Datasets:

Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
product_id
stringlengths
10
10
image_url
stringlengths
51
197
0007259336
https://m.media-amazon.c…kWiL._SY466_.jpg
0007477155
null
000754829X
https://m.media-amazon.c…Gj4L._SY466_.jpg
0007589042
https://m.media-amazon.c…YiVL._SY466_.jpg
000819680X
https://m.media-amazon.c…kGoL._SY466_.jpg
0008209103
https://m.media-amazon.c…yflL._SY466_.jpg
0008270333
https://m.media-amazon.c…CF-L._SY466_.jpg
000829223X
https://m.media-amazon.c…bh4L._SY466_.jpg
0008508011
https://m.media-amazon.c…H2vL._SY466_.jpg
0024115215
https://m.media-amazon.c…/31UwP9ld2gL.jpg
0060002107
https://m.media-amazon.c…aSQL._SY466_.jpg
0060093749
https://m.media-amazon.c…8zCL._SY466_.jpg
0060245603
https://m.media-amazon.c…LJPL._SY466_.jpg
0060256656
https://m.media-amazon.c…admL._SY385_.jpg
0060256672
https://m.media-amazon.c…2rpL._SY466_.jpg
0060514558
https://m.media-amazon.c…49OL._SY466_.jpg
0060527641
https://m.media-amazon.c…M5CL._SY466_.jpg
0060530944
https://m.media-amazon.c…e8uL._SY466_.jpg
0060535636
https://m.media-amazon.c…lpaL._SY466_.jpg
0060556579
https://m.media-amazon.c…D2nL._SY466_.jpg
0060572159
https://m.media-amazon.c…yg+L._SY466_.jpg
0060580860
https://m.media-amazon.c…0rrL._SY385_.jpg
0060582510
https://m.media-amazon.c…FOLL._SY466_.jpg
0060596775
https://m.media-amazon.c…DIxL._SY466_.jpg
0060608528
https://m.media-amazon.c…UGqL._SY466_.jpg
0060653205
https://m.media-amazon.c…em5L._SY385_.jpg
0060722290
https://m.media-amazon.c…-pYL._SY466_.jpg
0060753641
https://m.media-amazon.c…pRLL._SY385_.jpg
006076208X
https://m.media-amazon.c…X1JL._SY466_.jpg
0060839872
https://m.media-amazon.c…u0aL._SY466_.jpg
0060841958
https://m.media-amazon.c…fdzL._SY466_.jpg
0060872632
https://m.media-amazon.c…vbOL._SY466_.jpg
0060889667
https://m.media-amazon.c…YGYS._SY466_.jpg
0060927518
https://m.media-amazon.c…c7YL._SY466_.jpg
0060928417
https://m.media-amazon.c…wmGL._SY466_.jpg
0060930314
https://m.media-amazon.c…JPsL._SY466_.jpg
0060932147
https://m.media-amazon.c…YhNL._SY466_.jpg
0060932236
https://m.media-amazon.c…QOqL._SY466_.jpg
0060932384
https://m.media-amazon.c…a0aL._SY466_.jpg
0060936428
https://m.media-amazon.c…LFmL._SY466_.jpg
0060955333
https://m.media-amazon.c…6PgL._SY466_.jpg
0060959479
https://m.media-amazon.c…I8kL._SY385_.jpg
0060984341
https://m.media-amazon.c…j+LL._SY466_.jpg
0060987405
https://m.media-amazon.c…E4sL._SY466_.jpg
006099505X
https://m.media-amazon.c…0GHL._SY466_.jpg
0060997001
https://m.media-amazon.c…d92L._SY466_.jpg
0060997028
https://m.media-amazon.c…fD3L._SY466_.jpg
0060997036
https://m.media-amazon.c…KO9L._SY466_.jpg
0061063215
https://m.media-amazon.c…RFML._SY466_.jpg
0061066478
https://m.media-amazon.c…f7NL._SY466_.jpg
0061123226
https://m.media-amazon.c…tCQL._SY466_.jpg
0061124958
https://m.media-amazon.c…XcmL._SY466_.jpg
0061127590
https://m.media-amazon.c…-SXL._SY466_.jpg
0061131768
https://m.media-amazon.c…zUbL._SY466_.jpg
0061136050
https://m.media-amazon.c…4RhL._SY466_.jpg
0061144894
https://m.media-amazon.c…E8cL._SY466_.jpg
0061148520
https://m.media-amazon.c…oxfL._SY466_.jpg
006117081X
https://m.media-amazon.c…bW3L._SY466_.jpg
006124189X
https://m.media-amazon.c…EffL._SY385_.jpg
0061339202
https://m.media-amazon.c…kpVL._SY466_.jpg
0061340650
https://m.media-amazon.c…Vg+L._SY466_.jpg
0061346195
https://m.media-amazon.c…3VLL._SY466_.jpg
0061370479
https://m.media-amazon.c…3RZL._SY466_.jpg
0061478210
https://m.media-amazon.c…skkS._SY466_.jpg
0061479640
https://m.media-amazon.c…WDkL._SY466_.jpg
0061626007
https://m.media-amazon.c…CbZL._SY466_.jpg
0061690287
https://m.media-amazon.c…u4JL._SY466_.jpg
0061704393
https://m.media-amazon.c…ypuL._SY466_.jpg
0061719617
https://m.media-amazon.c…CyrL._SY385_.jpg
0061735825
https://m.media-amazon.c…p1lL._SY466_.jpg
0061768936
https://m.media-amazon.c…k-9L._SY466_.jpg
0061894435
https://m.media-amazon.c…HiZL._SY466_.jpg
0061900575
https://m.media-amazon.c…z2CL._SY466_.jpg
0061962791
https://m.media-amazon.c…uqDL._SY466_.jpg
0061989665
https://m.media-amazon.c…1tYL._SY466_.jpg
0061992275
https://m.media-amazon.c…bPTL._SY466_.jpg
0061996556
null
0061996653
https://m.media-amazon.c…xCVL._SY466_.jpg
0062020714
https://m.media-amazon.c…CYiL._SY466_.jpg
0062024345
https://m.media-amazon.c…kpFL._SY466_.jpg
006204981X
https://m.media-amazon.c…GARL._SY466_.jpg
0062062999
https://m.media-amazon.c…MekL._SY466_.jpg
0062084739
https://m.media-amazon.c…-FgL._SY466_.jpg
0062086332
https://m.media-amazon.c…1n1L._SX679_.jpg
0062090291
https://m.media-amazon.c…KWsL._SY385_.jpg
006210490X
https://m.media-amazon.c…5LSL._SY385_.jpg
0062104934
https://m.media-amazon.c…lCTL._SY466_.jpg
0062104969
https://m.media-amazon.c…lfkL._SY385_.jpg
0062108824
https://m.media-amazon.c…DhYL._SY385_.jpg
0062119052
https://m.media-amazon.c…vI2L._SY466_.jpg
0062121596
https://m.media-amazon.c…qCYL._SY466_.jpg
0062202235
https://m.media-amazon.c…L+rL._SY466_.jpg
006220629X
https://m.media-amazon.c…skyL._SY466_.jpg
0062208977
https://m.media-amazon.c…wb+L._SY466_.jpg
0062219081
https://m.media-amazon.c…kYHL._SY466_.jpg
0062219111
https://m.media-amazon.c…KW8L._SY466_.jpg
0062219200
https://m.media-amazon.c…1xmL._SY466_.jpg
0062219987
https://m.media-amazon.c…cZDL._SY466_.jpg
0062236687
https://m.media-amazon.c…XtrL._SY466_.jpg
0062268740
https://m.media-amazon.c…+y+L._SY385_.jpg

Shopping Queries Image Dataset (SQID 🦑): An Image-Enriched ESCI Dataset for Exploring Multimodal Learning in Product Search

Introduction

The Shopping Queries Image Dataset (SQID) is a dataset that includes image information for over 190,000 products. This dataset is an augmented version of the Amazon Shopping Queries Dataset, which includes a large number of product search queries from real Amazon users, along with a list of up to 40 potentially relevant results and judgments of how relevant they are to the search query.

The image-enriched SQID dataset can be used to support research on improving product search by leveraging image information. Researchers can use this dataset to train multimodal machine learning models that can take into account both textual and visual information when ranking products for a given search query.

Dataset

This dataset extends the Shopping Queries Dataset (SQD) by including image information and visual embeddings for each product, as well as text embeddings for the associated queries which can be used for baseline product ranking benchmarking.

Product Sampling

We limited this dataset to the subset of the SQD where small_version is 1 (the reduced version of the dataset for Task 1), split is 'test' (test set of the dataset), and product_locale is 'us'. Hence, this dataset includes 164,900 product_id's

As supplementary data, we also provide data related to the other products appearing in at least 2 query judgements in the data of Task 1 with product_locale as 'us', amounting to 27,139 products, to further increase the coverage of the data for additional applications that go beyond the ESCI benchmark.

Image URL Scraping:

We scraped 156,545 (95% of the 164,900 product_id's) image_urls from the Amazon website. Products lacking image_urls either failed to fetch a valid product page (usually if Amazon no longer sells the product) or displayed a default "No image available" image.

Note: 446 product image_urls are a default digital video image, 'https://m.media-amazon.com/images/G/01/digital/video/web/Default_Background_Art_LTR._SX1080_FMjpg_.jpg', implying no product-specific image exists.

The dataset also includes a supplementary file covering 27,139 more product_id's and image_url's.

Image Embeddings:

We extracted image embeddings for each of the images using the OpenAI CLIP model from HuggingFace, specifically clip-vit-large-patch14, with all default settings.

Query Embeddings:

For each query and each product in the SQD Test Set, we extracted text embeddings using the same CLIP model and based on the query text and product title. These can be useful to benchmark a baseline product search method where both text and images share the same embedding space.

Files

The data directory contains 4 files:

  • product_image_urls.parquet
    • This file contains the image URLs for all product_id's in the dataset
  • products_features.parquet
    • This file contains the CLIP embedding features for all product_id's in the dataset
  • queries_features.parquet
    • This file contains the CLIP text embedding features for all querie_id's in the dataset
  • supp_product_image_urls.parquet
    • This file contains supplementary data as image URLs for an additional set of products not included in the test set and increasing the coverage of the data

Code snippets to get CLIP features

SQID includes embeddings extracted using OpenAI CLIP model from HuggingFace (clip-vit-large-patch14). We provide below code snippets in Python to extract such embeddings, using either the model from HuggingFace or using Replicate.

Using CLIP model from HuggingFace

from PIL import Image
import requests
from transformers import CLIPModel, CLIPProcessor

model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")

image = Image.open(requests.get('https://m.media-amazon.com/images/I/71fv4Dv5RaL._AC_SY879_.jpg', stream=True).raw)
inputs = processor(images=[image], return_tensors="pt", padding=True)
image_embds = model.get_image_features(pixel_values=inputs["pixel_values"])

Using Replicate

import replicate

client = replicate.Client(api_token=REPLICATE_API_KEY)
output = client.run(
    "andreasjansson/clip-features:71addf5a5e7c400e091f33ef8ae1c40d72a25966897d05ebe36a7edb06a86a2c",
    input={
        "inputs": 'https://m.media-amazon.com/images/I/71fv4Dv5RaL._AC_SY879_.jpg'
    }
)

Citation

To use this dataset, please cite the following paper:

@article{alghossein2024sqid,
  title={Shopping Queries Image Dataset (SQID): An Image-Enriched ESCI Dataset for Exploring Multimodal Learning in Product Search},
  author={Al Ghossein, Marie and Chen, Ching-Wei and Tang, Jason},
  journal={SIGIR Workshop on eCommerce},
  year={2024}
}

License

This dataset is released under the MIT License

Acknowledgments

SQID was developed at Crossing Minds by:

This dataset would not have been possible without the amazing Shopping Queries Dataset by Amazon.

Downloads last month
79
Edit dataset card

Data Sourcing report

powered
by Spawning.ai

No elements in this dataset have been identified as either opted-out, or opted-in, by their creator.