b0f
e75efae
 
 
 
 
 
 
 
74c72c1
 
e75efae
 
045f29c
 
 
 
74c72c1
 
 
 
 
 
 
045f29c
 
e75efae
 
0e57b0f
e75efae
0e57b0f
e75efae
 
 
 
 
 
 
 
0e57b0f
e75efae
0e57b0f
e75efae
 
 
 
 
74c72c1
e75efae
 
74c72c1
 
 
e75efae
74c72c1
 
e75efae
74c72c1
 
 
e75efae
74c72c1
e75efae
74c72c1
 
e75efae
74c72c1
 
 
 
 
 
 
 
 
e75efae
 
 
 
0e57b0f
e75efae
 
 
 
 
 
74c72c1
e75efae
 
 
74c72c1
e75efae
 
 
 
 
 
 
 
0e57b0f
 
 
 
 
 
 
 
 
 
e75efae
 
 
 
 
 
0e57b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e75efae
 
 
 
0e57b0f
 
 
 
e75efae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsi_reader import FsiDataReader\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "from matplotlib.tri import Triangulation\n",
    "from matplotlib.animation import FuncAnimation\n",
    "from scipy.interpolate import griddata\n",
    "from plotting import *"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Loading and Visualizing the Dataset\n",
    "\n",
    "In this section, we will explore how to load the fluid-solid interaction simulation dataset and visualize it.\n",
    "\n",
    "We will specifically load the simulation data for \\( \\mu = 1.0 \\), where the inlet parameter \\( x_1 = 0.0 \\) and the all inlet parameters for \\( x_2 \\) will be considered as provided in the dataset.\n",
    "\n",
    "Let's begin by loading the data and visualizing it to better understand its structure and behavior.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = FsiDataReader('./fsi-data/', mu=['1.0'], in_lets_x1=['0.0'])\n",
    "mesh = data.input_mesh\n",
    "print(mesh.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data_loader = data.get_loader(batch_size=1, shuffle=False)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Visualization\n",
    "\n",
    "In this section, we will visualize the pressure field from the fluid-solid interaction simulation dataset.\n",
    "\n",
    "### **Loaded Variables**\n",
    "The dataset includes the following variables for each time step `t`:\n",
    "\n",
    "- `vx`, `vy`: The velocity components in the `x` and `y` directions, respectively.\n",
    "- `P`: The pressure field.\n",
    "- `dx`, `dy`: The displacement components in the `x` and `y` directions, respectively.\n",
    "\n",
    "These variables are loaded and will be used to generate the visualizations.\n",
    "\n",
    "### **Mesh Update**\n",
    "The mesh, initially given as a 2D grid, is updated at each time step based on the displacement field. Specifically, the updated mesh at time `t` is:\n",
    "\n",
    "`M_t = M_0 + d_t`\n",
    "\n",
    "where `M_0` is the initial mesh, and `d_t` represents the displacement at time `t`.\n",
    "\n",
    "### **Pressure Field Visualization**\n",
    "Now, we will visualize the pressure field `P_t` overlaid on the updated mesh at each time step. This will help us understand how the pressure evolves and interacts with the deformed mesh over time.\n",
    "\n",
    "Let's begin by plotting the pressure field and the updated mesh to observe their changes visually.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "frames = 200\n",
    "data_list = []\n",
    "mesh_list = []\n",
    "for idx, (i,j) in enumerate(data_loader):\n",
    "    if idx%10 !=0:\n",
    "        continue\n",
    "    updated_mesh = mesh + i[0,:,-2:]\n",
    "    data_list.append(i[:,:,2].numpy()) \n",
    "    mesh_list.append(updated_mesh.numpy())\n",
    "    frames -= 1\n",
    "    if frames == 0:\n",
    "        break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "create_field_animation(data_list, mesh_list, interval=100, save_path='fsi_animation_pressue.gif')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "torch.Size([1317, 2])\n",
      "file not found for mu=1.0, x1=0.0, x2=-4.0\n",
      "file not found for mu=1.0, x1=0.0, x2=-2.0\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 1])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 1])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 1])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 1])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "file not found for mu=10.0, x1=0.0, x2=-4.0\n",
      "file not found for mu=10.0, x1=0.0, x2=-2.0\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 1])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 1])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 1])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 1])\n",
      "Loaded tensor Size: torch.Size([1001, 1317, 3])\n"
     ]
    }
   ],
   "source": [
    "data = FsiDataReader('./fsi-data/', mu=['1.0', '10.0'], in_lets_x1=['0.0'])\n",
    "mesh = data.input_mesh\n",
    "print(mesh.shape)\n",
    "data_loader = data.get_loader(batch_size=1, shuffle=False)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "neuralop",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}