danielrosehill's picture
Initial commit: Add NVR entity recognition dataset with LFS support
14f6db2
|
raw
history blame
2.23 kB

NVR Entity Recognition Dataset (Standardized)

Dataset Structure

This dataset follows the COCO format for object detection training:

dataset/
β”œβ”€β”€ images/
β”‚   β”œβ”€β”€ train/          # Training images (68 images)
β”‚   β”œβ”€β”€ val/            # Validation images (19 images)
β”‚   └── test/           # Test images (11 images)
β”œβ”€β”€ annotations/
β”‚   β”œβ”€β”€ train.json      # Training annotations (COCO format)
β”‚   β”œβ”€β”€ val.json        # Validation annotations (COCO format)
β”‚   └── test.json       # Test annotations (COCO format)
└── dataset_config.json # Dataset configuration and metadata

Categories

19 categories identified from folder structure:

  • back-sleeping (ID: 1)
  • bedroom (ID: 2)
  • blanket-in-bassinet (ID: 3)
  • face-down (ID: 4)
  • pacifier_pacifier-fell-out (ID: 5)
  • pacifier_pacifier-in-mouth (ID: 6)
  • reference_subject (ID: 7)
  • side-sleeping (ID: 8)
  • smothering_baby-under-blanket (ID: 9)
  • smothering_smothering (ID: 10)
  • smothering_smothering-high-risk (ID: 11)
  • subject-obscured (ID: 12)
  • swaddling_normal-swaddle (ID: 13)
  • swaddling_swaddle-breakout (ID: 14)
  • unsafe-object-presence_button-battery (ID: 15)
  • unsafe-object-presence_pill (ID: 16)
  • unsafe-object-presence_screw (ID: 17)
  • unsafe-object-presence_sim-opener (ID: 18)
  • zone-empty (ID: 19)

Usage

This dataset can be loaded directly with popular ML frameworks:

PyTorch/Detectron2

from detectron2.data.datasets import register_coco_instances

register_coco_instances("nvr_train", {}, "annotations/train.json", "images/train")
register_coco_instances("nvr_val", {}, "annotations/val.json", "images/val")

TensorFlow/Keras

import tensorflow_datasets as tfds

# Load COCO format dataset
dataset = tfds.load('coco', data_dir='path/to/dataset')

Original Folder Structure Preserved

All original folder classification information is preserved in the annotation metadata:

  • camera_location: Which camera captured the image
  • primary_category: Main classification (sleeping_position, event, reference_subject)
  • subcategory: Specific category within primary
  • specific_event: Detailed event classification where applicable