Datasets:
Tasks:
Token Classification
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
< 1K
DOI:
License:
NVR Entity Recognition Dataset (Standardized)
Dataset Structure
This dataset follows the COCO format for object detection training:
dataset/
βββ images/
β βββ train/ # Training images (68 images)
β βββ val/ # Validation images (19 images)
β βββ test/ # Test images (11 images)
βββ annotations/
β βββ train.json # Training annotations (COCO format)
β βββ val.json # Validation annotations (COCO format)
β βββ test.json # Test annotations (COCO format)
βββ dataset_config.json # Dataset configuration and metadata
Categories
19 categories identified from folder structure:
- back-sleeping (ID: 1)
- bedroom (ID: 2)
- blanket-in-bassinet (ID: 3)
- face-down (ID: 4)
- pacifier_pacifier-fell-out (ID: 5)
- pacifier_pacifier-in-mouth (ID: 6)
- reference_subject (ID: 7)
- side-sleeping (ID: 8)
- smothering_baby-under-blanket (ID: 9)
- smothering_smothering (ID: 10)
- smothering_smothering-high-risk (ID: 11)
- subject-obscured (ID: 12)
- swaddling_normal-swaddle (ID: 13)
- swaddling_swaddle-breakout (ID: 14)
- unsafe-object-presence_button-battery (ID: 15)
- unsafe-object-presence_pill (ID: 16)
- unsafe-object-presence_screw (ID: 17)
- unsafe-object-presence_sim-opener (ID: 18)
- zone-empty (ID: 19)
Usage
This dataset can be loaded directly with popular ML frameworks:
PyTorch/Detectron2
from detectron2.data.datasets import register_coco_instances
register_coco_instances("nvr_train", {}, "annotations/train.json", "images/train")
register_coco_instances("nvr_val", {}, "annotations/val.json", "images/val")
TensorFlow/Keras
import tensorflow_datasets as tfds
# Load COCO format dataset
dataset = tfds.load('coco', data_dir='path/to/dataset')
Original Folder Structure Preserved
All original folder classification information is preserved in the annotation metadata:
camera_location
: Which camera captured the imageprimary_category
: Main classification (sleeping_position, event, reference_subject)subcategory
: Specific category within primaryspecific_event
: Detailed event classification where applicable