Dataset Viewer
Auto-converted to Parquet
datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-05-20 00:57:22
2025-06-03 10:14:14
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
2.03k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-03 10:13:51
trending_score
float64
1
36
card
large_stringlengths
31
1.01M
louisbrulenaudet/code-forestier-nouveau
louisbrulenaudet
2025-06-03T05:05:36Z
437
0
[ "task_categories:text-generation", "task_categories:table-question-answering", "task_categories:summarization", "task_categories:text-retrieval", "task_categories:question-answering", "task_categories:text-classification", "multilinguality:monolingual", "source_datasets:original", "language:fr", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "finetuning", "legal", "french law", "droit français", "Code forestier (nouveau)" ]
[ "text-generation", "table-question-answering", "summarization", "text-retrieval", "question-answering", "text-classification" ]
2024-03-25T21:53:40Z
null
--- license: apache-2.0 language: - fr multilinguality: - monolingual tags: - finetuning - legal - french law - droit français - Code forestier (nouveau) source_datasets: - original pretty_name: Code forestier (nouveau) task_categories: - text-generation - table-question-answering - summarization - text-retrieval - question-answering - text-classification size_categories: - 1K<n<10K --- # Code forestier (nouveau), non-instruct (2025-06-02) The objective of this project is to provide researchers, professionals and law students with simplified, up-to-date access to all French legal texts, enriched with a wealth of data to facilitate their integration into Community and European projects. Normally, the data is refreshed daily on all legal codes, and aims to simplify the production of training sets and labeling pipelines for the development of free, open-source language models based on open data accessible to all. ## Concurrent reading of the LegalKit [<img src="https://raw.githubusercontent.com/louisbrulenaudet/ragoon/main/assets/badge.svg" alt="Built with RAGoon" width="200" height="32"/>](https://github.com/louisbrulenaudet/ragoon) To use all the legal data published on LegalKit, you can use RAGoon: ```bash pip3 install ragoon ``` Then, you can load multiple datasets using this code snippet: ```python # -*- coding: utf-8 -*- from ragoon import load_datasets req = [ "louisbrulenaudet/code-artisanat", "louisbrulenaudet/code-action-sociale-familles", # ... ] datasets_list = load_datasets( req=req, streaming=False ) dataset = datasets.concatenate_datasets( datasets_list ) ``` ### Data Structure for Article Information This section provides a detailed overview of the elements contained within the `item` dictionary. Each key represents a specific attribute of the legal article, with its associated value providing detailed information. 1. **Basic Information** - `ref` (string): **Reference** - A reference to the article, combining the title_main and the article `number` (e.g., "Code Général des Impôts, art. 123"). - `texte` (string): **Text Content** - The textual content of the article. - `dateDebut` (string): **Start Date** - The date when the article came into effect. - `dateFin` (string): **End Date** - The date when the article was terminated or superseded. - `num` (string): **Article Number** - The number assigned to the article. - `id` (string): **Article ID** - Unique identifier for the article. - `cid` (string): **Chronical ID** - Chronical identifier for the article. - `type` (string): **Type** - The type or classification of the document (e.g., "AUTONOME"). - `etat` (string): **Legal Status** - The current legal status of the article (e.g., "MODIFIE_MORT_NE"). 2. **Content and Notes** - `nota` (string): **Notes** - Additional notes or remarks associated with the article. - `version_article` (string): **Article Version** - The version number of the article. - `ordre` (integer): **Order Number** - A numerical value used to sort articles within their parent section. 3. **Additional Metadata** - `conditionDiffere` (string): **Deferred Condition** - Specific conditions related to collective agreements. - `infosComplementaires` (string): **Additional Information** - Extra information pertinent to the article. - `surtitre` (string): **Subtitle** - A subtitle or additional title information related to collective agreements. - `nature` (string): **Nature** - The nature or category of the document (e.g., "Article"). - `texteHtml` (string): **HTML Content** - The article's content in HTML format. 4. **Versioning and Extensions** - `dateFinExtension` (string): **End Date of Extension** - The end date if the article has an extension. - `versionPrecedente` (string): **Previous Version** - Identifier for the previous version of the article. - `refInjection` (string): **Injection Reference** - Technical reference to identify the date of injection. - `idTexte` (string): **Text ID** - Identifier for the legal text to which the article belongs. - `idTechInjection` (string): **Technical Injection ID** - Technical identifier for the injected element. 5. **Origin and Relationships** - `origine` (string): **Origin** - The origin of the document (e.g., "LEGI"). - `dateDebutExtension` (string): **Start Date of Extension** - The start date if the article has an extension. - `idEliAlias` (string): **ELI Alias** - Alias for the European Legislation Identifier (ELI). - `cidTexte` (string): **Text Chronical ID** - Chronical identifier of the text. 6. **Hierarchical Relationships** - `sectionParentId` (string): **Parent Section ID** - Technical identifier of the parent section. - `multipleVersions` (boolean): **Multiple Versions** - Indicates if the article has multiple versions. - `comporteLiensSP` (boolean): **Contains Public Service Links** - Indicates if the article contains links to public services. - `sectionParentTitre` (string): **Parent Section Title** - Title of the parent section (e.g., "I : Revenu imposable"). - `infosRestructurationBranche` (string): **Branch Restructuring Information** - Information about branch restructuring. - `idEli` (string): **ELI ID** - European Legislation Identifier (ELI) for the article. - `sectionParentCid` (string): **Parent Section Chronical ID** - Chronical identifier of the parent section. 7. **Additional Content and History** - `numeroBo` (string): **Official Bulletin Number** - Number of the official bulletin where the article was published. - `infosRestructurationBrancheHtml` (string): **Branch Restructuring Information (HTML)** - Branch restructuring information in HTML format. - `historique` (string): **History** - Historical context or changes specific to collective agreements. - `infosComplementairesHtml` (string): **Additional Information (HTML)** - Additional information in HTML format. - `renvoi` (string): **Reference** - References to content within the article (e.g., "(1)"). - `fullSectionsTitre` (string): **Full Section Titles** - Concatenation of all titles in the parent chain. - `notaHtml` (string): **Notes (HTML)** - Additional notes or remarks in HTML format. - `inap` (string): **INAP** - A placeholder for INAP-specific information. ## Feedback If you have any feedback, please reach out at [[email protected]](mailto:[email protected]).
louisbrulenaudet/code-communes
louisbrulenaudet
2025-06-03T05:05:26Z
468
0
[ "task_categories:text-generation", "task_categories:table-question-answering", "task_categories:summarization", "task_categories:text-retrieval", "task_categories:question-answering", "task_categories:text-classification", "multilinguality:monolingual", "source_datasets:original", "language:fr", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "finetuning", "legal", "french law", "droit français", "Code des communes" ]
[ "text-generation", "table-question-answering", "summarization", "text-retrieval", "question-answering", "text-classification" ]
2024-03-25T19:57:26Z
null
--- license: apache-2.0 language: - fr multilinguality: - monolingual tags: - finetuning - legal - french law - droit français - Code des communes source_datasets: - original pretty_name: Code des communes task_categories: - text-generation - table-question-answering - summarization - text-retrieval - question-answering - text-classification size_categories: - 1K<n<10K --- # Code des communes, non-instruct (2025-06-02) The objective of this project is to provide researchers, professionals and law students with simplified, up-to-date access to all French legal texts, enriched with a wealth of data to facilitate their integration into Community and European projects. Normally, the data is refreshed daily on all legal codes, and aims to simplify the production of training sets and labeling pipelines for the development of free, open-source language models based on open data accessible to all. ## Concurrent reading of the LegalKit [<img src="https://raw.githubusercontent.com/louisbrulenaudet/ragoon/main/assets/badge.svg" alt="Built with RAGoon" width="200" height="32"/>](https://github.com/louisbrulenaudet/ragoon) To use all the legal data published on LegalKit, you can use RAGoon: ```bash pip3 install ragoon ``` Then, you can load multiple datasets using this code snippet: ```python # -*- coding: utf-8 -*- from ragoon import load_datasets req = [ "louisbrulenaudet/code-artisanat", "louisbrulenaudet/code-action-sociale-familles", # ... ] datasets_list = load_datasets( req=req, streaming=False ) dataset = datasets.concatenate_datasets( datasets_list ) ``` ### Data Structure for Article Information This section provides a detailed overview of the elements contained within the `item` dictionary. Each key represents a specific attribute of the legal article, with its associated value providing detailed information. 1. **Basic Information** - `ref` (string): **Reference** - A reference to the article, combining the title_main and the article `number` (e.g., "Code Général des Impôts, art. 123"). - `texte` (string): **Text Content** - The textual content of the article. - `dateDebut` (string): **Start Date** - The date when the article came into effect. - `dateFin` (string): **End Date** - The date when the article was terminated or superseded. - `num` (string): **Article Number** - The number assigned to the article. - `id` (string): **Article ID** - Unique identifier for the article. - `cid` (string): **Chronical ID** - Chronical identifier for the article. - `type` (string): **Type** - The type or classification of the document (e.g., "AUTONOME"). - `etat` (string): **Legal Status** - The current legal status of the article (e.g., "MODIFIE_MORT_NE"). 2. **Content and Notes** - `nota` (string): **Notes** - Additional notes or remarks associated with the article. - `version_article` (string): **Article Version** - The version number of the article. - `ordre` (integer): **Order Number** - A numerical value used to sort articles within their parent section. 3. **Additional Metadata** - `conditionDiffere` (string): **Deferred Condition** - Specific conditions related to collective agreements. - `infosComplementaires` (string): **Additional Information** - Extra information pertinent to the article. - `surtitre` (string): **Subtitle** - A subtitle or additional title information related to collective agreements. - `nature` (string): **Nature** - The nature or category of the document (e.g., "Article"). - `texteHtml` (string): **HTML Content** - The article's content in HTML format. 4. **Versioning and Extensions** - `dateFinExtension` (string): **End Date of Extension** - The end date if the article has an extension. - `versionPrecedente` (string): **Previous Version** - Identifier for the previous version of the article. - `refInjection` (string): **Injection Reference** - Technical reference to identify the date of injection. - `idTexte` (string): **Text ID** - Identifier for the legal text to which the article belongs. - `idTechInjection` (string): **Technical Injection ID** - Technical identifier for the injected element. 5. **Origin and Relationships** - `origine` (string): **Origin** - The origin of the document (e.g., "LEGI"). - `dateDebutExtension` (string): **Start Date of Extension** - The start date if the article has an extension. - `idEliAlias` (string): **ELI Alias** - Alias for the European Legislation Identifier (ELI). - `cidTexte` (string): **Text Chronical ID** - Chronical identifier of the text. 6. **Hierarchical Relationships** - `sectionParentId` (string): **Parent Section ID** - Technical identifier of the parent section. - `multipleVersions` (boolean): **Multiple Versions** - Indicates if the article has multiple versions. - `comporteLiensSP` (boolean): **Contains Public Service Links** - Indicates if the article contains links to public services. - `sectionParentTitre` (string): **Parent Section Title** - Title of the parent section (e.g., "I : Revenu imposable"). - `infosRestructurationBranche` (string): **Branch Restructuring Information** - Information about branch restructuring. - `idEli` (string): **ELI ID** - European Legislation Identifier (ELI) for the article. - `sectionParentCid` (string): **Parent Section Chronical ID** - Chronical identifier of the parent section. 7. **Additional Content and History** - `numeroBo` (string): **Official Bulletin Number** - Number of the official bulletin where the article was published. - `infosRestructurationBrancheHtml` (string): **Branch Restructuring Information (HTML)** - Branch restructuring information in HTML format. - `historique` (string): **History** - Historical context or changes specific to collective agreements. - `infosComplementairesHtml` (string): **Additional Information (HTML)** - Additional information in HTML format. - `renvoi` (string): **Reference** - References to content within the article (e.g., "(1)"). - `fullSectionsTitre` (string): **Full Section Titles** - Concatenation of all titles in the parent chain. - `notaHtml` (string): **Notes (HTML)** - Additional notes or remarks in HTML format. - `inap` (string): **INAP** - A placeholder for INAP-specific information. ## Feedback If you have any feedback, please reach out at [[email protected]](mailto:[email protected]).
zhifeishen/grasp_place_one
zhifeishen
2025-06-03T03:43:59Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-03T03:23:20Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "aloha", "total_episodes": 20, "total_frames": 14306, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 50, "splits": { "train": "0:20" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.state": { "dtype": "float32", "shape": [ 14 ], "names": [ [ "right_waist", "right_shoulder", "right_elbow", "right_forearm_roll", "right_wrist_angle", "right_wrist_rotate", "right_gripper", "left_waist", "left_shoulder", "left_elbow", "left_forearm_roll", "left_wrist_angle", "left_wrist_rotate", "left_gripper" ] ] }, "action": { "dtype": "float32", "shape": [ 14 ], "names": [ [ "right_waist", "right_shoulder", "right_elbow", "right_forearm_roll", "right_wrist_angle", "right_wrist_rotate", "right_gripper", "left_waist", "left_shoulder", "left_elbow", "left_forearm_roll", "left_wrist_angle", "left_wrist_rotate", "left_gripper" ] ] }, "observation.velocity": { "dtype": "float32", "shape": [ 14 ], "names": [ [ "right_waist", "right_shoulder", "right_elbow", "right_forearm_roll", "right_wrist_angle", "right_wrist_rotate", "right_gripper", "left_waist", "left_shoulder", "left_elbow", "left_forearm_roll", "left_wrist_angle", "left_wrist_rotate", "left_gripper" ] ] }, "observation.effort": { "dtype": "float32", "shape": [ 14 ], "names": [ [ "right_waist", "right_shoulder", "right_elbow", "right_forearm_roll", "right_wrist_angle", "right_wrist_rotate", "right_gripper", "left_waist", "left_shoulder", "left_elbow", "left_forearm_roll", "left_wrist_angle", "left_wrist_rotate", "left_gripper" ] ] }, "observation.images.cam_high": { "dtype": "image", "shape": [ 3, 480, 640 ], "names": [ "channels", "height", "width" ] }, "observation.images.cam_low": { "dtype": "image", "shape": [ 3, 480, 640 ], "names": [ "channels", "height", "width" ] }, "observation.images.cam_left_wrist": { "dtype": "image", "shape": [ 3, 480, 640 ], "names": [ "channels", "height", "width" ] }, "observation.images.cam_right_wrist": { "dtype": "image", "shape": [ 3, 480, 640 ], "names": [ "channels", "height", "width" ] }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
icedwind/x_dataset_34576
icedwind
2025-06-03T02:55:21Z
1,188
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-01-29T06:54:29Z
null
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** icedwind/x_dataset_34576 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5CoHRJSrdnojNtZ5x9n7YHKb35ySPrSwk8oCrim3BYP6kern ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{icedwind2025datauniversex_dataset_34576, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={icedwind}, year={2025}, url={https://huggingface.co/datasets/icedwind/x_dataset_34576}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 44847129 - **Date Range:** 2025-01-23T00:00:00Z to 2025-02-12T00:00:00Z - **Last Updated:** 2025-02-18T21:35:02Z ### Data Distribution - Tweets with hashtags: 40.76% - Tweets without hashtags: 59.24% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 26569050 | 59.24% | | 2 | #riyadh | 304003 | 0.68% | | 3 | #zelena | 244307 | 0.54% | | 4 | #tiktok | 180248 | 0.40% | | 5 | #jhope_at_galadespiècesjaunes | 127683 | 0.28% | | 6 | #bbb25 | 110751 | 0.25% | | 7 | #ad | 108206 | 0.24% | | 8 | #royalrumble | 94571 | 0.21% | | 9 | #bbmzansi | 61439 | 0.14% | | 10 | #theheartkillersep10 | 59616 | 0.13% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-29T06:55:38Z | 3976866 | 3976866 | | 2025-02-01T18:58:26Z | 8396141 | 12373007 | | 2025-02-05T07:02:02Z | 11364902 | 23737909 | | 2025-02-08T19:06:38Z | 9126902 | 32864811 | | 2025-02-12T07:14:04Z | 10462808 | 43327619 | | 2025-02-18T06:33:56Z | 829865 | 44157484 | | 2025-02-18T21:35:02Z | 689645 | 44847129 |
mothnaZl/seq_dis_T0.4-Qwen2.5-7B-best_of_n-VLLM-Skywork-o1-Open-PRM-Qwen-2.5-7B-completions
mothnaZl
2025-06-03T02:36:10Z
10
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-01T23:30:00Z
null
--- dataset_info: config_name: mothnaZl_minerva_math--T-0.8--top_p-1.0--n-128--seed-0--agg_strategy-last--merged--evals features: - name: n dtype: int64 - name: acc_naive dtype: float64 - name: acc_weighted dtype: float64 - name: acc_maj dtype: float64 - name: pass@n dtype: float64 - name: div_avg dtype: float64 - name: div_sum dtype: float64 - name: div_mean dtype: float64 - name: Unigrams dtype: float64 - name: Bigrams dtype: float64 - name: Trigrams dtype: float64 - name: Fourgrams dtype: float64 - name: pass_tag sequence: 'null' - name: BM25 dtype: int64 - name: pred_entropy dtype: float64 splits: - name: train num_bytes: 928 num_examples: 8 download_size: 7131 dataset_size: 928 configs: - config_name: mothnaZl_minerva_math--T-0.8--top_p-1.0--n-128--seed-0--agg_strategy-last--merged--evals data_files: - split: train path: mothnaZl_minerva_math--T-0.8--top_p-1.0--n-128--seed-0--agg_strategy-last--merged--evals/train-* ---
smanni/train_so100_pick_place_blue_pencil
smanni
2025-05-28T13:56:37Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-05-28T13:56:23Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 50, "total_frames": 17924, "total_tasks": 1, "total_videos": 50, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.intel_realsense": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
prithivMLmods/Shoe-Net-10K
prithivMLmods
2025-05-28T13:16:03Z
0
0
[ "task_categories:image-classification", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "image", "shoe-type", "classification", "video", "10k", "rgb" ]
[ "image-classification" ]
2025-05-28T12:55:56Z
null
--- license: apache-2.0 task_categories: - image-classification language: - en tags: - image - shoe-type - classification - video - 10k - rgb size_categories: - 1K<n<10K ---
elfray/multiplication_2x2
elfray
2025-05-28T11:29:13Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-28T11:12:44Z
null
--- dataset_info: features: - name: task dtype: string - name: labels dtype: string splits: - name: train num_bytes: 174960 num_examples: 7290 - name: valid num_bytes: 19440 num_examples: 810 download_size: 377879 dataset_size: 194400 configs: - config_name: default data_files: - split: train path: data/train-* - split: valid path: data/valid-* ---
PushkarA07/2016-6-patches-May28
PushkarA07
2025-05-28T10:10:46Z
0
0
[ "region:us" ]
[]
2025-05-28T10:10:44Z
null
--- dataset_info: features: - name: pixel_values dtype: image - name: image_name dtype: string splits: - name: train num_bytes: 1831857.0 num_examples: 32 download_size: 1833191 dataset_size: 1831857.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Jaafer/EnglishRelatedConcepts2025_CUI1_CUI2_RELA_SAB_Clean
Jaafer
2025-05-28T09:14:52Z
0
0
[ "region:us" ]
[]
2025-05-28T09:14:30Z
null
--- dataset_info: features: - name: CUI1 dtype: string - name: CUI2 dtype: string - name: RELA dtype: string - name: SAB dtype: string splits: - name: train num_bytes: 1234618458 num_examples: 23555619 download_size: 164523109 dataset_size: 1234618458 configs: - config_name: default data_files: - split: train path: data/train-* ---
vidyc/m1_preference_data
vidyc
2025-05-28T09:14:23Z
0
0
[ "region:us" ]
[]
2025-05-28T09:14:16Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 81029859 num_examples: 21816 - name: validation num_bytes: 4482105 num_examples: 1212 - name: test num_bytes: 4546794 num_examples: 1212 download_size: 43896617 dataset_size: 90058758 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
large-traversaal/Agent-Benchmarks-Data
large-traversaal
2025-05-28T08:07:41Z
21
0
[ "license:cc-by-nc-nd-4.0", "region:us" ]
[]
2025-05-22T07:58:12Z
null
--- license: cc-by-nc-nd-4.0 ---
acarballocastro/MNLP_M2_quantized_dataset
acarballocastro
2025-05-28T08:04:54Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-27T13:02:37Z
null
--- dataset_info: features: - name: text dtype: string - name: dataset dtype: string splits: - name: train num_bytes: 632204 num_examples: 512 download_size: 311955 dataset_size: 632204 configs: - config_name: default data_files: - split: train path: data/train-* --- Calibration dataset for the quantized model. - Number of samples: 512
zwa73/SoulTide-AudioData-Dataset
zwa73
2025-05-28T07:09:22Z
838
0
[ "license:cc0-1.0", "size_categories:1K<n<10K", "format:audiofolder", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-04-14T10:01:27Z
null
--- configs: - config_name: Akaset data_files: - split: audio path: - "character/Akaset/resource/audio/*.flac" - "character/Akaset/resource/metadata.csv" - config_name: Alisa data_files: - split: audio path: - "character/Alisa/resource/audio/*.flac" - "character/Alisa/resource/metadata.csv" - config_name: AmaneInori data_files: - split: audio path: - "character/AmaneInori/resource/audio/*.flac" - "character/AmaneInori/resource/metadata.csv" - config_name: Andrea data_files: - split: audio path: - "character/Andrea/resource/audio/*.flac" - "character/Andrea/resource/metadata.csv" - config_name: Antonina data_files: - split: audio path: - "character/Antonina/resource/audio/*.flac" - "character/Antonina/resource/metadata.csv" - config_name: Aoling data_files: - split: audio path: - "character/Aoling/resource/audio/*.flac" - "character/Aoling/resource/metadata.csv" - config_name: Asuna data_files: - split: audio path: - "character/Asuna/resource/audio/*.flac" - "character/Asuna/resource/metadata.csv" - config_name: Aurora data_files: - split: audio path: - "character/Aurora/resource/audio/*.flac" - "character/Aurora/resource/metadata.csv" - config_name: Benten data_files: - split: audio path: - "character/Benten/resource/audio/*.flac" - "character/Benten/resource/metadata.csv" - config_name: Cecilia data_files: - split: audio path: - "character/Cecilia/resource/audio/*.flac" - "character/Cecilia/resource/metadata.csv" - config_name: Clarice data_files: - split: audio path: - "character/Clarice/resource/audio/*.flac" - "character/Clarice/resource/metadata.csv" - config_name: Clotho data_files: - split: audio path: - "character/Clotho/resource/audio/*.flac" - "character/Clotho/resource/metadata.csv" - config_name: Colcher data_files: - split: audio path: - "character/Colcher/resource/audio/*.flac" - "character/Colcher/resource/metadata.csv" - config_name: Dolores data_files: - split: audio path: - "character/Dolores/resource/audio/*.flac" - "character/Dolores/resource/metadata.csv" - config_name: Dora data_files: - split: audio path: - "character/Dora/resource/audio/*.flac" - "character/Dora/resource/metadata.csv" - config_name: Dreizehn data_files: - split: audio path: - "character/Dreizehn/resource/audio/*.flac" - "character/Dreizehn/resource/metadata.csv" - config_name: Ennis data_files: - split: audio path: - "character/Ennis/resource/audio/*.flac" - "character/Ennis/resource/metadata.csv" - config_name: Erinnern data_files: - split: audio path: - "character/Erinnern/resource/audio/*.flac" - "character/Erinnern/resource/metadata.csv" - config_name: EtsukazuMiko data_files: - split: audio path: - "character/EtsukazuMiko/resource/audio/*.flac" - "character/EtsukazuMiko/resource/metadata.csv" - config_name: Fanny data_files: - split: audio path: - "character/Fanny/resource/audio/*.flac" - "character/Fanny/resource/metadata.csv" - config_name: Freesia data_files: - split: audio path: - "character/Freesia/resource/audio/*.flac" - "character/Freesia/resource/metadata.csv" - config_name: Gawana data_files: - split: audio path: - "character/Gawana/resource/audio/*.flac" - "character/Gawana/resource/metadata.csv" - config_name: HagakureRuri data_files: - split: audio path: - "character/HagakureRuri/resource/audio/*.flac" - "character/HagakureRuri/resource/metadata.csv" - config_name: Haliva data_files: - split: audio path: - "character/Haliva/resource/audio/*.flac" - "character/Haliva/resource/metadata.csv" - config_name: HazukiYuki data_files: - split: audio path: - "character/HazukiYuki/resource/audio/*.flac" - "character/HazukiYuki/resource/metadata.csv" - config_name: HeLing data_files: - split: audio path: - "character/HeLing/resource/audio/*.flac" - "character/HeLing/resource/metadata.csv" - config_name: Ithil data_files: - split: audio path: - "character/Ithil/resource/audio/*.flac" - "character/Ithil/resource/metadata.csv" - config_name: JoanofArcLoire data_files: - split: audio path: - "character/JoanofArcLoire/resource/audio/*.flac" - "character/JoanofArcLoire/resource/metadata.csv" - config_name: Juewa data_files: - split: audio path: - "character/Juewa/resource/audio/*.flac" - "character/Juewa/resource/metadata.csv" - config_name: Kokkoro data_files: - split: audio path: - "character/Kokkoro/resource/audio/*.flac" - "character/Kokkoro/resource/metadata.csv" - config_name: Lavira data_files: - split: audio path: - "character/Lavira/resource/audio/*.flac" - "character/Lavira/resource/metadata.csv" - config_name: LightCloud data_files: - split: audio path: - "character/LightCloud/resource/audio/*.flac" - "character/LightCloud/resource/metadata.csv" - config_name: Lilyiro data_files: - split: audio path: - "character/Lilyiro/resource/audio/*.flac" - "character/Lilyiro/resource/metadata.csv" - config_name: Micha data_files: - split: audio path: - "character/Micha/resource/audio/*.flac" - "character/Micha/resource/metadata.csv" - config_name: Minerdwen data_files: - split: audio path: - "character/Minerdwen/resource/audio/*.flac" - "character/Minerdwen/resource/metadata.csv" - config_name: Mist data_files: - split: audio path: - "character/Mist/resource/audio/*.flac" - "character/Mist/resource/metadata.csv" - config_name: NankungLin data_files: - split: audio path: - "character/NankungLin/resource/audio/*.flac" - "character/NankungLin/resource/metadata.csv" - config_name: Netsuki data_files: - split: audio path: - "character/Netsuki/resource/audio/*.flac" - "character/Netsuki/resource/metadata.csv" - config_name: NicoletteLamel data_files: - split: audio path: - "character/NicoletteLamel/resource/audio/*.flac" - "character/NicoletteLamel/resource/metadata.csv" - config_name: Philodoxy data_files: - split: audio path: - "character/Philodoxy/resource/audio/*.flac" - "character/Philodoxy/resource/metadata.csv" - config_name: QingDai data_files: - split: audio path: - "character/QingDai/resource/audio/*.flac" - "character/QingDai/resource/metadata.csv" - config_name: QingHao data_files: - split: audio path: - "character/QingHao/resource/audio/*.flac" - "character/QingHao/resource/metadata.csv" - config_name: QuLing data_files: - split: audio path: - "character/QuLing/resource/audio/*.flac" - "character/QuLing/resource/metadata.csv" - config_name: RubyRose data_files: - split: audio path: - "character/RubyRose/resource/audio/*.flac" - "character/RubyRose/resource/metadata.csv" - config_name: SakuyaMako data_files: - split: audio path: - "character/SakuyaMako/resource/audio/*.flac" - "character/SakuyaMako/resource/metadata.csv" - config_name: Satya data_files: - split: audio path: - "character/Satya/resource/audio/*.flac" - "character/Satya/resource/metadata.csv" - config_name: Silenus data_files: - split: audio path: - "character/Silenus/resource/audio/*.flac" - "character/Silenus/resource/metadata.csv" - config_name: Truda data_files: - split: audio path: - "character/Truda/resource/audio/*.flac" - "character/Truda/resource/metadata.csv" - config_name: TsukinoMiyo data_files: - split: audio path: - "character/TsukinoMiyo/resource/audio/*.flac" - "character/TsukinoMiyo/resource/metadata.csv" - config_name: Virgina data_files: - split: audio path: - "character/Virgina/resource/audio/*.flac" - "character/Virgina/resource/metadata.csv" license: cc0-1.0 --- character ____[char] ________resource ____________audio - 原始音频 ____________srt - 原始srt ____________processed - 利用 Process-Resource 根据原始资源处理后的资源 ________recognized - Whisper-LargeV2 识别的srt ________calibrated - 人工校准的srt ________tmp - build临时文件 搭配此管理器来生成所需的训练集: https://github.com/Sosarciel/SoulTide-AudioData-Manager
zerostratos/vi-cc100-parquet-dataset
zerostratos
2025-05-28T06:39:12Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-05-28T05:38:47Z
null
--- license: apache-2.0 ---
JesusCrist/mt_bench_prompts
JesusCrist
2025-05-28T06:38:29Z
0
0
[ "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-28T05:54:42Z
null
--- license: mit configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: question_id dtype: int64 - name: category dtype: string - name: turns sequence: string - name: reference sequence: string - name: gpt4_reference sequence: string splits: - name: train num_bytes: 91373 num_examples: 80 download_size: 53582 dataset_size: 91373 ---
LadyMia/x_dataset_63648
LadyMia
2025-05-28T06:01:17Z
1,169
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-01-27T01:53:26Z
null
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** LadyMia/x_dataset_63648 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5GxSoUZjTtZrPCjvjJb3pMZYhkKehpx8NE7ueruDzt1pcXVu ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{LadyMia2025datauniversex_dataset_63648, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={LadyMia}, year={2025}, url={https://huggingface.co/datasets/LadyMia/x_dataset_63648}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 46948534 - **Date Range:** 2025-01-21T00:00:00Z to 2025-02-12T00:00:00Z - **Last Updated:** 2025-02-18T19:01:32Z ### Data Distribution - Tweets with hashtags: 42.40% - Tweets without hashtags: 57.60% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 27040155 | 57.60% | | 2 | #riyadh | 327476 | 0.70% | | 3 | #zelena | 239003 | 0.51% | | 4 | #tiktok | 196037 | 0.42% | | 5 | #bbb25 | 131939 | 0.28% | | 6 | #ad | 113489 | 0.24% | | 7 | #royalrumble | 91252 | 0.19% | | 8 | #jhope_at_galadespiècesjaunes | 67775 | 0.14% | | 9 | #granhermano | 66116 | 0.14% | | 10 | #bbmzansi | 60926 | 0.13% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-27T01:54:19Z | 3109806 | 3109806 | | 2025-01-30T14:08:36Z | 9957939 | 13067745 | | 2025-02-03T02:11:55Z | 8628746 | 21696491 | | 2025-02-06T14:14:41Z | 7395527 | 29092018 | | 2025-02-10T02:19:10Z | 7700406 | 36792424 | | 2025-02-13T14:25:51Z | 8841353 | 45633777 | | 2025-02-18T04:00:18Z | 696224 | 46330001 | | 2025-02-18T19:01:32Z | 618533 | 46948534 |
chfeng/categories_50_samples_category5
chfeng
2025-05-28T05:55:35Z
0
0
[ "region:us" ]
[]
2025-05-28T05:55:32Z
null
--- dataset_info: features: - name: image dtype: image - name: image_path dtype: string - name: image_url dtype: string - name: category dtype: string - name: problem dtype: string - name: original_caption dtype: string - name: changed_caption dtype: string - name: fixed_caption dtype: string - name: solution_original dtype: string - name: solution_target dtype: string splits: - name: train num_bytes: 56102107.0 num_examples: 50 download_size: 56037575 dataset_size: 56102107.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
chfeng/categories_50_samples_category3
chfeng
2025-05-28T05:55:01Z
0
0
[ "region:us" ]
[]
2025-05-28T05:54:58Z
null
--- dataset_info: features: - name: image dtype: image - name: image_path dtype: string - name: image_url dtype: string - name: category dtype: string - name: problem dtype: string - name: original_caption dtype: string - name: changed_caption dtype: string - name: fixed_caption dtype: string - name: solution_original dtype: string - name: solution_target dtype: string splits: - name: train num_bytes: 43403230.0 num_examples: 50 download_size: 43317426 dataset_size: 43403230.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
aochongoliverli/Qwen2.5-Math-1.5B-deepmath-hard-1800-steps-4096
aochongoliverli
2025-05-28T05:24:41Z
0
0
[ "region:us" ]
[]
2025-05-28T05:24:40Z
null
--- dataset_info: features: - name: question dtype: string - name: correct_responses sequence: string - name: attempts dtype: int64 splits: - name: train num_bytes: 33115 num_examples: 6 download_size: 21195 dataset_size: 33115 configs: - config_name: default data_files: - split: train path: data/train-* ---
nguyentranai07/TechniqueIndicator_Analyze
nguyentranai07
2025-05-28T05:01:05Z
223
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-26T05:49:29Z
null
--- dataset_info: features: - name: Question dtype: string - name: Answer dtype: string splits: - name: train num_bytes: 76206461 num_examples: 37700 download_size: 29244812 dataset_size: 76206461 configs: - config_name: default data_files: - split: train path: data/train-* ---
chfeng/categories_20_samples_category7
chfeng
2025-05-28T04:12:11Z
0
0
[ "region:us" ]
[]
2025-05-28T04:02:00Z
null
--- dataset_info: features: - name: image dtype: image - name: image_path dtype: string - name: image_url dtype: string - name: category dtype: string - name: problem dtype: string - name: original_caption dtype: string - name: changed_caption dtype: string - name: fixed_caption dtype: string - name: solution_original dtype: string - name: solution_target dtype: string splits: - name: train num_bytes: 9008502.0 num_examples: 20 download_size: 8953660 dataset_size: 9008502.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
chfeng/categories_20_samples_category4
chfeng
2025-05-28T04:11:54Z
0
0
[ "region:us" ]
[]
2025-05-28T04:01:54Z
null
--- dataset_info: features: - name: image dtype: image - name: image_path dtype: string - name: image_url dtype: string - name: category dtype: string - name: problem dtype: string - name: original_caption dtype: string - name: changed_caption dtype: string - name: fixed_caption dtype: string - name: solution_original dtype: string - name: solution_target dtype: string splits: - name: train num_bytes: 5509366.0 num_examples: 20 download_size: 5490004 dataset_size: 5509366.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Svngoku/PompiersDeParisDomainSpecificQA
Svngoku
2025-05-28T04:10:44Z
0
0
[ "task_categories:text-generation", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "urgence", "pompiers", "rex", "rag", "synthetic" ]
[ "text-generation" ]
2025-05-27T22:16:46Z
null
--- task_categories: - text-generation tags: - urgence - pompiers - rex - rag - synthetic size_categories: - 10K<n<100K --- # QA Dataset for 'Les Pompiers de Paris' for SFT ## Dataset Description - **Repository**: [Link to repository, if applicable] - **Language(s)**: French (fr) - **Task(s)**: Text Generation, Question Answering - **Size**: Between 10,000 and 100,000 entries - **License**: [Specify license, e.g., CC-BY-4.0 or proprietary] ### Overview The QA Dataset for 'Les Pompiers de Paris' is a specialized dataset designed for supervised fine-tuning (SFT) of language models. It contains question-answer pairs in French, focusing on procedures, definitions, and scenarios relevant to railway safety and emergency operations, particularly those involving the Paris Fire Brigade (Les Pompiers de Paris) and SNCF (French National Railway Company) protocols. The dataset is derived from procedural documents, such as `procedures_secours_ferroviaires.pdf`, and is structured to support training models for generating accurate, context-specific responses. ### Dataset Structure The dataset consists of JSON objects, each containing a `messages` field with a user-assistant dialogue pair. Each entry follows this format: ```json { "messages": [ { "content": "<question>", "role": "user" }, { "content": "<answer>", "role": "assistant" } ] }
Haviet2003/finetomevn
Haviet2003
2025-05-28T03:59:54Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-05-28T03:59:09Z
null
--- license: apache-2.0 ---
shin1107/eval_koch_base_pi0_pretrained_80000
shin1107
2025-05-28T03:03:56Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-05-28T03:03:46Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "koch", "total_episodes": 8, "total_frames": 4609, "total_tasks": 1, "total_videos": 16, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:8" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.top": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
ricardomonti08/wikipedia-vi-1percent
ricardomonti08
2025-05-28T02:44:35Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-28T02:44:32Z
null
--- dataset_info: features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 16177297.936743025 num_examples: 12886 download_size: 8810387 dataset_size: 16177297.936743025 configs: - config_name: default data_files: - split: train path: data/train-* ---
RenzKa/simlingo
RenzKa
2025-05-28T01:54:46Z
167
3
[ "task_categories:visual-question-answering", "task_categories:robotics", "language:en", "license:other", "region:us", "AutonomousDriving", "VQA", "Commentary", "VLA" ]
[ "visual-question-answering", "robotics" ]
2025-05-23T11:43:53Z
3
--- license: other task_categories: - visual-question-answering - robotics language: - en tags: - AutonomousDriving - VQA - Commentary - VLA --- # SimLingo Dataset ## Overview SimLingo-Data is a large-scale autonomous driving CARLA 2.0 dataset containing sensor data, action labels, a wide range of simulator state information, and language labels for VQA, commentary and instruction following. The driving data is collected with the privileged rule-based expert [PDM-Lite](https://github.com/OpenDriveLab/DriveLM/tree/DriveLM-CARLA/pdm_lite). ## Dataset Statistics - **Large-scale dataset**: 3,308,315 total samples (note: these are not from unique routes as the provided CARLA route files are limited) - **Diverse Scenarios:** Covers 38 complex scenarios, including urban traffic, participants violating traffic rules, and high-speed highway driving - **Focused Evaluation:** Short routes with 1 scenario (62.1%) or 3 scenarios (37.9%) per route - **Data Types**: RGB images (.jpg), LiDAR point clouds (.laz), Sensor measurements (.json.gz), Bounding boxes (.json.gz), Language annotations (.json.gz) ## Dataset Structure The dataset is organized hierarchically with the following main components: - `data/`: Raw sensor data (RGB, LiDAR, measurements, bounding boxes) - `commentary/`: Natural language descriptions of driving decisions - `dreamer/`: Instruction following data with multiple instruction/action pairs per sample - `drivelm/`: VQA data, based on DriveLM ### Data Details - **RGB Images**: 1024x512 front-view camera image - **Augmented RGB Images**: 1024x512 front-view camera image with a random shift and orientation offset of the camera - **LiDAR**: Point cloud data saved in LAZ format - **Measurements**: Vehicle state, simulator state, and sensor readings in JSON format - **Bounding Boxes**: Detailed information about each object in the scene. - **Commentary, Dreamer, VQA**: Language annotations ## Usage This dataset is chunked into groups of multiple routes for efficient download and processing. ### Download the whole dataset using git with Git LFS ```bash # Clone the repository git clone https://huggingface.co/datasets/RenzKa/simlingo # Navigate to the directory cd simlingo # Pull the LFS files git lfs pull ``` ### Download a single file with wget ```bash # Download individual files (replace with actual file URLs from Hugging Face) wget https://huggingface.co/datasets/RenzKa/simlingo/resolve/main/[filename].tar.gz ``` ### Extract to a single directory - please specify the location where you want to store the dataset ```bash # Create output directory mkdir -p database/simlingo # Extract all archives to the same directory for file in *.tar.gz; do echo "Extracting $file to database/simlingo/..." tar -xzf "$file" -C database/simlingo/ done ``` ## License Please refer to the license file for usage terms and conditions. ## Citation If you use this dataset in your research, please cite: ```bibtex @inproceedings{renz2025simlingo, title={SimLingo: Vision-Only Closed-Loop Autonomous Driving with Language-Action Alignment}, author={Renz, Katrin and Chen, Long and Arani, Elahe and Sinavski, Oleg}, booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2025}, } @inproceedings{sima2024drivelm, title={DriveLM: Driving with Graph Visual Question Answering}, author={Chonghao Sima and Katrin Renz and Kashyap Chitta and Li Chen and Hanxue Zhang and Chengen Xie and Jens Beißwenger and Ping Luo and Andreas Geiger and Hongyang Li}, booktitle={European Conference on Computer Vision}, year={2024}, } ```
LucidityAI/Qwen2.5-math-code-200k
LucidityAI
2025-05-28T01:08:51Z
0
0
[ "task_categories:text-generation", "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation", "question-answering" ]
2025-05-28T00:53:10Z
null
--- license: apache-2.0 task_categories: - text-generation - question-answering language: - en size_categories: - 100K<n<1M --- # Magpie Coder+Math 200k Dataset This dataset combines samples from two high-quality Magpie datasets: - **Magpie-Qwen2.5-Coder-Pro-300K-v0.1**: Programming and coding instructions - **Magpie-Qwen2.5-Math-Pro-300K-v0.1**: Mathematical problem-solving instructions - **Total entries**: 200,000 - **Coder entries**: 100,000 (from Magpie-Qwen2.5-Coder-Pro-300K-v0.1) - **Math entries**: 100,000 (from Magpie-Qwen2.5-Math-Pro-300K-v0.1) ## Original Sources - [Magpie-Qwen2.5-Coder-Pro-300K-v0.1](https://huggingface.co/datasets/Magpie-Align/Magpie-Qwen2.5-Coder-Pro-300K-v0.1) - [Magpie-Qwen2.5-Math-Pro-300K-v0.1](https://huggingface.co/datasets/Magpie-Align/Magpie-Qwen2.5-Math-Pro-300K-v0.1)
twigs/openmathinstruct2_chat_50k
twigs
2025-05-28T00:59:57Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-28T00:59:53Z
null
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 71986931 num_examples: 50000 download_size: 30439791 dataset_size: 71986931 configs: - config_name: default data_files: - split: train path: data/train-* ---
siyavash/so101_test
siyavash
2025-05-28T00:55:48Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-05-28T00:55:33Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 50, "total_frames": 22350, "total_tasks": 1, "total_videos": 100, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
DrAliGomaa/test_no_ffmpeg_dontuse_worse_performance
DrAliGomaa
2025-05-27T23:56:31Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-27T12:17:25Z
null
--- dataset_info: features: - name: audio_path dtype: string - name: sentence dtype: string - name: audio dtype: audio splits: - name: mgb2_validation num_bytes: 39052557.0 num_examples: 494 - name: validation num_bytes: 2764912640.52 num_examples: 7280 download_size: 2348397160 dataset_size: 2803965197.52 configs: - config_name: default data_files: - split: mgb2_validation path: data/mgb2_validation-* - split: validation path: data/validation-* ---
viveriveniversumvivusvici/bazi_comprehensive_dataset
viveriveniversumvivusvici
2025-05-27T23:42:30Z
11
0
[ "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-27T00:26:45Z
null
--- license: mit --- # AstroAlchemy BaZi Dataset Documentation ## Overview This documentation describes the comprehensive BaZi dataset created for the AstroAlchemy Web3 dApp project. The dataset is designed for fine-tuning a Mistral B instruct model to generate hyper-personalized, BaZi-powered "spiritual strategies" across multiple domains. ## Dataset Structure The dataset is provided in JSONL (JSON Lines) format, with each line containing a complete JSON object with two fields: 1. **input**: A string containing the BaZi chart information 2. **output**: A string containing the comprehensive advice across multiple domains ### Input Format Each input contains the following information: ``` Year: [Heavenly Stem][Earthly Branch] Month: [Heavenly Stem][Earthly Branch] Day: [Heavenly Stem][Earthly Branch] Hour: [Heavenly Stem][Earthly Branch] Element Balance: Wood:[count], Fire:[count], Earth:[count], Metal:[count], Water:[count] Hidden Stems: [Stem1], [Stem2], ... Current Year: [Heavenly Stem][Earthly Branch] ``` ### Output Format Each output contains detailed advice across five domains: ``` Advice: Wealth & Investment: - [Specific investment advice based on elements] - [Asset allocation recommendations] - [Risk management strategies] Relationships & Compatibility: - [Interpersonal dynamics guidance] - [Compatibility insights] - [Relationship timing recommendations] Career & Professional Development: - [Career path suggestions] - [Professional growth strategies] - [Leadership and collaboration advice] Health & Wellness: - [Element-based health recommendations] - [Preventative measures] - [Lifestyle suggestions] Daily Activities & Practices: - [Timing recommendations] - [Element-balancing practices] - [Decision-making guidance] Lucky Directions: [Direction1], [Direction2], ... Risk Warnings: [Warning1], [Warning2], ... ``` ## Dataset Statistics - **Total Samples**: 1,000 - **Element Distribution**: Balanced representation of all Five Elements (Wood, Fire, Earth, Metal, Water) - **Advice Domains**: All samples include advice for all five domains (Wealth, Relationships, Career, Health, Daily Activities) - **Format**: JSONL (JSON Lines) ## BaZi Components The dataset incorporates all fundamental components of BaZi: ### Heavenly Stems (天干) 1. **Jia (甲)** - Yang Wood 2. **Yi (乙)** - Yin Wood 3. **Bing (丙)** - Yang Fire 4. **Ding (丁)** - Yin Fire 5. **Wu (戊)** - Yang Earth 6. **Ji (己)** - Yin Earth 7. **Geng (庚)** - Yang Metal 8. **Xin (辛)** - Yin Metal 9. **Ren (壬)** - Yang Water 10. **Gui (癸)** - Yin Water ### Earthly Branches (地支) 1. **Zi (子)** - Rat, Water 2. **Chou (丑)** - Ox, Earth 3. **Yin (寅)** - Tiger, Wood 4. **Mao (卯)** - Rabbit, Wood 5. **Chen (辰)** - Dragon, Earth 6. **Si (巳)** - Snake, Fire 7. **Wu (午)** - Horse, Fire 8. **Wei (未)** - Goat, Earth 9. **Shen (申)** - Monkey, Metal 10. **You (酉)** - Rooster, Metal 11. **Xu (戌)** - Dog, Earth 12. **Hai (亥)** - Pig, Water ### Five Elements (五行) 1. **Wood (木)** - Growth, expansion, creativity 2. **Fire (火)** - Transformation, passion, visibility 3. **Earth (土)** - Stability, nourishment, centeredness 4. **Metal (金)** - Structure, precision, boundaries 5. **Water (水)** - Communication, wisdom, flexibility ## Usage for Fine-Tuning This dataset is specifically designed for fine-tuning the Mistral B instruct model on Hugging Face. The comprehensive coverage of BaZi components and advice domains ensures the model will be able to generate accurate, detailed, and personalized spiritual strategies for the AstroAlchemy Web3 dApp. To use this dataset for fine-tuning: 1. Upload the JSONL file to your Hugging Face account 2. Configure the fine-tuning parameters for the Mistral B instruct model 3. Specify the input and output fields as described in this documentation 4. Start the fine-tuning process ## Generation Methodology The dataset was systematically generated to ensure: 1. Exhaustive coverage of all possible BaZi chart combinations 2. Balanced representation of all Five Elements 3. Comprehensive advice across all domains 4. Detailed, action-oriented recommendations 5. Culturally universal interpretations Each entry was created using a custom algorithm that ensures diversity while maintaining BaZi principles and relationships between elements. dataset = load_dataset("viveriveniversumvivusvici/bazi_comprehensive_dataset") Citation If you use the bazi_comprehensive_dataset in your research, please cite: Edit @dataset{viveriveniversumvivusvici/bazi_comprehensive_dataset, author = {BENIDO}, title = {bazi_comprehensive_dataset}, year = {2025}, publisher = {Hugging Face}, url = {https://huggingface.co/datasets/viveriveniversumvivusvici/bazi_comprehensive_dataset} } Contact For questions or feedback.
dranreb1660/medimaven-qa-data
dranreb1660
2025-05-27T23:32:01Z
0
0
[ "annotations_creators:machine-generated", "language:en", "license:cc-by-4.0", "size_categories:100K<n<1M", "region:us", "medical", "rag", "synthetic-qa", "lay-symptom" ]
[]
2025-05-27T17:12:25Z
null
--- annotations_creators: - machine-generated language: - en license: cc-by-4.0 tags: - medical - rag - synthetic-qa - lay-symptom pretty_name: MediMaven-QA v1.0 size_categories: - 100K<n<1M dataset_info: - config_name: kb_chunks features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: section dtype: string - name: source dtype: string - name: text dtype: string - name: retrieved_date dtype: string - name: n_tokens dtype: int64 splits: - name: train num_bytes: 133140842 num_examples: 70743 download_size: 51361461 dataset_size: 133140842 - config_name: qa_long features: - name: chunk_id dtype: string - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 52621793 num_examples: 143280 download_size: 26138154 dataset_size: 52621793 - config_name: qa_wide features: - name: chunk_id dtype: string - name: qa list: - name: answer dtype: string - name: question dtype: string splits: - name: train num_bytes: 49971385 num_examples: 70018 download_size: 27339393 dataset_size: 49971385 configs: - config_name: kb_chunks data_files: - split: train path: kb_chunks/train-* - config_name: qa_long data_files: - split: train path: qa_long/train-* - config_name: qa_wide data_files: - split: train path: qa_wide/train-* --- <!-- badges: start --> <!-- Add or rearrange any shields.io badges you like. Example licence badge ⬇️ --> ![License](https://img.shields.io/badge/CC%20BY-4.0-lightgrey?logo=creativecommons) ![Language](https://img.shields.io/badge/lang-EN-blue) ![Downloads](https://img.shields.io/endpoint?url=https://huggingface.co/datasets/dranreb1660/medimaven-qa-data/badge) <!-- badges: end --> # 🩺 MediMaven-QA v1.0 **MediMaven-QA** is a *chunk-level, citation-preserving* medical question-answer corpus purpose-built for **Retrieval-Augmented Generation (RAG)**. It bridges everyday **lay-symptom narratives** with trustworthy **clinical content** from curated web sources. ## 📦 Dataset Contents | Config&nbsp;(`name`) | Rows | What it holds | Typical use-case | |----------------------|------:|---------------|------------------| | `chunks` | 70 248 | 200-token, sentence-aware context windows with rich metadata (`id`, `url`, `title`, `section`, `source`, `n_token`, `text`) | RAG context store / retriever training | | `qa_wide` | 70 018 | *List-of-dict* QA per `chunk_id` <br>→ single row may have ≥1 QA pair | Fast retrieval + generation, keeps chunk linkage | | `qa_long` | 143 221 | Fully exploded (`chunk_id`, `question`, `answer`) | Classic supervised QA fine-tuning or eval | > ⚠️ **Disclaimer** — This corpus is for *research & benchmarking only*. > It is **not** a diagnostic tool and should not be used in clinical workflows. ## 🚀 Quick Load ```python from datasets import load_dataset # pick one of these configs qa_long = load_dataset("bernard-kyei/medimaven-qa-data", "qa_long", split="train") qa_long = load_dataset("bernard-kyei/medimaven-qa-data", "qa_long", split="train") # accompany with chunks to get contexts chunks = load_dataset("bernard-kyei/medimaven-qa-data", "kb_chunks", split="train") print(qa_long[0]["question"]) print(qa_long[0]["answer"]) ``` # 🛠️ Generation Pipeline | Stage | Tooling | Notes | |---------------------|---------------------------------------------|-------------------------------------| | 1️⃣ **Crawl** | Scrapy + Splash | Mayo Clinic, NHS.uk, WebMD, Cleveland Clinic (public-domain / permissive T\&Cs) | | 2️⃣ **Chunk** | spaCy sentenciser | ≈200 tokens / chunk; keeps heading context | | 3️⃣ **Synthetic QA** | GPT-4o-mini (`gpt-4o-mini-2024-05-preview`) | • 1 concise lay Q <br>• 1 symptom-narrative Q <br>→ cost **\$40** for 143 k pairs | | 4️⃣ **Versioning** | Weights & Biases Artifacts | `kb_chunks`, `qa_wide` `qa_long` | # 📊 Key Stats | Metric | Value | | ----------------------- | ---------: | | Total context tokens | **27.4 M** | | Avg. tokens / chunk | 390 | | Unique host domains | 4 | | QA pairs / chunk (mean) | 2.0 | | % symptom-narrative Qs | 51 % | # 🧩 Dataset Structure (Arrow schema) <details><summary>click to expand</summary> ┌─────────────┬──────────────────────┐ │ chunks │ qa_wide / qa_long │ ├─────────────┼──────────────────────┤ │ id: string │ chunk_id: string │ │ url: string │ question: string │ │ title: str │ answer: string │ │ section:str │ -- qa_wide only -- │ │ source:str │ qa: list<question…> │ │ text: str │ │ │ n_token:int │ │ └─────────────┴──────────────────────┘ </details> # 📜 Citation ```bibtex @misc{KyeiMensah2025MediMavenQA, author = {Kyei-Mensah, Bernard}, title = {MediMaven-QA: A Citation-Preserving Medical Q\A Dataset with Symptom Narratives}, year = {2025}, url = {https://huggingface.co/datasets/dranreb1660/medimaven-qa-data}, note = {Version 1.0} } ``` # 🗒️ Changelog | Date (UTC) | Version | Highlights | | -------------- | ------- | ---------------------------------------------------------------------------------------- | | **2025-05-27** | `v1.0` | • Sentence-aware chunking <br>• 143 k synthetic QA pairs <br>• Cost optimisation to \$25 |
syvai/dk-voice-pro
syvai
2025-05-27T22:37:04Z
0
0
[ "region:us" ]
[]
2025-05-27T22:36:22Z
null
--- dataset_info: features: - name: index dtype: int64 - name: audio dtype: audio - name: spoken_text dtype: string - name: style dtype: string - name: style_id dtype: string - name: instructions dtype: string - name: voice dtype: string splits: - name: train num_bytes: 413845673.618 num_examples: 2397 download_size: 402628331 dataset_size: 413845673.618 configs: - config_name: default data_files: - split: train path: data/train-* ---
littleGuagua/x_dataset_24747
littleGuagua
2025-05-27T22:32:09Z
1,247
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-01-26T08:49:30Z
null
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** littleGuagua/x_dataset_24747 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5EM4mwdfwdBzEbEqJ9KsFnj2sKpAjywcb5Ddz3CEoKV2ksj1 ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{littleGuagua2025datauniversex_dataset_24747, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={littleGuagua}, year={2025}, url={https://huggingface.co/datasets/littleGuagua/x_dataset_24747}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 157467919 - **Date Range:** 2025-01-21T00:00:00Z to 2025-02-13T00:00:00Z - **Last Updated:** 2025-02-18T16:32:12Z ### Data Distribution - Tweets with hashtags: 42.71% - Tweets without hashtags: 57.29% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 90209693 | 57.29% | | 2 | #riyadh | 1088786 | 0.69% | | 3 | #zelena | 820088 | 0.52% | | 4 | #tiktok | 653763 | 0.42% | | 5 | #bbb25 | 394331 | 0.25% | | 6 | #ad | 378659 | 0.24% | | 7 | #jhope_at_galadespiècesjaunes | 234371 | 0.15% | | 8 | #bbmzansi | 213586 | 0.14% | | 9 | #pr | 203109 | 0.13% | | 10 | #yahooニュース | 190885 | 0.12% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-26T08:50:16Z | 2482006 | 2482006 | | 2025-01-29T21:00:47Z | 29908448 | 32390454 | | 2025-02-02T09:11:30Z | 28938392 | 61328846 | | 2025-02-05T21:23:51Z | 29767835 | 91096681 | | 2025-02-09T09:36:47Z | 29027751 | 120124432 | | 2025-02-12T21:54:03Z | 28620241 | 148744673 | | 2025-02-16T09:45:11Z | 7404661 | 156149334 | | 2025-02-18T00:09:45Z | 696224 | 156845558 | | 2025-02-18T16:32:12Z | 622361 | 157467919 |
alucchi/Qwen3-1.7B_n1000_e2_oadam0.0001_b44_1_a10_1825_train
alucchi
2025-05-27T22:18:50Z
0
0
[ "region:us" ]
[]
2025-05-27T22:18:39Z
null
--- dataset_info: - config_name: default features: - name: task_id dtype: string - name: prompt dtype: string - name: generated_text dtype: string - name: generated_grid_rect sequence: sequence: int64 - name: task_solution sequence: sequence: sequence: int64 - name: match dtype: int64 - name: score dtype: float64 splits: - name: train num_bytes: 4448507 num_examples: 931 download_size: 553312 dataset_size: 4448507 - config_name: main features: - name: task_id dtype: string - name: prompt dtype: string - name: generated_text dtype: string - name: generated_grid_rect sequence: sequence: int64 - name: task_solution sequence: sequence: sequence: int64 - name: match dtype: int64 - name: score dtype: float64 splits: - name: train num_bytes: 4448507 num_examples: 931 download_size: 553312 dataset_size: 4448507 configs: - config_name: default data_files: - split: train path: data/train-* - config_name: main data_files: - split: train path: main/train-* ---
masoudc/countdown-tinyzero-20250527_215029
masoudc
2025-05-27T21:50:31Z
0
0
[ "region:us" ]
[]
2025-05-27T21:50:30Z
null
--- dataset_info: description: | Countdown task dataset gen from tinyzero: given a target number and N numbers, generate equations to reach the target. license: 'mit' homepage: 'https://huggingface.co/qweft' citation: 'https://github.com/Jiayi-Pan/TinyZero' --- # Countdown Dataset Countdown task dataset gen from tinyzero: given a target number and N numbers, generate equations to reach the target. - License: mit - Homepage: https://huggingface.co/qweft - Citation: https://github.com/Jiayi-Pan/TinyZero
maksimko123/deepcad_test_mesh
maksimko123
2025-05-27T21:44:19Z
0
0
[ "license:cc-by-nc-4.0", "region:us" ]
[]
2025-05-27T21:41:46Z
null
--- license: cc-by-nc-4.0 ---
jmarangola/iai_blocks_2
jmarangola
2025-05-27T21:40:42Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-05-27T21:40:40Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": null, "total_episodes": 2, "total_frames": 863, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 20, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.image.global_0": { "dtype": "video", "names": [ "channels", "height", "width" ], "shape": [ 3, 240, 320 ], "info": { "video.fps": 20.0, "video.height": 240, "video.width": 320, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.state": { "dtype": "float32", "names": null, "shape": [ 10 ] }, "action": { "dtype": "float32", "shape": [ 10 ], "names": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
James096/reddit_dataset_69
James096
2025-05-27T21:26:01Z
61
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-05-26T09:26:27Z
null
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 Reddit Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** James096/reddit_dataset_69 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5CUamzGz3SJWxQQghHSuucgkprsAG4k9qSpPvsuwrXF4HibU ### Miner Data Compliance Agreement In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Topic Modeling - Community Analysis - Content Categorization ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single Reddit post or comment with the following fields: ### Data Fields - `text` (string): The main content of the Reddit post or comment. - `label` (string): Sentiment or topic category of the content. - `dataType` (string): Indicates whether the entry is a post or a comment. - `communityName` (string): The name of the subreddit where the content was posted. - `datetime` (string): The date when the content was posted or commented. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the content. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the nature of media sources. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public subreddits and does not include private or restricted communities. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{James0962025datauniversereddit_dataset_69, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={James096}, year={2025}, url={https://huggingface.co/datasets/James096/reddit_dataset_69}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 31859260 - **Date Range:** 2007-06-05T00:00:00Z to 2025-05-27T00:00:00Z - **Last Updated:** 2025-05-27T05:58:31Z ### Data Distribution - Posts: 7.61% - Comments: 92.39% ### Top 10 Subreddits For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | r/indonesia | 93353 | 0.29% | | 2 | r/namenerds | 89673 | 0.28% | | 3 | r/masterduel | 84700 | 0.27% | | 4 | r/GamingLeaksAndRumours | 83566 | 0.26% | | 5 | r/AITAH | 83539 | 0.26% | | 6 | r/Grimdank | 81153 | 0.25% | | 7 | r/reddevils | 81131 | 0.25% | | 8 | r/Ratschlag | 80329 | 0.25% | | 9 | r/investing | 79774 | 0.25% | | 10 | r/masseffect | 75478 | 0.24% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-05-26T11:29:09Z | 31493351 | 31493351 | | 2025-05-27T05:58:31Z | 365909 | 31859260 |
AlirezaAbdollahpoor/MNLP_M2_quantized_dataset
AlirezaAbdollahpoor
2025-05-27T21:17:44Z
0
0
[ "task_categories:question-answering", "task_categories:multiple-choice", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2309.12284", "arxiv:1705.04146", "region:us", "mcqa", "math", "algebra", "evaluation", "quantization", "benchmarking" ]
[ "question-answering", "multiple-choice" ]
2025-05-27T21:17:40Z
null
--- license: mit task_categories: - question-answering - multiple-choice language: - en tags: - mcqa - math - algebra - evaluation - quantization - benchmarking size_categories: - n<1K --- # MCQA Test Dataset for Model Evaluation This dataset contains 3254 carefully selected test samples from MetaMathQA and AQuA-RAT datasets, designed for MCQA (Multiple Choice Question Answering) model evaluation and quantization testing. ## Dataset Overview - **Total Samples**: 3254 - **MetaMathQA Samples**: 3000 (mathematical problems) - **AQuA-RAT Samples**: 254 (algebraic word problems) - **Question Types**: Math, Algebra - **Intended Use**: Model evaluation, quantization benchmarking ## Source Datasets This dataset is derived from: - [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA) - Mathematical reasoning problems - [AQuA-RAT](https://huggingface.co/datasets/deepmind/aqua_rat) - Algebraic reasoning problems ## Sampling Methodology Random sampling from test portions to avoid training contamination - **Random Seed**: 42 (for reproducibility) - **MetaMathQA**: Sampled from the last portion of training split to avoid contamination - **AQuA-RAT**: Randomly sampled from the official test split ## Dataset Schema | Field | Type | Description | |-------|------|-------------| | `question_body` | string | Raw question text | | `formatted_question` | string | Alpaca-style formatted question for inference | | `correct_answer` | string | Ground truth answer | | `question_id` | string | Unique identifier (metamath_X or aqua_X) | | `source` | string | Dataset source (metamath or aqua_rat) | | `question_type` | string | Type of question (math or algebra) | | `dataset_index` | int | Original index in source dataset | | `dataset_source` | string | URL of original dataset | | `global_id` | int | Global index in combined dataset | | `split` | string | Always "test" | ## Usage Examples ### Basic Loading ```python from datasets import load_dataset # Load the entire dataset dataset = load_dataset("AlirezaAbdollahpoor/MNLP_M2_quantized_dataset") # Access the data test_data = dataset['train'] # Note: stored as 'train' split in HF print(f"Total samples: {len(test_data)}") ``` ### Filter by Question Type ```python # Get only math questions math_questions = test_data.filter(lambda x: x['question_type'] == 'math') print(f"Math questions: {len(math_questions)}") # Get only algebra questions algebra_questions = test_data.filter(lambda x: x['question_type'] == 'algebra') print(f"Algebra questions: {len(algebra_questions)}") ``` ### Model Evaluation Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load your model model = AutoModelForCausalLM.from_pretrained("your-model") tokenizer = AutoTokenizer.from_pretrained("your-model") # Evaluate on the dataset correct = 0 total = len(test_data) for sample in test_data: prompt = sample['formatted_question'] # Generate response inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=256) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract and compare answer predicted_answer = extract_answer(response) if predicted_answer == sample['correct_answer']: correct += 1 accuracy = correct / total print(f"Accuracy: {accuracy:.3f}") ``` ## Evaluation Metrics This dataset is designed for: - **Accuracy**: Percentage of correctly answered questions - **Per-type Performance**: Separate metrics for math vs algebra questions - **Quantization Impact**: Comparing performance across different quantization methods - **Speed Benchmarking**: Measuring inference throughput ## Related Work This dataset was created as part of an MCQA model fine-tuning and quantization study. It provides a standardized evaluation set for: - Comparing baseline vs fine-tuned model performance - Testing various quantization methods (4-bit, 8-bit, GGML, etc.) - Benchmarking inference speed and memory usage ## Citation If you use this dataset, please cite the original source datasets: ```bibtex @article{yu2023metamath, title={MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models}, author={Yu, Longhui and Jiang, Weisen and Shi, Han and Yu, Jincheng and Liu, Zhengying and Zhang, Yu and Kwok, James T and Li, Zhenguo and Weller, Adrian and Liu, Weiyang}, journal={arXiv preprint arXiv:2309.12284}, year={2023} } @misc{ling2017program, title={Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems}, author={Wang Ling and Dani Yogatama and Chris Dyer and Phil Blunsom}, year={2017}, eprint={1705.04146}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## License This dataset is released under the MIT License, following the licensing of the source datasets.
Xiaofeng77/reil_sokoban_preference
Xiaofeng77
2025-05-27T21:02:06Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-27T21:02:04Z
null
--- dataset_info: features: - name: data_source dtype: string - name: prompt dtype: string - name: response dtype: 'null' - name: ability dtype: string - name: reward_model struct: - name: ground_truth struct: - name: numbers sequence: int64 - name: target dtype: int64 - name: style dtype: string - name: extra_info struct: - name: index dtype: int64 - name: split dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 3932272 num_examples: 3982 download_size: 282570 dataset_size: 3932272 configs: - config_name: default data_files: - split: train path: data/train-* ---
jlbaker361/ssl-art_coco_captioned
jlbaker361
2025-05-27T20:41:51Z
88
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-23T15:09:38Z
null
--- dataset_info: features: - name: image dtype: image - name: embedding sequence: sequence: sequence: float32 - name: text sequence: sequence: sequence: float32 - name: prompt dtype: string - name: posterior sequence: sequence: sequence: float32 splits: - name: train num_bytes: 103719683.0 num_examples: 20 download_size: 104739116 dataset_size: 103719683.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
UCSC-VLAA/MedReason
UCSC-VLAA
2025-05-27T20:39:33Z
2,058
62
[ "task_categories:question-answering", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.00993", "region:us", "reasoning-datasets-competition", "reasoning-LLMs" ]
[ "question-answering" ]
2025-03-21T19:34:11Z
null
--- license: apache-2.0 tags: - reasoning-datasets-competition - reasoning-LLMs task_categories: - question-answering --- # MedReason: Eliciting Factual Medical Reasoning Steps in LLMs via Knowledge Graphs <p align="center"> 📃 <a href="https://huggingface.co/papers/2504.00993" target="_blank">Paper</a> |🤗 <a href="https://huggingface.co/UCSC-VLAA/MedReason-8B" target="_blank">MedReason-8B</a> | 📚 <a href="https://huggingface.co/datasets/UCSC-VLAA/MedReason" target="_blank">MedReason Data</a> </p> ## ✨ Latest News - [05/27/2025] 🎉 MedReason wins 3rd prize🏆 in the [Huggingface Reasoning Datasets Competition](https://x.com/bespokelabsai/status/1910068013661118874)! ## ⚡Introduction **MedReason** is a large-scale high-quality medical reasoning dataset designed to enable faithful and explainable medical problem-solving in large language models (LLMs). - We utilize a structured medical knowledge graph (KG) to convert clinical QA pairs into logical chains of reasoning, or “thinking paths”. - Our pipeline generates detailed reasoning for various medical questions from 7 medical datasets, resulting in a dataset of **32,682** question-answer pairs, each with detailed, step-by-step explanations. - By finetuning with proposed [MedReason dataset](https://huggingface.co/datasets/UCSC-VLAA/MedReason), our best model [MedReason-8B](https://huggingface.co/UCSC-VLAA/MedReason-8B), achieves *state-of-the-art* performance. We open-sourced our CoT dataset here. ## 🙏🏼 Acknowledgement We gratefully acknowledge the inspiring work of [HuatuoGPT-o1](https://github.com/FreedomIntelligence/HuatuoGPT-o1), which laid important groundwork for this research. We also thank the developers of the excellent tools [curator](https://github.com/bespokelabsai/curator/), [trl](https://github.com/huggingface/trl), and [sglang](https://github.com/sgl-project/sglang) for making this work possible. ## 📖 Citation ``` @misc{wu2025medreasonelicitingfactualmedical, title={MedReason: Eliciting Factual Medical Reasoning Steps in LLMs via Knowledge Graphs}, author={Juncheng Wu and Wenlong Deng and Xingxuan Li and Sheng Liu and Taomian Mi and Yifan Peng and Ziyang Xu and Yi Liu and Hyunjin Cho and Chang-In Choi and Yihan Cao and Hui Ren and Xiang Li and Xiaoxiao Li and Yuyin Zhou}, year={2025}, eprint={2504.00993}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.00993}, } ```
gptilt/lol-ultimate-snapshot-challenger-15min
gptilt
2025-05-27T19:55:40Z
127
1
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-25T15:10:22Z
null
--- configs: - config_name: snapshot data_files: - split: train_region_americas path: snapshot/train_region_americas*.parquet - split: test_region_americas path: snapshot/test_region_americas*.parquet - split: train_region_asia path: snapshot/train_region_asia*.parquet - split: test_region_asia path: snapshot/test_region_asia*.parquet - split: train_region_europe path: snapshot/train_region_europe*.parquet - split: test_region_europe path: snapshot/test_region_europe*.parquet --- # GPTilt: League of Legends Challenger Matches' Snapshots At 15 Minutes This dataset is part of the [GPTilt](https://github.com/gptilt) open-source initiative, aimed at democratizing access to high-quality LoL data for research and analysis, fostering public exploration, and advancing the community's understanding of League of Legends through data science and AI. It provides detailed data from high-elo matches. *By using this dataset, users accept full responsibility for any consequences arising from its use. GPTilt assumes no liability for any damages that may result. Users are strongly encouraged to review the ["Uses"](#uses) section—particularly the ["Out-of-Scope Use"](#out-of-scope-use) subsection—for guidance.* ## Getting Started First, install Hugging Face's [datasets](https://pypi.org/project/datasets/) package: ```bash pip install datasets ``` Now, you can load the dataset! ```py from datasets import load_dataset # Specify just the config_name / table dataset = load_dataset("gptilt/lol-ultimate-snapshot-challenger-15min", name="snapshot") # Or include the split! dataset = load_dataset("gptilt/lol-ultimate-snapshot-challenger-15min", name="snapshot", split="train_region_americas") ``` ## Dataset Summary This dataset contains **League of Legends Challenger Matches' Snapshots At 15 Minutes**. Provides a complete snapshot of the game at 15 minutes. Data was originally collected and processed via the official Riot Games API. It's , with the primary language being english. ## Dataset Structure The data is structured into tables: - **snapshot**: Contains a snapshot of the match at a given time, with contextual information such as kills/assists, as well as pregame state (champions, runes, etc). ```json { "matchId": "LA2_1495348800", # Player information "kills_0": 6, "deaths_0": 2, "assists_0": 3, "inventory_0": [1421, 3500], # Item IDs "level_0": 12, # Level at time of event (...) "kills_1": 0, "deaths_1": 1, } ``` All snapshots have a `matchId` column, making it compatible with all [`basic` tier `matches` tables](https://huggingface.co/datasets/gptilt/lol-basic-matches-challenger-10k) and [the `ultimate` tier `events` dataset](https://huggingface.co/datasets/gptilt/lol-ultimate-events-challenger-10m). Additionally, data is segmented into 6 splits: ['train_region_americas', 'test_region_americas', 'train_region_asia', 'test_region_asia', 'train_region_europe', 'test_region_europe']. ## Dataset Creation ### Curation Rationale This dataset was created to address the lack of large-scale, publicly available, and analysis-ready datasets for League of Legends research. The GPTilt project aims to provide resources for the community to apply data science and AI techniques to better understand the intricate dynamics of the game, moving beyond simple win prediction towards interpreting strategic patterns and complex interactions. This specific dataset focuses on high-elo (Challenger) players to capture refined strategic execution. ### Source Data #### Data Collection and Processing The source data originates exclusively from the [**Riot Games API**](https://developer.riotgames.com/apis) and [**CDragon**](https://communitydragon.org/). 1. **Seeding:** High-elo player PUUIDs were initially identified using the `league-v4` endpoint for the Challenger tier across multiple regions. 2. **Match History:** The `match-v5` endpoint was used to retrieve recent match IDs for these players. 3. **Match & Timeline Fetching:** The `match-v5` (match details) and `match-v5` (match timeline) endpoints were used to download the full data for each unique match ID identified. 4. **Raw Storage:** Raw API responses (JSON format) were saved. 5. **Staging & Transformation:** Raw data was parsed, and transformed into the basic-tier dataset 'League of Legends Challenger Matches'. The matches dataset was then used to build the enriched events dataset, which served as the source for the ultimate-tier dataset 'League of Legends Challenger Matches Snapshot'. 6. **Output:** Data was written to Parquet files, partitioned by `region`. #### Who are the source data producers? The underlying gameplay data is generated by **League of Legends players** participating in high-elo ranked matches. The **Riot Games API** serves as the source interface providing access to this gameplay data. The dataset curators are the contributors to the GPTilt project who performed the collection and processing steps. No demographic information about the players is collected, besides the region. #### Personal and Sensitive Information The dataset contains **PUUIDs** and **Participant IDs**, which are pseudonymous identifiers linked to League of Legends accounts. No other Personally Identifiable Information (PII) like real names, emails, or addresses is included. Use of these identifiers is subject to Riot Games' policies. Users should exercise caution and adhere to these policies, avoiding attempts to [deanonymize players who cannot reasonably be identified from visible information](https://developer.riotgames.com/policies/general#_developer-safety). ### Bias, Risks, and Limitations - **Skill Tier Bias:** This dataset focuses *exclusively* on the Challenger tier. Findings may not generalize to other skill levels (Bronze, Silver, Gold, Platinum, Diamond, Master, Grandmaster) where metas, champion picks, and strategic execution differ significantly. Because match data is selected by searching for Challenger players, multi-tier games may (and are expected) to be present in the dataset. - **Regional Bias:** While collected from multiple regions, the distribution might not be perfectly balanced, potentially reflecting the metas dominant in the included regions during the collection period. - **Patch Bias:** The data reflects gameplay on specific game versions (see `matches` table `gameVersion` field). Major patches can significantly alter champion balance, items, and objectives, potentially making findings less relevant to different patches. - **Missing Context:** The data captures *recorded* events and states but lacks external context like player communication (voice/text chat), player fatigue/tilt, real-time strategic intent, or external distractions. - **API Limitations:** Data is subject to the accuracy and granularity provided by the Riot Games API. Some nuanced actions or states might not be perfectly captured. Rate limits inherent to the API restrict the size and frequency of potential dataset updates. #### Recommendations - Users should explicitly acknowledge the **high-elo (Challenger) bias** when reporting results and be cautious about generalizing findings to other player segments. - Always consider the **game version (`gameVersion`)** when analyzing the data, as metas and balance change significantly between patches. - Users **must** adhere to the **Riot Games API Terms of Service and Developer Policies** in all uses of this data. ## Uses ### Disclaimer *This dataset utilizes data from the Riot Games API. Its use is subject to the Riot Games API Terms of Service and relevant developer policies. GPTilt is not endorsed by Riot Games and does not reflect the views or opinions of Riot Games or anyone officially involved in producing or managing League of Legends. League of Legends and Riot Games are trademarks or registered trademarks of Riot Games, Inc. League of Legends © Riot Games, Inc.* ### License This dataset and all associated code is licensed under the [Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/legalcode.en) license. ### Direct Use This dataset is intended for **non-commercial research, data analysis, and exploration** aimed at understanding League of Legends gameplay dynamics, strategic patterns, champion interactions, and game flow. Suitable uses include: - **Statistical analysis** of high-elo match characteristics. - **Exploratory data analysis** to uncover **trends** and correlations. - Training **machine learning models** (including Transformer-based architectures like LLoLMs) for tasks related to **game state representation**, event sequence modeling, pattern recognition for game understanding, etc. - **Feature engineering** for derived metrics. - **Educational purposes** related to data science and game analytics. **Users must ensure their use case complies with the Riot Games API [Terms of Service](https://developer.riotgames.com/terms) and [Developer Policies](https://developer.riotgames.com/policies/general). Consult these policies before using the data.** ### Out-of-Scope Use This dataset **must not** be used for purposes that violate the Riot Games API [Terms of Service](https://developer.riotgames.com/terms) or [Developer Policies](https://developer.riotgames.com/policies/general). This dataset is derived from high-elo games and may not accurately represent gameplay patterns at lower skill levels. **Consult the Riot Games API [Terms of Service](https://developer.riotgames.com/terms) and [Developer Policies](https://developer.riotgames.com/policies/general) for comprehensive usage restrictions.** ## Changelist ### May 27, 2025 - Divided splits into `train` and `test`. ## Citation **If you wish to use this dataset in your work, we kindly ask that you cite it.** For most informal work, a simple mention of the GPTilt project and the League of Legends Challenger Matches' Snapshots At 15 Minutes dataset will suffice. **BibTeX:** ```bibtex @misc{gptilt_league_of_legends_challenger_matches'_snapshots_at_15_minutes, author = { GPTilt Contributors }, title = { League of Legends Challenger Matches' Snapshots At 15 Minutes }, year = { 2025 }, publisher = { Hugging Face }, journal = { Hugging Face Hub }, url = { https://huggingface.co/datasets/gptilt/lol-ultimate-snapshot-challenger-15min } } ```
CompassioninMachineLearning/may27_pretraining_research_documents
CompassioninMachineLearning
2025-05-27T19:54:49Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-27T19:54:42Z
null
--- dataset_info: features: - name: instruction dtype: 'null' - name: output struct: - name: instruction dtype: 'null' - name: origin dtype: string - name: output dtype: string - name: origin dtype: string splits: - name: train num_bytes: 64749918.6 num_examples: 10764 - name: test num_bytes: 7194435.4 num_examples: 1196 download_size: 37502393 dataset_size: 71944354.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
sophivideo/wATCH-Sophie-Rain-Sophie-Rain-Videoss
sophivideo
2025-05-27T19:51:17Z
0
0
[ "license:artistic-2.0", "region:us" ]
[]
2025-05-27T19:51:17Z
null
--- license: artistic-2.0 ---
HAissa/MNLP_M2_mcqa_dataset
HAissa
2025-05-27T19:36:06Z
326
0
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-19T22:20:21Z
null
--- license: apache-2.0 dataset_info: - config_name: default features: - name: question dtype: string - name: answer dtype: string - name: source dtype: string - name: type dtype: string splits: - name: train num_bytes: 1510172124.0 num_examples: 300660 - name: validation num_bytes: 376612569.0 num_examples: 75165 download_size: 875467005 dataset_size: 1886784693.0 - config_name: no_thinking features: - name: question dtype: string - name: answer dtype: string - name: source dtype: string - name: type dtype: string splits: - name: train num_bytes: 129546698 num_examples: 185180 - name: validation num_bytes: 29349748 num_examples: 46295 download_size: 77798657 dataset_size: 158896446 - config_name: thinking features: - name: question dtype: string - name: answer dtype: string - name: source dtype: string - name: type dtype: string splits: - name: train num_bytes: 1380625426 num_examples: 115480 - name: validation num_bytes: 347262821 num_examples: 28870 download_size: 787707673 dataset_size: 1727888247 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - config_name: no_thinking data_files: - split: train path: no_thinking/train-* - split: validation path: no_thinking/validation-* - config_name: thinking data_files: - split: train path: thinking/train-* - split: validation path: thinking/validation-* ---
jieyuz2/m
jieyuz2
2025-05-27T19:15:59Z
206
0
[ "arxiv:1910.09700", "region:us" ]
[]
2024-09-01T21:27:53Z
null
--- base_model: TIGER-Lab/Mantis-8B-siglip-llama3-pretraind library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.12.0
rlhn/rlhn-400K
rlhn
2025-05-27T19:08:44Z
29
1
[ "task_categories:question-answering", "language:en", "license:cc-by-sa-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2505.16967", "region:us" ]
[ "question-answering" ]
2025-04-07T23:43:07Z
null
--- dataset_info: features: - name: query_id dtype: string - name: query dtype: string - name: positive_passages list: - name: docid dtype: string - name: text dtype: string - name: title dtype: string - name: negative_passages list: - name: docid dtype: string - name: text dtype: string - name: title dtype: string - name: subset dtype: string splits: - name: train num_bytes: 8135550141 num_examples: 390175 download_size: 4782876145 dataset_size: 8135550141 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-sa-4.0 task_categories: - question-answering language: - en pretty_name: RLHN-400K size_categories: - 100K<n<1M --- # Dataset Card for RLHN-400K ## Dataset Description [Repository](https://github.com/castorini/rlhn) | [Paper](https://huggingface.co/papers/2505.16967) | [ArXiv](https://arxiv.org/abs/2505.16967) RLHN is a cascading LLM framework designed to accurately relabel hard negatives in existing IR/RAG training datasets, such as MS MARCO and HotpotQA. This Tevatron dataset (680K training pairs) contains the queries, positives + relabeled hard negatives, remaining hard negatives for 7 datasets in the BGE training collection. This repository contains the training pairs that can be used to fine-tune embedding, ColBERT or multi-vector, and reranker models. The original dataset (bad quality; containing false negatives) can be found at [rlhn/default-400K](https://huggingface.co/datasets/rlhn/default-400K/). > Note: RLHN datasets are not **new** training datasets, but rather existing BGE collection training datasets with hard negatives cleaned! ## Dataset Structure To access the data using HuggingFace `datasets`: ```python rlhn = datasets.load_dataset('rlhn/rlhn-400K') # training set: for data in freshstack['train']: query_id = data["query_id"] # md5 hash of the query_id query = data["query"] # query text subset = data["subset"] # training dataset, e.g., fiqa or msmarco_passage # positive passages for positive_passage in data["positive_passages"]: doc_id = positive_passage["docid"] title = positive_passage["title"] # title is usually empty, added in text text = positive_passage["text"] # contains both the title & text # hard negative passages for negative_passage in data["negative_passages"]: doc_id = negative_passage["docid"] title = negative_passage["title"] # title is usually empty, added in text text = negative_passage["text"] # contains both the title & text ``` ## Original Dataset Statistics The following table contains the number of training pairs for each training dataset included in RLHN. These numbers are for the default setting. | Dataset | 100K splits | 250K splits | 400K splits | 680K splits | |-------------------|-------------|-------------|-------------|------------- | | arguana | 4,065 | 4,065 | 4,065 | 4,065 | | fever | 28,755 | 28,755 | 28,755 | 28,755 | | fiqa | 5,500 | 5,500 | 5,500 | 5,500 | | hotpotqa | 10,250 | 30,000 | 84,516 | 84,516 | | msmarco_passage | 49,571 | 145,000 | 210,000 | 485,823 | | nq | 6,110 | 30,000 | 58,568 | 58,568 | | scidocsrr | 12,654 | 12,654 | 12,654 | 12,654 | | **total** | **96,167** | **255,974** | **404,058** | **679,881** | ## License The RLHN dataset is made available with the CC-BY-SA 4.0 license. ## Hashing & IDs We generate the md5 hash as the unique identifier (ID) for both the query \& documents, using the code below: ```python import hashlib def get_md5_hash(text): """Calculates the MD5 hash of a given string. Args: text: The string to hash. Returns: The MD5 hash of the string as a hexadecimal string. """ text_bytes = text.encode('utf-8') # Encode the string to bytes md5_hash = hashlib.md5(text_bytes).hexdigest() return md5_hash ``` ## Citation ``` @misc{thakur2025relabel, title={Fixing Data That Hurts Performance: Cascading LLMs to Relabel Hard Negatives for Robust Information Retrieval}, author={Nandan Thakur and Crystina Zhang and Xueguang Ma and Jimmy Lin}, year={2025}, eprint={2505.16967}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2505.16967}, } ```
endre01/MNLP_M2_rag_documents
endre01
2025-05-27T18:21:20Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-27T18:21:14Z
null
--- dataset_info: features: - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 89809866 num_examples: 133856 download_size: 49350248 dataset_size: 89809866 configs: - config_name: default data_files: - split: train path: data/train-* ---
joshcd/MNLP_M2_rag_dataset
joshcd
2025-05-27T18:15:39Z
29
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-26T17:21:09Z
null
--- dataset_info: features: - name: question dtype: string - name: distractor3 dtype: string - name: distractor1 dtype: string - name: distractor2 dtype: string - name: correct_answer dtype: string - name: support dtype: string splits: - name: train num_bytes: 6546183 num_examples: 11679 - name: validation num_bytes: 554120 num_examples: 1000 - name: test num_bytes: 563927 num_examples: 1000 download_size: 4652637 dataset_size: 7664230 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
muqtasid87/finegrained_vehicle_labels
muqtasid87
2025-05-27T17:23:44Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-27T17:22:44Z
null
--- dataset_info: features: - name: image dtype: image - name: conversations list: - name: content dtype: string - name: role dtype: string - name: text dtype: string - name: response dtype: string splits: - name: train num_bytes: 60970760.575 num_examples: 1075 download_size: 50269295 dataset_size: 60970760.575 configs: - config_name: default data_files: - split: train path: data/train-* ---
Yehor/ual-topics
Yehor
2025-05-27T17:10:24Z
29
2
[ "task_categories:text-classification", "task_ids:topic-classification", "source_datasets:original", "language:uk", "license:cc-by-nc-sa-4.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "doi:10.57967/hf/4563", "region:us" ]
[ "text-classification" ]
2024-08-15T17:34:12Z
null
--- language: - uk license: - cc-by-nc-sa-4.0 size_categories: - 1K<n<100K source_datasets: - original task_categories: - text-classification task_ids: - topic-classification pretty_name: UA-L Topics Corpus dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': inshe '1': ekologiya '2': ziemielnie_pravo '3': reklama '4': bankivska_diialnist '5': prava_spozhivachiv '6': medicina '7': spadkove_pravo '8': immighratsiia_iemighratsiia '9': intieliektualna_vlasnist '10': gospodarskie_pravo '11': pidpriemnicka_dialnist '12': opodatkuvannia '13': piensiiata_sotsialni_viplati '14': viiskovie_pravo '15': sudova_praktika '16': kriminalnie_pravo '17': gromadianski_pravovidnosini '18': strakhuvannya '19': pratsevlashtuvvannya '20': sotsialnyj_zakhist '21': vighotovliennia_produktsiyi_ta_nadannia_poslugh '22': litsienzuvannia '23': reyestraciya_likvidaciya_bankrutstvo '24': doghovirni_vidnosini '25': administrativnie_pravo '26': nierukhomist '27': prava_vnutrishno_pieriemishchienikh_osib '28': investitsii '29': notarialni_pytanniia '30': avtovlasnykam '31': zhitlovi_pravovidnosini '32': dovircha_vlastnist '33': dierzhavni_zakupivli '34': simejne_pravo '35': mytne_pravo '36': mizhnarodni_pravovidnosini '37': korporativnie_pravo '38': tsivilne_pravo configs: - config_name: default data_files: - split: train path: data/train.jsonl - split: test path: data/test.jsonl train-eval-index: - config: default task: text-classification task_id: multi_class_classification splits: train_split: train eval_split: test col_mapping: text: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- # `ual-topics` This dataset contains texts from https://ua-lawyer.com project. The texts contains questions and their labels (a category of law) in Ukrainian. 🚨🚨🚨 ATTENTION! 🚨🚨🚨 Look at **a better version** (balanced over labels) of this dataset: https://huggingface.co/datasets/ua-l/topics-train-test ## Community - **Discord**: https://bit.ly/discord-uds - Natural Language Processing: https://t.me/nlp_uk ## Install ```text uv venv --python 3.12 source .venv/bin/activate uv pip install -r requirements.txt uv pip install -r requirements-dev.txt ``` ## Cite this work ``` @misc {smoliakov_2025, author = { {Smoliakov} }, title = { ual-topics (Revision 064f6e5) }, year = 2025, url = { https://huggingface.co/datasets/Yehor/ual-topics }, doi = { 10.57967/hf/4563 }, publisher = { Hugging Face } } ```
bouchonnn/MNLP_M2_dpo_dataset
bouchonnn
2025-05-27T16:58:47Z
0
0
[ "region:us" ]
[]
2025-05-16T14:52:51Z
null
--- dataset_info: features: - name: post_id dtype: string - name: domain dtype: string - name: upvote_ratio dtype: float64 - name: history dtype: string - name: c_root_id_A dtype: string - name: c_root_id_B dtype: string - name: created_at_utc_A dtype: int64 - name: created_at_utc_B dtype: int64 - name: score_A dtype: int64 - name: score_B dtype: int64 - name: human_ref_A dtype: string - name: human_ref_B dtype: string - name: labels dtype: int64 - name: seconds_difference dtype: float64 - name: score_ratio dtype: float64 - name: id dtype: string - name: dataset dtype: string - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 35585102.0 num_examples: 12354 download_size: 21301608 dataset_size: 35585102.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
deanngkl/affectnet_no_contempt
deanngkl
2025-05-27T16:46:30Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-27T16:32:24Z
null
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': anger '1': disgust '2': fear '3': happiness '4': neutral '5': sadness '6': surprise splits: - name: train num_bytes: 7939507155.0 num_examples: 27823 download_size: 7939114328 dataset_size: 7939507155.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Tele-AI-MAIL/WebUIBench
Tele-AI-MAIL
2025-05-27T16:37:06Z
76
0
[ "license:cc-by-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2404.05955", "region:us" ]
[]
2025-05-23T02:05:20Z
null
--- license: cc-by-4.0 configs: - config_name: Element_Classification data_files: - split: test path: Element_Classification/test-* - config_name: Attribute_Regconition data_files: - split: test path: Attribute_Regconition/test-* - config_name: Visual_Grounding data_files: - split: test path: Visual_Grounding/test-* - config_name: OCR data_files: - split: test path: OCR/test-* - config_name: Code_Error_Correction data_files: - split: test path: Code_Error_Correction/test-* - config_name: Code_Function_Editing data_files: - split: test path: Code_Function_Editing/test-* - config_name: Webpage_HTML_Matching data_files: - split: test path: Webpage_HTML_Matching/test-* - config_name: Webpage_HTMl_Retrieval data_files: - split: test path: Webpage_HTML_Retrieval/test-* dataset_info: - config_name: Element_Classification features: - name: id dtype: string - name: question dtype: string - name: image_id dtype: string - name: image dtype: image - name: answer dtype: string - name: subtask dtype: string splits: - name: test num_bytes: 442962174 num_examples: 950 download_size: 442962174 dataset_size: 442962174 - config_name: Attribute_Regconition features: - name: id dtype: string - name: question dtype: string - name: image_id dtype: string - name: image dtype: image - name: answer dtype: string - name: subtask dtype: string splits: - name: test num_bytes: 1679258113 num_examples: 3718 download_size: 1679258113 dataset_size: 1679258113 - config_name: Visual_Grounding features: - name: id dtype: string - name: question dtype: string - name: image_id dtype: string - name: image dtype: image - name: answer dtype: string - name: subtask dtype: string splits: - name: test num_bytes: 1897962456 num_examples: 3934 download_size: 1897962456 dataset_size: 1897962456 - config_name: OCR features: - name: id dtype: string - name: question dtype: string - name: image_id dtype: string - name: image dtype: image - name: answer dtype: string - name: target_[x1,y1,x2,y2] dtype: string - name: subtask dtype: string splits: - name: test num_bytes: 1147237990 num_examples: 2460 download_size: 1147237990 dataset_size: 1147237990 - config_name: Code_Error_Correction features: - name: id dtype: string - name: question dtype: string - name: code_with_error dtype: string - name: answer dtype: string - name: subtask dtype: string splits: - name: test num_bytes: 2885440 num_examples: 2635 download_size: 2885440 dataset_size: 2885440 - config_name: Code_Function_Editing features: - name: id dtype: string - name: question dtype: string - name: function_description dtype: string - name: answer dtype: string - name: subtask dtype: string splits: - name: test num_bytes: 2712168 num_examples: 2290 download_size: 2712168 dataset_size: 2712168 - config_name: Webpage_HTML_Matching features: - name: id dtype: string - name: question dtype: string - name: image_id dtype: string - name: image dtype: image - name: answer dtype: string - name: subtask dtype: string splits: - name: test num_bytes: 1003289265 num_examples: 2143 download_size: 1003289265 dataset_size: 1003289265 - config_name: Webpage_HTML_Retrieval features: - name: id dtype: string - name: question dtype: string - name: image_id dtype: string - name: image dtype: image - name: answer dtype: string - name: subtask dtype: string splits: - name: test num_bytes: 1109887493 num_examples: 2345 download_size: 1109887493 dataset_size: 1109887493 --- # WebUIBench Dataset for the paper: [WebUIBench: A Comprehensive Benchmark for Evaluating Multimodal Large Language Models in WebUI-to-Code](https://arxiv.org/abs/2404.05955) 🏠 [Homepage](https://github.com/MAIL-Tele-AI/WebUIBench) | [**📖 arXiv**](https://arxiv.org/abs/2404.05955) ## Introduction <!-- ![Task overview of WebUIBench from the WebUI Perception, HTML Programming, WebUI-HTML Understanding subtask and WebUI-to-Code task](https://github.com/MAIL-Tele-AI/WebUIBench/blob/main/imgs/overview.png) --> We introduce WebUIBench, a large-scale and comprehensive benchmark designed to evaluate the WebUI-to-Code capabilities of Multimodal Large Language Models (MLLMs). WebUIBench comprises over **21K question-answer pairs** derived from more than **0.7K real-world websites**, encompassing **9 distinct subtasks**. We conducted extensive experiments on 7 state-of-the-art closed-source and 22 prominent open-source MLLMs. Our key findings highlight the models' deficiencies in webpage generation tasks across various dimensions, including cross-modality reasoning, element localization, and webpage layout generation. ## Contact - Zhiyu Lin: [[email protected]]([email protected]) - Zhengda Zhou: [[email protected]]([email protected]) - Zhiyuan Zhao: [[email protected]]([email protected]) # 🚩Citation If you find this work is helpful, please kindly cite as follows. Thanks ! ```bibtex @article{xx, title={WebUIBench: A Comprehensive Benchmark for Evaluating Multimodal Large Language Models in WebUI-to-Code}, author={xx}, journal={arXiv preprint arXiv:xx}, year={2025} } ```
Taylor658/synthetic-fine-arts
Taylor658
2025-05-27T16:32:24Z
22
1
[ "task_categories:text-generation", "task_categories:question-answering", "task_categories:summarization", "task_categories:other", "language:en", "license:mit", "size_categories:100K<n<1M", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "fine-arts", "dataset", "synthetic", "multi-domain", "art" ]
[ "text-generation", "question-answering", "summarization", "other" ]
2025-01-28T23:32:44Z
null
--- language: - en size_categories: - 100K<n<500K license: mit task_categories: - text-generation - question-answering - summarization - other tags: - fine-arts - dataset - synthetic - multi-domain - art dataset_info: features: - name: ID dtype: string - name: AreaOfFocus dtype: string - name: ArtisticChallenge dtype: string - name: ProposedSolution dtype: string - name: VerificationMethod dtype: string - name: ReferenceMaterial dtype: string - name: EthicalConsiderations dtype: string dataset_size: 225000 dataset_version: "1.0.0" --- # Synthetic Fine Arts (Challenge, Solution) Dataset > **Description** > **Synthetic Fine Arts** is a **225,000-row** dataset of *(artistic challenge, proposed solution)* pairs spanning multiple areas within **Visual Arts, Performing Arts, Musical Arts, Literary Arts, Digital Arts, Art History, and Art Theory**. > > Each entry provides a high-level **ArtisticChallenge**, accompanied by a **ProposedSolution** referencing established or pseudo-random *creative techniques, theoretical principles, and historical precedents*. **VerificationMethod** and other metadata fields are included to *mimic* real curation processes. > > **Disclaimer**: *All* text is **synthetically generated** and **should not be construed as real** on artistic, historical, or technical matters. --- ## Key Highlights ✨ 1. **Multi-Domain Coverage** \- Encompasses *Visual Arts: Painting, Performing Arts: Theater/Dance, Musical Arts: Composition, Literary Arts: Poetry, Digital Arts: Generative Art, Art History: Movement Analysis, Art Theory: Philosophical Approach*, etc. 2. **Large Scale** \- **225,000** synthetic challenge-solution pairs, suitable for training, fine-tuning, or experimentation in r1 focusing on *artistic creativity*. 3. **Detailed Columns** \- Each row has: 1. **`ID`** – A zero-padded identifier like `AID000001`. 2. **`AreaOfFocus`** – E.g., “Visual Arts: Painting.” 3. **`ArtisticChallenge`** – A short textual challenge (e.g., merging classic and contemporary styles). 4. **`ProposedSolution`** – Potential method/technique to address the challenge, referencing color theory, composition rules, or historical methods. 5. **`VerificationMethod`** – Approach used to ensure correctness (e.g., “Technical validation (color theory),” “Historical grounding,” etc.). 6. **`ReferenceMaterial`** – Placeholder references to museum APIs, open-access artwork, scholarly texts. 7. **`EthicalConsiderations`** – Synthetic flags like “Cultural sensitivity review passed,” “Copyright cleared,” etc. ## Dataset Structure 🏗️ **Example Columns**: - **`ID`**: string identifier with zero-padding (e.g., `AID000123`). - **`AreaOfFocus`**: text describing the primary art domain or sub-domain. - **`ArtisticChallenge`**: a concise statement of a creative or technical challenge. - **`ProposedSolution`**: a method or technique referencing real-world or hypothetical best practices. - **`VerificationMethod`**: how the solution was (synthetically) validated (e.g., “Peer-reviewed research cross-check”). - **`ReferenceMaterial`**: placeholders such as “MET Open Access paintings dataset.” - **`EthicalConsiderations`**: notes on copyright, cultural sensitivity, or related checks. ### Example Entry ```json { "ID": "AID000001", "AreaOfFocus": "Visual Arts: Painting", "ArtisticChallenge": "Achieving realistic lighting in portrait painting", "ProposedSolution": "Adopt advanced underpainting methods for depth and color harmony, referencing late Renaissance techniques.", "VerificationMethod": "Technical validation (color theory)", "ReferenceMaterial": "MET Open Access paintings dataset", "EthicalConsiderations": "Age-appropriate content" } ``` > **Note**: All text is **synthetic** and references are placeholders. Real world usage would replace these with accurate citations or data from museum APIs, peer-reviewed journals, historical archives, etc. ## Usage & Examples 💡 Load with the **Hugging Face** `datasets` library: ```python from datasets import load_dataset dataset = load_dataset("your-username/synthetic_fine_arts", split="train") print(dataset[0]) ``` ### Potential Applications 1. **Text Generation & Fine-Tuning** - Use “ArtisticChallenge” as a prompt and “ProposedSolution” as the target, training models to offer creative solutions or suggestions in arts-related tasks. 2. **Style Transfer or Aesthetic Judgment** - Explore classification tasks around “VerificationMethod,” “EthicalConsiderations,” or the type of “AreaOfFocus” to build automated aesthetic or ethical checks. ## Caveats & Limitations ⚠️ 1. **Synthetic Content** - All entries are generated with template-based or random processes and *Do Not* reflect historically accurate references or proven artistic methods. 2. **Cultural & Ethical Sensitivity** - Fields like “Cultural sensitivity review passed” are hypothetical. Real curation for culturally sensitive or traditional arts requires human expertise. 3. **No Actual Artistic Authority** - This dataset does **not** substitute expert knowledge from professionals in fine arts, art history, or museum curation. ## Citation & Acknowledgments 🙌 ```bibtex @misc{synthetic_fine_arts_2025, title = {Synthetic Fine Arts (Challenge, Solution) Dataset}, author = {https://huggingface.co/Taylor658}, year = {2025}, howpublished = {\url{https://huggingface.co/datasets/taylor658/synthetic_fine_arts}} } ``` ## Contributing 🧑‍💻 Feel free to open issues or pull requests if you wish to: - Add more fine-grained sub-domains (e.g., sculpture, orchestral composition, dance notation systems) - Integrate real open-access references to museum collections, historical journals, or scholarly works - Expand or refine the *VerificationMethod* to incorporate advanced analytics or peer-reviewed confirmation --- > **Disclaimer**: **All content is synthetic** and intended for *research and experimentation* only.
somerandomguyontheweb/en_be_mt_datasets_evaluation
somerandomguyontheweb
2025-05-27T16:30:40Z
0
0
[ "task_categories:translation", "language:be", "language:en", "license:pddl", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "translation" ]
2025-05-27T15:11:52Z
null
--- license: pddl task_categories: - translation language: - be - en size_categories: - n<1K --- ## Overview This is a small dataset of English-Belarusian sentence pairs sampled from the largest parallel corpora in [OPUS](https://opus.nlpl.eu/results/en&be/corpus-result-table) (100 random instances from each of the following: NLLB, HPLT, CCMatrix, CCAligned) and manually labeled for correctness by a speaker of Belarusian. The taxonomy of labels follows [Kreutzer et al. 2022](https://doi.org/10.1162/tacl_a_00447): - CC: correct translation, natural sentence - CB: correct translation, boilerplate or low quality - CS: correct translation, short - X: incorrect translation - WL: wrong language - NL: not a language Where appropriate, the labels are accompanied by free-form comments. ## Data sampling In Unix shell, execute: ```bash sample_sentence_pairs () { mkdir -p $1 cd $1 wget https://object.pouta.csc.fi/OPUS-$1/$2/moses/be-en.txt.zip unzip be-en.txt.zip paste $1.be-en.en $1.be-en.be | shuf -n 100 > $1.be-en.sample100.txt ls | grep -v sample100 | xargs rm cd .. } sample_sentence_pairs NLLB v1 sample_sentence_pairs HPLT v2 sample_sentence_pairs CCMatrix v1 sample_sentence_pairs CCAligned v1 mv */*.txt . rm -r NLLB HPLT CCMatrix CCAligned ``` Then in Python: ```python3 import csv def to_csv(filename): with open(filename) as f: data = [line.strip().split("\t") for line in f] assert all(len(x) == 2 for x in data) with open("processed_%s.csv" % filename, "w") as f: csv_writer = csv.writer(f) csv_writer.writerow(["en", "be"]) csv_writer.writerows(data) to_csv("NLLB.be-en.sample100.txt") to_csv("HPLT.be-en.sample100.txt") to_csv("CCMatrix.be-en.sample100.txt") to_csv("CCAligned.be-en.sample100.txt") ``` ## Labeling results | Dataset | CC | CB | CS | X | WL | NL | |-----------|----|----|----|----|----|----| | NLLB | 17 | | | 73 | 10 | | | HPLT | 41 | 35 | 6 | 17 | 1 | | | CCMatrix | 7 | 1 | | 92 | | | | CCAligned | 31 | 38 | 8 | 22 | 1 | |
tcapelle/boostrap_triton
tcapelle
2025-05-27T16:29:55Z
149
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-21T14:21:36Z
null
--- dataset_info: features: - name: pt_code dtype: string - name: triton_code dtype: string - name: pt_entrypoint dtype: string - name: triton_entrypoint dtype: string - name: reasoning dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: tests_code dtype: string - name: pt_code_runs dtype: bool - name: stdout dtype: string - name: stderr dtype: string - name: stop_reason dtype: string - name: prompt list: - name: content dtype: string - name: role dtype: string - name: entrypoint dtype: string - name: tests dtype: string - name: conversion_reasoning dtype: string splits: - name: train num_bytes: 5838439 num_examples: 378 download_size: 1447320 dataset_size: 5838439 configs: - config_name: default data_files: - split: train path: data/train-* ---
relaxedandcalm/screw3
relaxedandcalm
2025-05-27T16:09:53Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-05-27T16:08:34Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "mcx", "total_episodes": 10, "total_frames": 4679, "total_tasks": 1, "total_videos": 20, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 7 ], "names": "main" }, "observation.state": { "dtype": "float32", "shape": [ 7 ], "names": "main" }, "observation.images.first_cam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.second_cam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
HaniAI/AI4LI-DATA-GRPO_vietnamese
HaniAI
2025-05-27T15:42:52Z
0
0
[ "region:us" ]
[]
2025-05-27T15:42:50Z
null
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 745386.9779735683 num_examples: 1620 download_size: 469498 dataset_size: 745386.9779735683 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "AI4LI-DATA-GRPO_vietnamese" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fvdfs41/home
fvdfs41
2025-05-27T15:37:55Z
1,658
0
[ "language:en", "region:us", "playstationhome", "pshome", "preservation", "revival", "archive", "cache", "non-profit", "homelab" ]
[]
2024-10-31T23:03:24Z
null
--- language: - en tags: - playstationhome - pshome - preservation - revival - archive - cache - non-profit - homelab pretty_name: Playstation®Home Cache Depot --- # ✧ Playstation®Home Cache Depot ✧ This repository is an archive of assets pertaining to **Playstation®Home**. Playstation®Home was an online social world video game that was on PS3. It was closed down by it's creator ( Sony Computer Entertainment ) on April 1st 2015. The Playstation®Home community strongly feels that Playstation®Home is an abandonded game and its assets to be lost media. All assets archived here are deemed to be owned by Sony Computer Entertainment and their third party associates. These assets are sourced from ... - The JohnDrinkWater Playstation®Home Archive ( [johndrinkwater github repo](https://github.com/johndrinkwater/ps-home-archive) ) - Donations made by past Playstation®Home users that voluntarily retrieved the data off their own PS3s. ## ✧ Projects Involved ✧ This repository is associated with the preservation projects listed below, which are open-sourced, non-profit initiatives operating under the legal framework established for emulation and preservation. The main goal is to preserve and restore Playstation®Home's content. ### ✧ Home Laboratory ✧ [Discord Server](https://discord.gg/NAUttdtPS5) This project provides : - a more developer-oriented environment that includes, but is not limited to - open source software for an Playstation®Home online server; either locally and/or public. ( [MultiServer3 Github Repo](https://github.com/GitHubProUser67/MultiServer3) ) - open source tools for handling Playstation®Home assets; either PC tools and/or Web tools. <br><br>Compiled: [Nautilus](https://github.com/DeViL303/MultiServer3-NuatilusFork/releases) / Source: [Nautilus](https://github.com/GitHubProUser67/NautilusXP2024) - support for getting everything setup and running as well as guidance into how Playstation®Home works. - the assets needed to create an Content Delivery Network ( CDN ) in some form or other. - transparent, in-depth progress updates on its restoration efforts. - a Playstation®Home scene database ( [google sheets](https://docs.google.com/spreadsheets/d/1acznLvA2k4I7yl56i3pCmAhzxG4pPcrx/edit?usp=sharing&ouid=113258013303427394442&rtpof=true&sd=true) ) - it's own Playstation®Home public server which supports both QA ( Developer ) and Retail ( Consumer ) builds for version 1.86. It is playable on both a Jailbroken PS3 and the RPCS3 emulator. ( [HL Website](https://pshomeologylab.net/) ) - a Playstation®Home item ( object ) catalogue database and inventory management system for the PS®Homeology Lab online server, along with an external command module for the QA ( Developer ) build. ( [psho](http://psho.me/) ) ### ✧ Home Headquarters ✧ [Discord Server](https://discord.com/invite/87W5qaMtgB) This project provides : - a Playstation®Home public server that is running off of Home Laboratory's software. It supports only the Retail ( Consumer ) build for version 1.86. It is playable on both a Jailbroken PS3 and the RPCS3 emulator. ( [HHQ Website](https://homeheadquarters.online/) ) - a more community-oriented environment with weekly in-game get-togethers ( events ). - a larger player base that is primarily made up of past Playstation®Home users. - a laughable staff hierarchy alongside moderation that's a bit too self-serious on both its Discord and its Playstation®Home online server. ## ✧ Playstation®Home Cache Information ✧ ### ✧ Overview ✧ Playstation®Home had a lot of in-game content with a very unique loading system. When a player logged into Playstation®Home, the game reserved a limited amount of space on the PS3's internal HDD for assets to be downloaded from Sony's server. Whenever a player interacted with an asset ( spaces ( scenes ), items/minigames ( objects ), posters, videos, etc ) in-game, it would download and store the assets temporarily until the reserved space was full. **These are referred to as "caches" and are only obtainable by gaining access to one's internal PS3 HDD via a jailbreak**. Caches are needed to restore Playstation®Home to its fullest. When new content is found, it can be added to the online public servers and thus be restored. A game can't function without it's assets. Playstation®Home was seperated into four regions and each region had it's own unique content and limited-time events. A large percentage of the content is still missing, most notably that from the Japanese region. This is why it is strongly encouraged for everyone to dust off their PS3 and **check for the Playstation®Home icon**. It is located under the **Playstation Network tab and resembles that of a house**. If you happen to spot the Playstation®Home icon on your PS3, press the **Triangle button** on the icon to view its information. You should see an **install date ( between 2008 and 2015 ) and a size ( from 3GB to 12GB )**. If the icon meets these criteria, please consider donating the data to one of the projects mentioned above by following the cache extraction guide below. If you cannot press Triangle on the icon, there is no data behind it. Similarly, if the install date is later than April 1st 2015, or the size is under 100MB, it indicates that Playstation®Home was either installed after its shutdown or was never logged into. To reiterate, in order to extract the Playstation®Home cache, it is **required to jailbreak your PS3** to gain access to its internal HDD. You will also **need a USB Stick** that's formated to the **FAT32** format. Most USB Sticks are FAT32 now days but if for some reason it's not, you will need to reformat it using a PC program called Rufus. If you have no USB Stick, do an internet search for "USB Stick 16GB FAT32" then order it. For newcomers, the PS3 jailbreak community **recommends updating your PS3 to the Hybrid Firmware ( HFW ) then installing the HEN software**. It is a Semi-untethered Jailbreak where the user has to enable HEN to go into a jailbroken state. When rebooting the PS3, it returns to a non-jailbroken state until the user enables HEN again. Because of this, it is considered to be **very safe**. Once jailbroken, a **Homebrew application called multiMAN ( mmCM )** can be used to **browse the PS3 directories** via its own File Manager / mmOS. Playstation®Home's cache folders will be **in the dev_hdd0/game/ directory** and can be **indentified by one of the below folder pairs**. **The objective is to copy the two folders from the PS3 to the FAT32 USB Stick.** NPIA00005 & NPIA00005DATA ( Retail ) NPIA00010 & NPIA00010DATA ( Developer ) NPEA00013 & NPEA00013DATA ( Developer / Closed Beta ) The jailbreak should take 10 minutes tops and the data extraction should take 30 minutes to 90 minutes tops depending on the number of files. After the PS3 has extracted the data onto your USB stick, insert it into your computer, transfer the data, then **zip the two folders and upload the resulting file to a cloud service** of your choice (e.g., Google Drive, Mega, etc.). Then, **join one of the Discord servers** linked above and post the link in the appropriate channel. Upon request, a comprehensive analysis of the cache—detailing its contents and any new files discovered—is available. ### ✧ Extraction Guides ✧ - ( [Guide #1](https://pshomeologylab.net/Cache) ) - ( [Guide #2](https://homeheadquarters.online/Cache) ) ### ✧ Public Archive ✧ A vast majority of Playstation®Home raw caches donated by it's former players are archived publicly in this google drive with logs included. ( [Google Drive](https://drive.google.com/drive/u/1/folders/1Wuk2GNsXOZ_qLJFqtg0gExRpZqxL3sec) ) You can find individual download links here. ( [Google Sheets](https://docs.google.com/spreadsheets/d/1uR7IRGjkl_n5CMBua6zIQV5EKXdSk8_D-sTDoJGMe7c/edit?usp=sharing) ) ## ✧ Notable Mentions ✧ The following individuals are key figures spearheading the revolution of Playstation®Home Online as a fully open-source environment : - **AgentDark447** ( [github](https://github.com/GitHubProUser67) ) - **Jumpsuit** ( [github](https://github.com/Jump-Suit) ) - **Devil303** ( [psx-place](https://www.psx-place.com/members/devil303.22544/) ) - **Rew** ( [twitter](https://x.com/pebxcvi) ) - **Splicewave** ( [youtube](https://www.youtube.com/channel/UC63x8NBm5NkoKMrTl4zrbIA ) ) - **Kami 2.0** - **Pongo** ( [twitter](https://x.com/Pongo86_) ) - **Spookysniper** - **Cade**
ariflaksito/exarank1
ariflaksito
2025-05-27T15:36:13Z
0
0
[ "license:gpl-2.0", "region:us" ]
[]
2025-05-27T14:26:27Z
null
--- license: gpl-2.0 dataset_info: features: - name: label dtype: int64 - name: query dtype: string - name: doc dtype: string - name: explanation dtype: string splits: - name: train num_bytes: 11262781 num_examples: 21600 - name: validation num_bytes: 1240270 num_examples: 2400 - name: test num_bytes: 3111499 num_examples: 6000 download_size: 9061207 dataset_size: 15614550 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
Kamyar-zeinalipour/farsi_dialogue_sentiment
Kamyar-zeinalipour
2025-05-27T15:25:29Z
0
0
[ "region:us" ]
[]
2025-05-27T15:25:24Z
null
--- dataset_info: features: - name: Title dtype: string - name: Reference dtype: string - name: Characters dtype: string - name: Dialogue_Type dtype: string - name: Speakers_Sentiments dtype: string - name: dialogue dtype: string - name: Overall_Sentiment_Reviewed dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 3674732 num_examples: 1867 - name: val num_bytes: 192711 num_examples: 99 - name: test num_bytes: 201877 num_examples: 104 download_size: 1692428 dataset_size: 4069320 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* ---
GingerBled/RAG_corpus_docs_xtra_small
GingerBled
2025-05-27T15:03:14Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-27T13:54:11Z
null
--- dataset_info: features: - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 26871708.829308826 num_examples: 50000 download_size: 16846448 dataset_size: 26871708.829308826 configs: - config_name: default data_files: - split: train path: data/train-* ---
Lithium73fr/TEST6
Lithium73fr
2025-05-27T14:53:04Z
0
0
[ "task_categories:robotics", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-05-27T14:53:01Z
null
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # TEST6 **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
Bluestrike/ai-chatbot
Bluestrike
2025-05-27T14:38:21Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-05-27T14:37:56Z
null
--- license: apache-2.0 ---
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
442