The Dataset Viewer has been disabled on this dataset.
Document OCR using dots.ocr
This dataset contains OCR results from images in NationalLibraryOfScotland/Scottish-School-Exam-Papers using DoTS.ocr, a compact 1.7B multilingual model.
Processing Details
- Source Dataset: NationalLibraryOfScotland/Scottish-School-Exam-Papers
- Model: rednote-hilab/dots.ocr
- Number of Samples: 10
- Processing Time: 1.6 min
- Processing Date: 2025-10-07 14:23 UTC
Configuration
- Image Column:
image
- Output Column:
markdown
- Dataset Split:
train
- Batch Size: 16
- Prompt Mode: layout-all
- Max Model Length: 8,192 tokens
- Max Output Tokens: 8,192
- GPU Memory Utilization: 80.0%
Model Information
DoTS.ocr is a compact multilingual document parsing model that excels at:
- π 100+ Languages - Multilingual document support
- π Table extraction - Structured data recognition
- π Formulas - Mathematical notation preservation
- π Layout-aware - Reading order and structure preservation
- β‘ Fast inference - 2-3x faster than native HF with vLLM
- π― Compact - Only 1.7B parameters
Dataset Structure
The dataset contains all original columns plus:
markdown
: The extracted text in markdown formatinference_info
: JSON list tracking all OCR models applied to this dataset
Usage
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{output_dataset_id}", split="train")
# Access the markdown text
for example in dataset:
print(example["markdown"])
break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
print(f"Column: {info['column_name']} - Model: {info['model_id']}")
Reproduction
This dataset was generated using the uv-scripts/ocr DoTS OCR script:
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \
NationalLibraryOfScotland/Scottish-School-Exam-Papers \
<output-dataset> \
--image-column image \
--batch-size 16 \
--prompt-mode layout-all \
--max-model-len 8192 \
--max-tokens 8192 \
--gpu-memory-utilization 0.8
Performance
- Processing Speed: ~0.1 images/second
- GPU Configuration: vLLM with 80% GPU memory utilization
Generated with π€ UV Scripts
- Downloads last month
- 11