repo_id
stringlengths
4
110
author
stringlengths
2
27
โŒ€
model_type
stringlengths
2
29
โŒ€
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
โŒ€
likes
int64
0
4.34k
pipeline
stringlengths
5
30
โŒ€
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
โŒ€
datasets
stringlengths
2
2.58k
โŒ€
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
Ni4z/my_awesome_wnut_model
Ni4z
distilbert
12
1
transformers
0
token-classification
true
false
false
apache-2.0
null
['wnut_17']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,445
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2777 - Precision: 0.5676 - Recall: 0.2919 - F1: 0.3856 - Accuracy: 0.9412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2872 | 0.4563 | 0.2373 | 0.3122 | 0.9377 | | No log | 2.0 | 426 | 0.2777 | 0.5676 | 0.2919 | 0.3856 | 0.9412 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
5d193a33126f3fb03ddaa656cf83e90d
iakl/knight-big
iakl
null
19
5
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
2
2
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
703
false
### knight_big Dreambooth model trained by iakl with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/iakl/knight-big/resolve/main/sample_images/descarga_(1).png)
a4d9f972eb45206d3db22c99d6f49ef6
bitsanlp/roberta-retrained-100k
bitsanlp
roberta
11
2
transformers
0
fill-mask
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
911
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-retrained_100k This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
43aa20c8b813d46d3a5c285dc23b711b
dkssud/wav2vec2-base-demo-colab
dkssud
wav2vec2
17
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,635
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4171 - Wer: 0.3452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0054 | 4.0 | 500 | 1.5456 | 0.9005 | | 0.8183 | 8.0 | 1000 | 0.4738 | 0.4839 | | 0.3019 | 12.0 | 1500 | 0.4280 | 0.4047 | | 0.1738 | 16.0 | 2000 | 0.4584 | 0.3738 | | 0.1285 | 20.0 | 2500 | 0.4418 | 0.3593 | | 0.1104 | 24.0 | 3000 | 0.4110 | 0.3479 | | 0.0828 | 28.0 | 3500 | 0.4171 | 0.3452 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3
36b53473265bb53faeba21dc68b8f999
Roshan777/finetuning-sentiment-model-300-samples
Roshan777
distilbert
17
4
transformers
0
text-classification
true
false
false
apache-2.0
null
['imdb']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,054
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-300-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.6567 - Accuracy: 0.6833 - F1: 0.6154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
1c69018c5d19559c83271ad6c8087c1c
HuyenNguyen/Vin5-P3
HuyenNguyen
whisper
15
19
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,324
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Vin5-P3 This model is a fine-tuned version of [HuyenNguyen/Vin4-P3](https://huggingface.co/HuyenNguyen/Vin4-P3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2358 - Wer: 12.7944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2786 | 0.77 | 300 | 0.2359 | 13.5655 | | 0.2338 | 1.54 | 600 | 0.2358 | 12.7944 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
4ff77f2ac4559503480aa855c57f0801
fathyshalab/all-roberta-large-v1-home-1-16-5
fathyshalab
roberta
11
3
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,509
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-home-1-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3789 - Accuracy: 0.3356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7614 | 1.0 | 1 | 2.6146 | 0.1889 | | 2.2082 | 2.0 | 2 | 2.5232 | 0.2667 | | 1.8344 | 3.0 | 3 | 2.4516 | 0.2933 | | 1.4601 | 4.0 | 4 | 2.4033 | 0.3267 | | 1.2748 | 5.0 | 5 | 2.3789 | 0.3356 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
c801795e7669cbb12d51119964636053
sd-concepts-library/borderlands
sd-concepts-library
null
9
0
null
14
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,038
false
### borderlands on Stable Diffusion This is the `<borderlands>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<borderlands> 0](https://huggingface.co/sd-concepts-library/borderlands/resolve/main/concept_images/3.jpeg) ![<borderlands> 1](https://huggingface.co/sd-concepts-library/borderlands/resolve/main/concept_images/0.jpeg) ![<borderlands> 2](https://huggingface.co/sd-concepts-library/borderlands/resolve/main/concept_images/2.jpeg) ![<borderlands> 3](https://huggingface.co/sd-concepts-library/borderlands/resolve/main/concept_images/1.jpeg)
b25f592f8338eca1744180f34ed09ebd
haor/Evt_M
haor
null
15
0
diffusers
10
text-to-image
false
false
false
creativeml-openrail-m
['en']
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers']
false
true
true
3,584
false
# Evt_M Evt_M is a model derived from Evt_V4 EP06. It retains the characteristics of Evt_V4, and the batch generation of images with the same set of parameters is no longer rigid and monotonous, and has more possibilities. ## Examples **Prompt1:** ![Prompt2](https://huggingface.co/haor/Evt_M/resolve/main/sample/1.png) ![Prompt2](https://huggingface.co/haor/Evt_M/resolve/main/sample/5.png) ![Prompt2](https://huggingface.co/haor/Evt_M/resolve/main/sample/3.png) ![Prompt2](https://huggingface.co/haor/Evt_M/resolve/main/sample/4.png) ``` {Masterpiece, Kaname_Madoka, tall and long double tails, well rooted hair, (pink hair), pink eyes, crossed bangs, ojousama, jk, thigh bandages, wrist cuffs, (pink bow: 1.2)}, plain color, sketch, masterpiece, high detail, masterpiece portrait, best quality, ray tracing, {:<, look at the edge} Negative prompt: ((((ugly)))), (((duplicate))), ((morbid)), ((mutilated)),extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((bad proportions))), ((extra limbs)), (((deformed))), (((disfigured))), cloned face, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), too many fingers, (((long neck))), (((low quality))), normal quality, blurry, bad feet, text font ui, ((((worst quality)))), anatomical nonsense, (((bad shadow))), unnatural body, liquid body, 3D, 3D game, 3D game scene, 3D character, bad hairs, poorly drawn hairs, fused hairs, big muscles, bad face, extra eyes, furry, pony, mosaic, disappearing calf, disappearing legs, extra digit, fewer digit, fused digit, missing digit, fused feet, poorly drawn eyes, big face, long face, bad eyes, thick lips, obesity, strong girl, beard๏ผŒExcess legs Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, Clip skip: 2 ``` **Prompt2:** ![Prompt1](https://huggingface.co/haor/Evt_M/resolve/main/sample/9.png) ![Prompt1](https://huggingface.co/haor/Evt_M/resolve/main/sample/2.png) ![Prompt1](https://huggingface.co/haor/Evt_M/resolve/main/sample/8.png) ``` best quality, illustration,highly detailed,1girl,upper body,beautiful detailed eyes, medium_breasts, long hair,grey hair, grey eyes, curly hair, bangs,empty eyes,expressionless, ((masterpiece)),twintails,beautiful detailed sky, beautiful detailed water, cinematic lighting, dramatic angle,((back to the viewer)),(an extremely delicate and beautiful),school uniform,black ribbon,light smile, Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry,artist name,bad feet Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, Clip skip: 2 ``` ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
ef7aa5243562b96774fbeb86c8de173a
philschmid/roberta-large-sst2
philschmid
roberta
17
223
transformers
0
text-classification
true
false
false
mit
null
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,566
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-sst2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1400 - Accuracy: 0.9644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3688 | 1.0 | 264 | 0.1444 | 0.9564 | | 0.1529 | 2.0 | 528 | 0.1502 | 0.9518 | | 0.107 | 3.0 | 792 | 0.1388 | 0.9530 | | 0.0666 | 4.0 | 1056 | 0.1400 | 0.9644 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
a5ac64f87b6e197dcabe4edf69f25045
habib1030/distilbert-base-uncased-finetuned-squad
habib1030
distilbert
14
5
transformers
0
question-answering
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,280
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.8711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 5.9634 | | No log | 2.0 | 2 | 5.9013 | | No log | 3.0 | 3 | 5.8711 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
7c6e210a9bb7db5e09e8195e1e79b525
Gladiator/albert-large-v2_ner_wikiann
Gladiator
albert
12
7
transformers
0
token-classification
true
false
false
apache-2.0
null
['wikiann']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,710
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2_ner_wikiann This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3416 - Precision: 0.8240 - Recall: 0.8375 - F1: 0.8307 - Accuracy: 0.9270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3451 | 1.0 | 2500 | 0.3555 | 0.7745 | 0.7850 | 0.7797 | 0.9067 | | 0.2995 | 2.0 | 5000 | 0.2927 | 0.7932 | 0.8240 | 0.8083 | 0.9205 | | 0.252 | 3.0 | 7500 | 0.2936 | 0.8094 | 0.8236 | 0.8164 | 0.9239 | | 0.1676 | 4.0 | 10000 | 0.3302 | 0.8256 | 0.8359 | 0.8307 | 0.9268 | | 0.1489 | 5.0 | 12500 | 0.3416 | 0.8240 | 0.8375 | 0.8307 | 0.9270 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
fa20dbc6fa2908aac7a11ad107e69f2d
Cacau/anglaludicmindtwo
Cacau
null
27
2
diffusers
0
null
false
false
false
creativeml-openrail-m
null
null
null
2
2
0
0
0
0
0
[]
false
true
true
1,250
false
### anglaLudicMindTwo on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### Model by Cacau s your the Stable Diffusion model fine-tuned the anglaLudicMindTwo concept taught to Stable Diffusion with Dreambooth. You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb). You can run your new concept via A1111 Colab :[Fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) sample_pictures.png. ![sample_pictures.png._0](https://huggingface.co/Cacau/anglaludicmindtwo/raw/main/concept_images/sample_pictures.png)
2abf3ddd2875f7b1b84a4b8a290bd7c6
bitsanlp/roberta-retrained-500k
bitsanlp
roberta
11
0
transformers
0
fill-mask
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
950
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-retrained-500k This model is a fine-tuned version of [bitsanlp/roberta-retrained-350k](https://huggingface.co/bitsanlp/roberta-retrained-350k) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
edb84fae944a904b368dab17dca40c14
andrewkroening/GalaxyFarAway-DialoGPT-LukeSkywalker
andrewkroening
gpt2
9
6
transformers
0
conversational
true
false
false
cc
['en']
null
null
0
0
0
0
0
0
0
['conversational']
false
true
true
3,285
false
# GPT-2 This model is based on a GPT-2 model which was fine-tuned on a Hugging Face dataset. It is intended largely as an illustrative example and is not intended to be used for any serious purpose. It's trained on a movie script for goodness' sake. Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Acknowledgements There are several sources of inspiration and insight for the project that spawned this model. I'd like to recognize them up front: * The [Microsoft DialoGPT-Medium](https://huggingface.co/microsoft/DialoGPT-medium?text=Hi.) model page was very insightful for getting stated. * Lynn Zheng [r3dhummingbird](https://huggingface.co/r3dhummingbird/DialoGPT-medium-joshua?text=Hey+my+name+is+Thomas%21+How+are+you%3F) put together one heck of an awesome tutorial on how to fine-tune GPT-2 for conversational purposes. I used her tutorial as a starting point for this project. Check out the [Github repo here.](https://github.com/RuolinZheng08/twewy-discord-chatbot) * [This article](https://towardsdatascience.com/make-your-own-rick-sanchez-bot-with-transformers-and-dialogpt-fine-tuning-f85e6d1f4e30) was also very insightful. Written by Rostyslav Neskorozhenyi. * From a lineage standpoint, it looks like Nathan Cooper kicked this whole thing off with this [notebook.](https://github.com/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) * Noah Gift figured out a few of the big pieces in [this repository.](https://github.com/nogibjj/hugging-face-tutorial-practice) * I'd be remiss if I also didn't mention Hugging Face's own support [documentation](https://huggingface.co/transformers/v2.0.0/examples.html#gpt-2-gpt-and-causal-language-modeling) and team. All around great. ## Model description This model uses GPT-2 Medium as a base model and was fine-tuned using scripts from the original (and best) Star Wars Trilogy. In this particular case, it was fine-tuned on Luke Skywalker's 490-some lines. This is not a lot, and thus the model should not be assumed to have serious integrity. It's just a fun little project. ## Intended uses & limitations This model is intended to be used for fun and entertainment. Don't take it too seriously. ### Ways to use You can always chat with the model directly on the Hugging Face website. Just click the "Chat" button on the right side of the model page. If you want to use the model in your own project, I recommend you train it better using much more data. To access the GitHub repository I used to train this model, click [here](https://github.com/nogibjj/hugging-face-gpt-trainer/tree/gpt-fine-tune) ## Fine-tuning data The script to generate this model takes a Hugging Face data set in this approximate format: | Speaker | Text | | --- | --- | | Luke | Hello there. | | Han | General Kenobi. | | Luke | You are a bold one. | The script then asks the user to define parameters for making the dataset and proceeding to fine-tuning. The actual dataset for this model can be found [here.](andrewkroening/Star-wars-scripts-dialogue-IV-VI)
7806222ffecee064800ba812bf3de4ac
ukeeba/test1-1-1-1
ukeeba
null
18
2
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
419
false
### test1.1.1.1 Dreambooth model trained by ukeeba with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
2ebdd40549ab9373e06399ad62128860
dchaplinsky/uk_ner_web_trf_large
dchaplinsky
null
16
15
spacy
4
token-classification
false
false
false
mit
['uk']
['ner-uk']
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
907
false
# uk_ner_web_trf_large ## Model description **uk_ner_web_trf_large** is a fine-tuned [XLM-Roberta model](https://huggingface.co/xlm-roberta-large) that is ready to use for **Named Entity Recognition** and achieves a **SoA** performance for the NER task for Ukrainian language. It outperforms another SpaCy model, [uk_core_news_trf](https://huggingface.co/ukr-models/uk_core_news_trf) on a NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PERS) and Miscellaneous (MISC). The model was fine-tuned on the [NER-UK dataset](https://github.com/lang-uk/ner-uk), released by the [lang-uk](https://lang.org.ua). Smaller transformer based model for the SpaCy is available [here](https://huggingface.co/dchaplinsky/uk_ner_web_trf_base). Copyright: [Dmytro Chaplynskyi](https://twitter.com/dchaplinsky), [lang-uk project](https://lang.org.ua), 2022
45c0d69523eacf10f22f210ccffb5109
anas-awadalla/t5-base-few-shot-k-1024-finetuned-squad-infilling-seed-0
anas-awadalla
t5
17
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
966
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-1024-finetuned-squad-infilling-seed-0 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
29af56df842b6c233792d1fac36e44bf
IIIT-L/xlm-roberta-base-finetuned-non-code-mixed-DS
IIIT-L
xlm-roberta
9
1
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,595
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-non-code-mixed-DS This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1771 - Accuracy: 0.6365 - Precision: 0.6252 - Recall: 0.6242 - F1: 0.6242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.6820964947491663e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9475 | 2.0 | 926 | 0.8620 | 0.6278 | 0.6197 | 0.6042 | 0.6081 | | 0.6661 | 3.99 | 1852 | 0.9578 | 0.6451 | 0.6356 | 0.6281 | 0.6301 | | 0.4457 | 5.99 | 2778 | 1.1771 | 0.6365 | 0.6252 | 0.6242 | 0.6242 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
01740beb4fddf9841c39ef4ae98dbc46
jonatasgrosman/exp_w2v2r_de_xls-r_age_teens-2_sixties-8_s878
jonatasgrosman
wav2vec2
10
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['de']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'de']
false
true
true
475
false
# exp_w2v2r_de_xls-r_age_teens-2_sixties-8_s878 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
aa509589e494a98f67e326e6aeb5a7be
nakamura196/roberta-small-hi-char-mlm
nakamura196
roberta
15
5
transformers
1
fill-mask
true
false
false
cc-by-sa-4.0
['ja']
null
null
0
0
0
0
0
0
0
['japanese', 'masked-lm']
false
true
true
414
false
# roberta-small-hi-char-mlm ## Model Description This is a RoBERTa model pre-trained on HI texts with character tokenizer. This uses `is_decoder=False` option. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("nakamura196/roberta-small-hi-char-mlm") model=AutoModelForMaskedLM.from_pretrained("nakamura196/roberta-small-hi-char-mlm") ```
6d6374eb0ffe355fe70e68344e20c9cc
mrm8488/data2vec-text-base-finetuned-rte
mrm8488
data2vec-text
14
4
transformers
0
text-classification
true
false
false
mit
null
['glue']
null
1
0
1
0
0
0
0
['generated_from_trainer']
true
true
true
1,477
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-text-base-finetuned-rte This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6670 - Accuracy: 0.6209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.7091 | 0.4729 | | No log | 2.0 | 312 | 0.6893 | 0.5271 | | No log | 3.0 | 468 | 0.6670 | 0.6209 | | 0.6919 | 4.0 | 624 | 0.6740 | 0.5921 | | 0.6919 | 5.0 | 780 | 0.6644 | 0.6101 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
0131fcd0c0840839649932324dd9f80c
Botnoi/wav2vec2-xls-r-300m-th-v7_0
Botnoi
wav2vec2
52
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,599
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-th-v7_0 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4099 - Wer: 0.9988 - Cer: 0.7861 - Clean Cer: 0.7617 - Learning Rate: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Clean Cer | Rate | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:---------:|:------:| | 8.5484 | 0.4 | 500 | 3.6234 | 1.0 | 1.0 | 1.0 | 0.0000 | | 3.2275 | 0.8 | 1000 | 2.2960 | 0.9998 | 0.7081 | 0.6540 | 0.0000 | | 0.9955 | 1.2 | 1500 | 1.2224 | 0.9549 | 0.4327 | 0.3756 | 0.0000 | | 0.66 | 1.61 | 2000 | 0.9559 | 0.9232 | 0.3651 | 0.3040 | 0.0000 | | 0.546 | 2.01 | 2500 | 0.9207 | 0.9481 | 0.3585 | 0.2826 | 0.0000 | | 0.4459 | 2.41 | 3000 | 0.7701 | 0.8693 | 0.2940 | 0.2383 | 0.0000 | | 0.4041 | 2.81 | 3500 | 0.7756 | 0.8224 | 0.2949 | 0.2634 | 0.0000 | | 0.3637 | 3.21 | 4000 | 0.6015 | 0.7015 | 0.2064 | 0.1807 | 0.0000 | | 0.334 | 3.61 | 4500 | 0.5615 | 0.6675 | 0.1907 | 0.1638 | 0.0000 | | 0.3283 | 4.02 | 5000 | 0.6205 | 0.7073 | 0.2092 | 0.1803 | 0.0000 | | 0.3762 | 4.42 | 5500 | 0.7517 | 0.6366 | 0.1778 | 0.1600 | 0.0000 | | 0.4954 | 4.82 | 6000 | 0.9374 | 0.7073 | 0.2023 | 0.1735 | 0.0000 | | 0.5568 | 5.22 | 6500 | 0.8859 | 0.7027 | 0.1982 | 0.1666 | 0.0000 | | 0.6756 | 5.62 | 7000 | 1.0252 | 0.6802 | 0.1920 | 0.1628 | 0.0000 | | 0.7752 | 6.02 | 7500 | 1.1259 | 0.7657 | 0.2309 | 0.1908 | 0.0000 | | 0.8305 | 6.43 | 8000 | 1.3857 | 0.9029 | 0.3252 | 0.2668 | 0.0000 | | 1.7385 | 6.83 | 8500 | 3.2320 | 0.9998 | 0.9234 | 0.9114 | 0.0000 | | 2.7839 | 7.23 | 9000 | 3.3238 | 0.9999 | 0.9400 | 0.9306 | 0.0000 | | 2.8307 | 7.63 | 9500 | 3.2678 | 0.9998 | 0.9167 | 0.9053 | 0.0000 | | 2.7672 | 8.03 | 10000 | 3.2435 | 0.9995 | 0.8992 | 0.8867 | 0.0000 | | 2.7426 | 8.43 | 10500 | 3.2396 | 0.9995 | 0.8720 | 0.8561 | 0.0000 | | 2.7608 | 8.84 | 11000 | 3.2689 | 0.9993 | 0.8399 | 0.8202 | 0.0000 | | 2.8195 | 9.24 | 11500 | 3.3283 | 0.9989 | 0.8084 | 0.7865 | 0.0000 | | 2.9044 | 9.64 | 12000 | 3.4099 | 0.9988 | 0.7861 | 0.7617 | 0.0000 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
35f7e067a5223a1a724796feaba090d2
sberbank-ai/ruSciBERT
sberbank-ai
roberta
7
497
transformers
3
fill-mask
true
false
false
apache-2.0
['ru']
null
null
1
0
0
1
0
0
0
['Transformers', 'bert']
false
true
true
536
false
# ruSciBERT Model was trained by Sber AI team and MLSA Lab of Institute for AI, MSU. If you use our model for your project, please tell us about it ([[email protected]]([email protected])). [Presentation at the AI Journey 2022](https://ai-journey.ru/archive/?year=2022&video=https://vk.com/video_ext.phpq3u4e5st6io8nm7a0rkoid=-22522055a2n3did=456242496a2n3dhash=ae9efe06acf647fd) * Task: `mask filling` * Type: `encoder` * Tokenizer: `bpe` * Dict size: `50265` * Num Parameters: `123 M` * Training Data Volume: `6.5 GB`
6fae7842f079834f0ef6830044cde2e9
sd-concepts-library/low-poly-hd-logos-icons
sd-concepts-library
null
26
0
null
7
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,257
false
### Low Poly HD Logos & Icons on Stable Diffusion This is the `<low-poly-hd-logos-icons>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<low-poly-hd-logos-icons> 0](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/concept_images/5.jpeg) ![<low-poly-hd-logos-icons> 1](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/concept_images/1.jpeg) ![<low-poly-hd-logos-icons> 2](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/concept_images/3.jpeg) ![<low-poly-hd-logos-icons> 3](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/concept_images/0.jpeg) ![<low-poly-hd-logos-icons> 4](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/concept_images/8.jpeg) ![<low-poly-hd-logos-icons> 5](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/concept_images/6.jpeg) ![<low-poly-hd-logos-icons> 6](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/concept_images/4.jpeg) ![<low-poly-hd-logos-icons> 7](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/concept_images/7.jpeg) ![<low-poly-hd-logos-icons> 8](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/concept_images/2.jpeg) Result ![<low-poly-hd-logos-icons> 9](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/00017-2296946203-a%20learned_embeds-step-1500%20logo%20of%20lionf6e121d1e7ed5fb696d9e274e4c27e6a8b3e9c65.jpg) ![<low-poly-hd-logos-icons> 10](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/00020-417708759-a%20learned_embeds-step-1500%20logo%20water%20mountain%20fire038157575e082c07f81f23dffe8cd90e7ba01e80.jpg) ![<low-poly-hd-logos-icons> 11](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/00025-3620367640-a%20learned_embeds-step-2000%20logo%20of%20eagle%20flyingb772174ebe0eec41fb626adc184144cdf6b98d65.jpg) ![<low-poly-hd-logos-icons> 12](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/00026-3620367641-a%20learned_embeds-step-2000%20logo%20of%20eagle%20flyinga50842c49c6d2dde2437ec145f1ff477627e54b4.jpg) ![<low-poly-hd-logos-icons> 13](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/00027-460088461-a%20learned_embeds-step-2000%20logo%20of%20sword%20shield%20rock7854ded9c8b208ec0a72ba6ee65cc1717695fa54.jpg) ![<low-poly-hd-logos-icons> 14](https://huggingface.co/sd-concepts-library/low-poly-hd-logos-icons/resolve/main/00034-398021482-a%20learned_embeds-step-2000%20logo%20of%20tree%20on%20rockf4f05886e58e170a4b5cd563ffc41bd2bd83311d.jpg) for more result check files
0a2aeb39b928430cc47fe54872c766f8
Tom11/xlm-roberta-base-finetuned-panx-it
Tom11
xlm-roberta
9
5
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,318
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2462 - F1: 0.8240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7922 | 1.0 | 70 | 0.3091 | 0.7421 | | 0.2842 | 2.0 | 140 | 0.2508 | 0.8013 | | 0.1815 | 3.0 | 210 | 0.2462 | 0.8240 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cpu - Datasets 1.16.1 - Tokenizers 0.13.2
c1f4894ef0d81745489960dfbfd641bc
jonatasgrosman/exp_w2v2t_sv-se_unispeech_s449
jonatasgrosman
unispeech
10
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['sv-SE']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'sv-SE']
false
true
true
475
false
# exp_w2v2t_sv-se_unispeech_s449 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
da4a0390a222d133d0044c2b6498a685
steveabecassis/mt5-small-finetuned-xsum
steveabecassis
mt5
10
0
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,946
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-xsum This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5196 - Rouge1: 0.3378 - Rouge2: 0.275 - Rougel: 0.3372 - Rougelsum: 0.3367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 21 | 11.8500 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 42 | 11.1279 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 3.0 | 63 | 10.0382 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 4.0 | 84 | 9.1579 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 5.0 | 105 | 8.6827 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 6.0 | 126 | 7.3651 | 0.0028 | 0.0016 | 0.0028 | 0.0028 | | No log | 7.0 | 147 | 6.4400 | 0.019 | 0.0129 | 0.0191 | 0.0197 | | No log | 8.0 | 168 | 5.2631 | 0.0272 | 0.0229 | 0.0288 | 0.0288 | | No log | 9.0 | 189 | 4.5832 | 0.1095 | 0.0688 | 0.1053 | 0.1051 | | No log | 10.0 | 210 | 4.2350 | 0.1263 | 0.0824 | 0.1216 | 0.1235 | | No log | 11.0 | 231 | 3.9249 | 0.1541 | 0.1051 | 0.1513 | 0.1532 | | No log | 12.0 | 252 | 3.5469 | 0.1701 | 0.1156 | 0.1665 | 0.1683 | | No log | 13.0 | 273 | 3.3689 | 0.2672 | 0.2095 | 0.2667 | 0.2659 | | No log | 14.0 | 294 | 3.1733 | 0.3102 | 0.2483 | 0.3103 | 0.3104 | | No log | 15.0 | 315 | 3.0810 | 0.3073 | 0.2457 | 0.3074 | 0.3071 | | No log | 16.0 | 336 | 3.0005 | 0.3071 | 0.2451 | 0.3075 | 0.3069 | | No log | 17.0 | 357 | 2.9663 | 0.3015 | 0.2364 | 0.3022 | 0.3018 | | No log | 18.0 | 378 | 2.8718 | 0.3195 | 0.2583 | 0.3197 | 0.3187 | | No log | 19.0 | 399 | 2.8061 | 0.3159 | 0.2554 | 0.316 | 0.3143 | | No log | 20.0 | 420 | 2.7009 | 0.3351 | 0.273 | 0.3338 | 0.3341 | | No log | 21.0 | 441 | 2.6307 | 0.3384 | 0.2763 | 0.3382 | 0.3381 | | No log | 22.0 | 462 | 2.6006 | 0.3364 | 0.2743 | 0.3362 | 0.3357 | | No log | 23.0 | 483 | 2.5819 | 0.3334 | 0.2712 | 0.3331 | 0.3333 | | 13.1102 | 24.0 | 504 | 2.5606 | 0.3309 | 0.269 | 0.3302 | 0.3305 | | 13.1102 | 25.0 | 525 | 2.5458 | 0.338 | 0.2744 | 0.3369 | 0.3373 | | 13.1102 | 26.0 | 546 | 2.5366 | 0.3361 | 0.2715 | 0.3352 | 0.3352 | | 13.1102 | 27.0 | 567 | 2.5301 | 0.3413 | 0.2787 | 0.3408 | 0.3406 | | 13.1102 | 28.0 | 588 | 2.5236 | 0.341 | 0.2783 | 0.3402 | 0.3401 | | 13.1102 | 29.0 | 609 | 2.5206 | 0.3405 | 0.2779 | 0.3399 | 0.3397 | | 13.1102 | 30.0 | 630 | 2.5196 | 0.3378 | 0.275 | 0.3372 | 0.3367 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.13.2
fa1b04d2d6ba2f5edf7b8e3024f10660
EMBEDDIA/est-roberta
EMBEDDIA
camembert
9
174
transformers
2
fill-mask
true
false
false
cc-by-sa-4.0
['et']
null
null
0
0
0
0
0
0
0
[]
false
true
true
579
false
# Usage Load in transformers library with: ``` from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("EMBEDDIA/est-roberta") model = AutoModelForMaskedLM.from_pretrained("EMBEDDIA/est-roberta") ``` # Est-RoBERTa Est-RoBERTa model is a monolingual Estonian BERT-like model. It is closely related to French Camembert model https://camembert-model.fr/. The Estonian corpora used for training the model have 2.51 billion tokens in total. The subword vocabulary contains 40,000 tokens. Est-RoBERTa was trained for 40 epochs.
3c4b9968d2755df3fbd36529d114985c
Helsinki-NLP/opus-mt-de-bi
Helsinki-NLP
marian
10
10
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-de-bi * source languages: de * target languages: bi * OPUS readme: [de-bi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-bi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-bi/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-bi/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-bi/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.bi | 25.7 | 0.450 |
6b9c25801ddc6c443cc5d42566e88188
Hormigo/roberta-base-bne-finetuned-amazon_reviews_multi
Hormigo
roberta
13
3
transformers
0
text-classification
true
false
false
cc-by-4.0
null
['amazon_reviews_multi']
null
0
0
0
0
0
0
0
['generated_from_trainer']
false
true
true
1,317
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2275 - Accuracy: 0.9335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1909 | 1.0 | 1250 | 0.1717 | 0.9333 | | 0.0932 | 2.0 | 2500 | 0.2275 | 0.9335 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
23b03a0388ec96dee43e46d77514c078
CennetOguz/bert-large-uncased-finetuned-youcook_2
CennetOguz
bert
9
2
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,342
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-youcook_2 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3915 | 1.0 | 206 | 2.1036 | | 2.0412 | 2.0 | 412 | 2.2207 | | 1.9062 | 3.0 | 618 | 1.7281 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+17540c5 - Datasets 2.3.2 - Tokenizers 0.12.1
b72b5b601e1ebf0c24fe218378b4dfac
susnato/xlm-roberta-base-finetuned-panx-de-fr
susnato
xlm-roberta
9
12
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,323
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2871 - F1: 0.8596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2911 | 1.0 | 3718 | 0.2709 | 0.8020 | | 0.1344 | 2.0 | 7436 | 0.2659 | 0.8432 | | 0.0631 | 3.0 | 11154 | 0.2871 | 0.8596 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
14fdb7cf98be1b91745f966b38b0e45f
Sandeepanie/clinical-finetuned-data2
Sandeepanie
bert
12
3
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,498
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical-finetuned-data2 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4949 - F1: 0.7800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.66 | 1.0 | 50 | 0.6269 | 0.6659 | | 0.5476 | 2.0 | 100 | 0.5311 | 0.7615 | | 0.3766 | 3.0 | 150 | 0.4457 | 0.7970 | | 0.2785 | 4.0 | 200 | 0.5251 | 0.7615 | | 0.2274 | 5.0 | 250 | 0.4949 | 0.7800 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
285fb56d1b3bf4976a15521d4a4b2da5
chrisvinsen/wav2vec2-2
chrisvinsen
wav2vec2
16
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,898
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9253 - Wer: 0.8133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.4469 | 0.34 | 200 | 3.7440 | 1.0 | | 3.1152 | 0.69 | 400 | 3.3755 | 1.0 | | 2.9228 | 1.03 | 600 | 3.0427 | 1.0 | | 2.8661 | 1.38 | 800 | 2.9406 | 1.0 | | 2.8402 | 1.72 | 1000 | 2.9034 | 1.0 | | 2.8301 | 2.07 | 1200 | 2.8850 | 1.0 | | 2.8088 | 2.41 | 1400 | 2.8479 | 1.0 | | 2.6892 | 2.75 | 1600 | 2.5800 | 1.0 | | 2.3249 | 3.1 | 1800 | 2.1310 | 1.0 | | 1.9687 | 3.44 | 2000 | 1.7652 | 0.9982 | | 1.7338 | 3.79 | 2200 | 1.5430 | 0.9974 | | 1.5698 | 4.13 | 2400 | 1.3927 | 0.9985 | | 1.4475 | 4.48 | 2600 | 1.3186 | 0.9911 | | 1.3764 | 4.82 | 2800 | 1.2406 | 0.9647 | | 1.3022 | 5.16 | 3000 | 1.1954 | 0.9358 | | 1.2409 | 5.51 | 3200 | 1.1450 | 0.8990 | | 1.1989 | 5.85 | 3400 | 1.1107 | 0.8794 | | 1.1478 | 6.2 | 3600 | 1.0839 | 0.8667 | | 1.106 | 6.54 | 3800 | 1.0507 | 0.8573 | | 1.0792 | 6.88 | 4000 | 1.0179 | 0.8463 | | 1.0636 | 7.23 | 4200 | 0.9974 | 0.8355 | | 1.0224 | 7.57 | 4400 | 0.9757 | 0.8343 | | 1.0166 | 7.92 | 4600 | 0.9641 | 0.8261 | | 0.9925 | 8.26 | 4800 | 0.9553 | 0.8183 | | 0.9934 | 8.61 | 5000 | 0.9466 | 0.8199 | | 0.9741 | 8.95 | 5200 | 0.9353 | 0.8172 | | 0.9613 | 9.29 | 5400 | 0.9331 | 0.8133 | | 0.9714 | 9.64 | 5600 | 0.9272 | 0.8144 | | 0.9593 | 9.98 | 5800 | 0.9253 | 0.8133 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
a7fdcc1f1cdbaa8e9ac88b815952400a
FloatingPoint/MiloManara
FloatingPoint
null
3
0
null
1
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,327
false
**Milo Manara Style** This is the Alpha release of a Stable Diffusion model trained to achieve the style of the Italian illustration master Milo Manara. Use the token **in the style of ->Manara** in your prompts for the style. **Sample result** ![SD-tmpnmoxk0x9.jpg](https://s3.amazonaws.com/moonup/production/uploads/1668780523264-6305eb3cd70693fdf1c7bb7f.jpeg) **Warning**: Due to the nature of the style, NSFW images may be easily generated using this model. ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
c55d7713e83cf68db44706e3f9c06010
chmanoj/xls-r-2B-te
chmanoj
wav2vec2
33
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['te']
['openslr', 'SLR66']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'openslr_SLR66', 'generated_from_trainer', 'robust-speech-event', 'hf-asr-leaderboard']
true
true
true
1,690
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the OPENSLR_SLR66 - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.4253 - Wer: 0.5109 ### Evaluation metrics | Metric | Split | Decode with LM | Value | |:------:|:------:|:--------------:|:---------:| | WER | Train | No | | | CER | Train | No | | | WER | Test | No | | | CER | Test | No | | | WER | Train | Yes | | | CER | Train | Yes | | | WER | Test | Yes | | | CER | Test | Yes | | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 12 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - learning_rate: 3e-6 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 150.0 - hidden_dropout: 0.15 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
f5960dfa2f0f278a33dcc2cde53d3873
sd-concepts-library/liqwid-aquafarmer
sd-concepts-library
null
38
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
4,446
false
### liqwid_aquafarmer on Stable Diffusion This is the `<aquafarmer>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<aquafarmer> 0](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/26.jpeg) ![<aquafarmer> 1](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/0.jpeg) ![<aquafarmer> 2](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/31.jpeg) ![<aquafarmer> 3](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/8.jpeg) ![<aquafarmer> 4](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/3.jpeg) ![<aquafarmer> 5](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/5.jpeg) ![<aquafarmer> 6](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/22.jpeg) ![<aquafarmer> 7](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/32.jpeg) ![<aquafarmer> 8](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/29.jpeg) ![<aquafarmer> 9](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/6.jpeg) ![<aquafarmer> 10](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/30.jpeg) ![<aquafarmer> 11](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/11.jpeg) ![<aquafarmer> 12](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/27.jpeg) ![<aquafarmer> 13](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/1.jpeg) ![<aquafarmer> 14](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/25.jpeg) ![<aquafarmer> 15](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/21.jpeg) ![<aquafarmer> 16](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/14.jpeg) ![<aquafarmer> 17](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/15.jpeg) ![<aquafarmer> 18](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/23.jpeg) ![<aquafarmer> 19](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/17.jpeg) ![<aquafarmer> 20](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/16.jpeg) ![<aquafarmer> 21](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/10.jpeg) ![<aquafarmer> 22](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/2.jpeg) ![<aquafarmer> 23](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/28.jpeg) ![<aquafarmer> 24](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/12.jpeg) ![<aquafarmer> 25](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/19.jpeg) ![<aquafarmer> 26](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/4.jpeg) ![<aquafarmer> 27](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/7.jpeg) ![<aquafarmer> 28](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/24.jpeg) ![<aquafarmer> 29](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/9.jpeg) ![<aquafarmer> 30](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/20.jpeg) ![<aquafarmer> 31](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/18.jpeg) ![<aquafarmer> 32](https://huggingface.co/sd-concepts-library/liqwid-aquafarmer/resolve/main/concept_images/13.jpeg)
ea75af9a94159970d992e60633ea1f91
fathyshalab/all-roberta-large-v1-utility-1000-16-5-oos
fathyshalab
roberta
11
3
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,519
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-utility-1000-16-5-oos This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.2920 - Accuracy: 0.3733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 5.0353 | 1.0 | 1 | 4.7572 | 0.2044 | | 4.377 | 2.0 | 2 | 4.5884 | 0.3111 | | 3.8842 | 3.0 | 3 | 4.4469 | 0.3467 | | 3.3633 | 4.0 | 4 | 4.3454 | 0.3644 | | 3.0949 | 5.0 | 5 | 4.2920 | 0.3733 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
d1f4f3e94ee904ac8c3e332932e00745
raileymontalan/distilbert-base-cased-finetuned-fake-news-detection
raileymontalan
distilbert
12
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,347
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned-fake-news-detection This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0043 - F1: 0.9996 - Accuracy: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | No log | 1.0 | 1684 | 0.0043 | 0.9993 | 0.9993 | | No log | 2.0 | 3368 | 0.0043 | 0.9996 | 0.9996 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
271dd94e5a3c461e2bf5fcc5982cfff6
DOOGLAK/Article_250v1_NER_Model_3Epochs_AUGMENTED
DOOGLAK
bert
13
5
transformers
0
token-classification
true
false
false
apache-2.0
null
['article250v1_wikigold_split']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,559
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Article_250v1_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article250v1_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2324 - Precision: 0.6699 - Recall: 0.6657 - F1: 0.6678 - Accuracy: 0.9256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 94 | 0.2546 | 0.5933 | 0.5539 | 0.5729 | 0.9127 | | No log | 2.0 | 188 | 0.2337 | 0.6564 | 0.6629 | 0.6596 | 0.9242 | | No log | 3.0 | 282 | 0.2324 | 0.6699 | 0.6657 | 0.6678 | 0.9256 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
13874f722b4be6b25a5e24eb247e1a57
cm-mueller/BACnet-Klassifizierung-Sanitaertechnik
cm-mueller
bert
14
1
transformers
0
text-classification
true
false
false
mit
['de']
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,287
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BACnet-Klassifizierung-Sanitaertechnik-bert-base-german-cased This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the [gart-labor](https://huggingface.co/gart-labor) "klassifizierung_sanitaer_v2" dataset. It achieves the following results on the evaluation set: - Loss: 0.0039 - F1: [1. 1. 1.] ## Model description This model makes it possible to classify the sanitary technology components described with the BACnet standard into different categories. The model is based on a German-language data set. ## Intended uses & limitations The model divides descriptive texts into the following sanitary engineering categories: Other, pressure boosting system, softening system, lifting system, sanitary_general, waste water, drinking water heating system and water meter. ## Training and evaluation data The model is based on a German-language data set. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:----------:| | 0.0507 | 1.0 | 1 | 0.1080 | [1. 1. 1.] | | 0.0547 | 2.0 | 2 | 0.0589 | [1. 1. 1.] | | 0.0407 | 3.0 | 3 | 0.0427 | [1. 1. 1.] | | 0.0294 | 4.0 | 4 | 0.0465 | [1. 1. 1.] | | 0.0284 | 5.0 | 5 | 0.0291 | [1. 1. 1.] | | 0.0208 | 6.0 | 6 | 0.0232 | [1. 1. 1.] | | 0.0171 | 7.0 | 7 | 0.0198 | [1. 1. 1.] | | 0.0153 | 8.0 | 8 | 0.0170 | [1. 1. 1.] | | 0.0134 | 9.0 | 9 | 0.0144 | [1. 1. 1.] | | 0.0126 | 10.0 | 10 | 0.0124 | [1. 1. 1.] | | 0.0108 | 11.0 | 11 | 0.0109 | [1. 1. 1.] | | 0.0096 | 12.0 | 12 | 0.0098 | [1. 1. 1.] | | 0.0084 | 13.0 | 13 | 0.0089 | [1. 1. 1.] | | 0.0082 | 14.0 | 14 | 0.0083 | [1. 1. 1.] | | 0.0071 | 15.0 | 15 | 0.0077 | [1. 1. 1.] | | 0.0068 | 16.0 | 16 | 0.0073 | [1. 1. 1.] | | 0.0064 | 17.0 | 17 | 0.0069 | [1. 1. 1.] | | 0.0059 | 18.0 | 18 | 0.0065 | [1. 1. 1.] | | 0.0053 | 19.0 | 19 | 0.0061 | [1. 1. 1.] | | 0.0052 | 20.0 | 20 | 0.0058 | [1. 1. 1.] | | 0.005 | 21.0 | 21 | 0.0056 | [1. 1. 1.] | | 0.0047 | 22.0 | 22 | 0.0053 | [1. 1. 1.] | | 0.0044 | 23.0 | 23 | 0.0051 | [1. 1. 1.] | | 0.0042 | 24.0 | 24 | 0.0050 | [1. 1. 1.] | | 0.0043 | 25.0 | 25 | 0.0048 | [1. 1. 1.] | | 0.004 | 26.0 | 26 | 0.0047 | [1. 1. 1.] | | 0.004 | 27.0 | 27 | 0.0045 | [1. 1. 1.] | | 0.004 | 28.0 | 28 | 0.0044 | [1. 1. 1.] | | 0.0037 | 29.0 | 29 | 0.0044 | [1. 1. 1.] | | 0.0037 | 30.0 | 30 | 0.0043 | [1. 1. 1.] | | 0.0037 | 31.0 | 31 | 0.0042 | [1. 1. 1.] | | 0.0035 | 32.0 | 32 | 0.0042 | [1. 1. 1.] | | 0.0036 | 33.0 | 33 | 0.0041 | [1. 1. 1.] | | 0.0035 | 34.0 | 34 | 0.0041 | [1. 1. 1.] | | 0.0037 | 35.0 | 35 | 0.0040 | [1. 1. 1.] | | 0.0034 | 36.0 | 36 | 0.0040 | [1. 1. 1.] | | 0.0033 | 37.0 | 37 | 0.0040 | [1. 1. 1.] | | 0.0034 | 38.0 | 38 | 0.0040 | [1. 1. 1.] | | 0.0034 | 39.0 | 39 | 0.0040 | [1. 1. 1.] | | 0.0034 | 40.0 | 40 | 0.0039 | [1. 1. 1.] | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
1fe7c559d655e9c2246cc5a479516906
TransQuest/monotransquest-hter-en_de-it-nmt
TransQuest
xlm-roberta
8
5
transformers
0
text-classification
true
false
false
apache-2.0
['en-de']
null
null
1
1
0
0
0
0
0
['Quality Estimation', 'monotransquest', 'hter']
false
true
true
5,312
false
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_de-it-nmt", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantฤƒ pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
5b14ce90b2c51b880f1b37716e13f78c
Akashpb13/Hausa_xlsr
Akashpb13
wav2vec2
12
8
transformers
1
automatic-speech-recognition
true
false
false
apache-2.0
['ha']
['mozilla-foundation/common_voice_8_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'generated_from_trainer', 'ha', 'hf-asr-leaderboard', 'model_for_talk', 'mozilla-foundation/common_voice_8_0', 'robust-speech-event']
true
true
true
2,353
false
# Akashpb13/Hausa_xlsr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) It achieves the following results on the evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other, and dev datasets): - Loss: 0.275118 - Wer: 0.329955 ## Model description "facebook/wav2vec2-xls-r-300m" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Hausa train.tsv, dev.tsv, invalidated.tsv, reported.tsv and other.tsv Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0 ## Training procedure For creating the training dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000096 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 500 | 5.175900 | 2.750914 | 1.000000 | | 1000 | 1.028700 | 0.338649 | 0.497999 | | 1500 | 0.332200 | 0.246896 | 0.402241 | | 2000 | 0.227300 | 0.239640 | 0.395839 | | 2500 | 0.175000 | 0.239577 | 0.373966 | | 3000 | 0.140400 | 0.243272 | 0.356095 | | 3500 | 0.119200 | 0.263761 | 0.365164 | | 4000 | 0.099300 | 0.265954 | 0.353428 | | 4500 | 0.084400 | 0.276367 | 0.349693 | | 5000 | 0.073700 | 0.282631 | 0.343825 | | 5500 | 0.068000 | 0.282344 | 0.341158 | | 6000 | 0.064500 | 0.281591 | 0.342491 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Akashpb13/Hausa_xlsr --dataset mozilla-foundation/common_voice_8_0 --config ha --split test ```
8f941ccd77626ecff0315c2e68552b57
it5/mt5-small-question-answering
it5
mt5
11
5
transformers
0
text2text-generation
true
true
true
apache-2.0
['it']
['squad_it']
{'emissions': '17g"', 'source': 'Google Cloud Platform Carbon Footprint', 'training_type': 'fine-tuning', 'geographical_location': 'Eemshaven, Netherlands, Europe', 'hardware_used': '1 TPU v3-8 VM'}
0
0
0
0
0
0
0
['italian', 'sequence-to-sequence', 'squad_it', 'text2text-question-answering', 'text2text-generation']
true
true
true
2,664
false
# mT5 Small for Question Answering โ‰๏ธ ๐Ÿ‡ฎ๐Ÿ‡น This repository contains the checkpoint for the [mT5 Small](https://huggingface.co/google/mt5-small) model fine-tuned on extractive question answering on the [SQuAD-IT corpus](https://huggingface.co/datasets/squad_it) as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines qa = pipeline("text2text-generation", model='it5/mt5-small-question-answering') qa("In seguito all' evento di estinzione del Cretaceo-Paleogene, l' estinzione dei dinosauri e il clima umido possono aver permesso alla foresta pluviale tropicale di diffondersi in tutto il continente. Dal 66-34 Mya, la foresta pluviale si estendeva fino a sud fino a 45ยฐ. Le fluttuazioni climatiche degli ultimi 34 milioni di anni hanno permesso alle regioni della savana di espandersi fino ai tropici. Durante l' Oligocene, ad esempio, la foresta pluviale ha attraversato una banda relativamente stretta. Si espandeva di nuovo durante il Miocene medio, poi si ritrasse ad una formazione prevalentemente interna all' ultimo massimo glaciale. Tuttavia, la foresta pluviale รจ riuscita ancora a prosperare durante questi periodi glaciali, consentendo la sopravvivenza e l' evoluzione di un' ampia varietร  di specie. Domanda: La foresta pluviale amazzonica รจ diventata per lo piรน una foresta interna intorno a quale evento globale?") >>> [{"generated_text": "ultimo massimo glaciale"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/mt5-small-question-answering") model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-small-question-answering") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
8281a5bfdc71065354ad156b7d140db8
gokuls/distilbert_sa_GLUE_Experiment_data_aug_stsb_96
gokuls
distilbert
17
0
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,894
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_stsb_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.7659 - Pearson: 0.1744 - Spearmanr: 0.1818 - Combined Score: 0.1781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.2123 | 1.0 | 1259 | 2.7659 | 0.1744 | 0.1818 | 0.1781 | | 0.689 | 2.0 | 2518 | 2.9511 | 0.1794 | 0.1858 | 0.1826 | | 0.5239 | 3.0 | 3777 | 2.9043 | 0.1731 | 0.1733 | 0.1732 | | 0.4171 | 4.0 | 5036 | 2.9002 | 0.1794 | 0.1788 | 0.1791 | | 0.3402 | 5.0 | 6295 | 2.8190 | 0.1899 | 0.1926 | 0.1912 | | 0.2843 | 6.0 | 7554 | 2.8391 | 0.1948 | 0.2004 | 0.1976 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
2bb7dfb43dcefa386f24fc993a49df37
edraper88/distilbert-base-uncased-finetuned-imdb
edraper88
distilbert
16
5
transformers
0
fill-mask
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,318
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
7792bf06ab6022764715b298d89c3441
EffyLi/bert-base-NER-finetuned-ner
EffyLi
bert
10
3
transformers
0
token-classification
true
false
false
mit
null
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
906
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-NER-finetuned-ner This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0 - Datasets 2.7.1 - Tokenizers 0.11.0
f3f9903e37187f9843025fb3c367b6e2
nlp-esg-scoring/bert-base-finetuned-esg-a4s-clean
nlp-esg-scoring
bert
8
2
transformers
0
fill-mask
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,909
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nlp-esg-scoring/bert-base-finetuned-esg-a4s-clean This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5224 - Validation Loss: 2.2196 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -824, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5170 | 2.3060 | 0 | | 2.5229 | 2.3220 | 1 | | 2.5077 | 2.3155 | 2 | | 2.5059 | 2.3151 | 3 | | 2.5052 | 2.2596 | 4 | | 2.5250 | 2.4044 | 5 | | 2.5120 | 2.2901 | 6 | | 2.5042 | 2.2847 | 7 | | 2.4972 | 2.3168 | 8 | | 2.5224 | 2.2196 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
39a2ee3d154e35006376ec0463a9269b
no3/azura-wd-1.3-beta3
no3
null
24
5
diffusers
0
null
false
false
false
mit
null
null
null
3
0
3
0
0
0
0
[]
false
true
true
2,404
false
### azura from [vibrant venture](https://store.steampowered.com/app/1264520), on **waifu diffusion** via Dreambooth #### model by no3 This your the **waifu diffusion** model fine-tuned the azura from [vibrant venture](https://store.steampowered.com/app/1264520) taught to **waifu diffusion** with Dreambooth. It can be used by modifying the `instance_prompt`: **sks_azura** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) ### Note This model is based on **waifu diffusion** keep that in mind if you want to use this model with [diffusers](https://github.com/huggingface/diffusers). If you want to convert diffusers to .ckpt to use in webUI like [AUTOMATIC1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) or any UI that's uses .ckpt file, Use this [script](https://gist.github.com/Christopher-Hayes/636ba25e0ae2e7020722d5386ac2571b) and if you use this method don't type **sks_azura** just use generic prompt like `a woman` or `a girl` you can add `, blue hair` first, if it not helping you can also add `, blue hoodie, blue pants, glasses, black eyes` for consistent outputs, you can customize it as you witch, I tried with sks_azura and it give me the same output no matter what the prompt was. If you have issues or questions feel free to visit the Community Tab and start discussion about it. Here are the images used for training this concept: ![image 1](https://huggingface.co/no3/azura-wd-1.3-beta3/resolve/main/concept_images/4.jpg) ![image 2](https://huggingface.co/no3/azura-wd-1.3-beta3/resolve/main/concept_images/1.jpg) ![image 3](https://huggingface.co/no3/azura-wd-1.3-beta3/resolve/main/concept_images/2.jpg) ![image 4](https://huggingface.co/no3/azura-wd-1.3-beta3/resolve/main/concept_images/5.jpg) ![image 5](https://huggingface.co/no3/azura-wd-1.3-beta3/resolve/main/concept_images/6.jpg) ![image 6](https://huggingface.co/no3/azura-wd-1.3-beta3/resolve/main/concept_images/3.jpg)
3b66c5294f324e34e84cec483eab38bf
aemili/distilbert-base-uncased-finetuned-cola
aemili
distilbert
92
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,570
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7578 - Matthews Correlation: 0.5317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5239 | 1.0 | 535 | 0.5219 | 0.4097 | | 0.3483 | 2.0 | 1070 | 0.5775 | 0.4913 | | 0.2296 | 3.0 | 1605 | 0.6440 | 0.4903 | | 0.1734 | 4.0 | 2140 | 0.7578 | 0.5317 | | 0.137 | 5.0 | 2675 | 0.8612 | 0.5192 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.7.1+cu110 - Datasets 2.4.0 - Tokenizers 0.12.1
194de05722ad27b05c72dbf99758deff
ying-tina/wav2vec2-base-timit-demo-colab
ying-tina
wav2vec2
12
8
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,061
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5127 - Wer: 0.3082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7645 | 2.01 | 500 | 2.5179 | 0.9999 | | 1.1873 | 4.02 | 1000 | 0.5464 | 0.4798 | | 0.46 | 6.02 | 1500 | 0.4625 | 0.4025 | | 0.2869 | 8.03 | 2000 | 0.4252 | 0.3650 | | 0.2213 | 10.04 | 2500 | 0.4340 | 0.3585 | | 0.1905 | 12.05 | 3000 | 0.4310 | 0.3404 | | 0.1545 | 14.06 | 3500 | 0.4547 | 0.3381 | | 0.1206 | 16.06 | 4000 | 0.4902 | 0.3384 | | 0.1116 | 18.07 | 4500 | 0.4767 | 0.3253 | | 0.0925 | 20.08 | 5000 | 0.5248 | 0.3160 | | 0.0897 | 22.09 | 5500 | 0.4960 | 0.3126 | | 0.0687 | 24.1 | 6000 | 0.4876 | 0.3086 | | 0.063 | 26.1 | 6500 | 0.4895 | 0.3065 | | 0.0558 | 28.11 | 7000 | 0.5127 | 0.3082 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
dcc88c9264c19f1bbd82e787608f458b
jonatasgrosman/exp_w2v2t_th_wav2vec2_s35
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['th']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'th']
false
true
true
458
false
# exp_w2v2t_th_wav2vec2_s35 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
0d233969bafeaa8b998c4e5e0f5748ff
sd-concepts-library/shiny-polyman
sd-concepts-library
null
10
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,174
false
### Shiny polyman on Stable Diffusion This is the `<shiny-polyman>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<shiny-polyman> 0](https://huggingface.co/sd-concepts-library/shiny-polyman/resolve/main/concept_images/0.jpeg) ![<shiny-polyman> 1](https://huggingface.co/sd-concepts-library/shiny-polyman/resolve/main/concept_images/4.jpeg) ![<shiny-polyman> 2](https://huggingface.co/sd-concepts-library/shiny-polyman/resolve/main/concept_images/1.jpeg) ![<shiny-polyman> 3](https://huggingface.co/sd-concepts-library/shiny-polyman/resolve/main/concept_images/3.jpeg) ![<shiny-polyman> 4](https://huggingface.co/sd-concepts-library/shiny-polyman/resolve/main/concept_images/2.jpeg)
b8e1925ec5d53e140ec7118243f45d43
anas-awadalla/bert-base-uncased-few-shot-k-512-finetuned-squad-seed-10
anas-awadalla
bert
16
7
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
999
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-512-finetuned-squad-seed-10 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
9fdda9fbd677effe278ad92c8d247e01
sd-dreambooth-library/duregar
sd-dreambooth-library
null
25
2
diffusers
1
null
false
false
false
mit
null
null
null
2
2
0
0
0
0
0
[]
false
true
true
1,553
false
### Duregar on Stable Diffusion via Dreambooth #### model by euler95 This your the Stable Diffusion model fine-tuned the Duregar concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **a painting of sks character** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/duregar/resolve/main/concept_images/1.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/duregar/resolve/main/concept_images/4.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/duregar/resolve/main/concept_images/2.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/duregar/resolve/main/concept_images/0.jpeg) ![image 4](https://huggingface.co/sd-dreambooth-library/duregar/resolve/main/concept_images/3.jpeg) ![image 5](https://huggingface.co/sd-dreambooth-library/duregar/resolve/main/concept_images/6.jpeg) ![image 6](https://huggingface.co/sd-dreambooth-library/duregar/resolve/main/concept_images/5.jpeg)
5a536cbf2075dc1538847714545ed229
okho0653/distilbert-base-uncased-finetuned-sst-2-english-finetuned-cad-20pc
okho0653
distilbert
13
4
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,600
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst-2-english-finetuned-cad-20pc This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Accuracy: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:| | No log | 1.0 | 7 | 0.0032 | 1.0 | 1.0 | | No log | 2.0 | 14 | 0.0002 | 1.0 | 1.0 | | No log | 3.0 | 21 | 0.0001 | 1.0 | 1.0 | | No log | 4.0 | 28 | 0.0001 | 1.0 | 1.0 | | No log | 5.0 | 35 | 0.0001 | 1.0 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
4b4a8d3692d3a02c076415da02570cb6
sahita/lang-VoxLingua107-ecapa
sahita
null
8
10
speechbrain
0
audio-classification
true
false
false
apache-2.0
['multilingual', 'en', 'mr']
['VoxLingua107']
null
0
0
0
0
0
0
0
['audio-classification', 'speechbrain', 'embeddings', 'Language', 'Identification', 'pytorch', 'ECAPA-TDNN', 'TDNN', 'VoxLingua107']
false
true
true
6,980
false
# VoxLingua107 ECAPA-TDNN Spoken Language Identification Model ## Model description This is a spoken language recognition model trained on the VoxLingua107 dataset using SpeechBrain. The model uses the ECAPA-TDNN architecture that has previously been used for speaker recognition. However, it uses more fully connected hidden layers after the embedding layer, and cross-entropy loss was used for training. We observed that this improved the performance of extracted utterance embeddings for downstream tasks. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. The model can classify a speech utterance according to the language spoken. It covers 2 different languages ( English, Hindi). ## Intended uses & limitations The model has two uses: - use 'as is' for spoken language recognition - use as an utterance-level feature (embedding) extractor, for creating a dedicated language ID model on your own data The model is trained on automatically collected YouTube data. For more information about the dataset, see [here](http://bark.phon.ioc.ee/voxlingua107/). #### How to use ```python import torchaudio from speechbrain.pretrained import EncoderClassifier language_id = EncoderClassifier.from_hparams(source="sahita/lang-VoxLingua-ecapa", savedir="tmp") # Download Thai language sample from Omniglot and cvert to suitable form signal = language_id.load_audio("https://omniglot.com/soundfiles/udhr/udhr_th.mp3") prediction = language_id.classify_batch(signal) print(prediction) # (tensor([[-2.8646e+01, -3.0346e+01, -2.0748e+01, -2.9562e+01, -2.2187e+01, # -3.2668e+01, -3.6677e+01, -3.3573e+01, -3.2545e+01, -2.4365e+01, # -2.4688e+01, -3.1171e+01, -2.7743e+01, -2.9918e+01, -2.4770e+01, # -3.2250e+01, -2.4727e+01, -2.6087e+01, -2.1870e+01, -3.2821e+01, # -2.2128e+01, -2.2822e+01, -3.0888e+01, -3.3564e+01, -2.9906e+01, # -2.2392e+01, -2.5573e+01, -2.6443e+01, -3.2429e+01, -3.2652e+01, # -3.0030e+01, -2.4607e+01, -2.2967e+01, -2.4396e+01, -2.8578e+01, # -2.5153e+01, -2.8475e+01, -2.6409e+01, -2.5230e+01, -2.7957e+01, # -2.6298e+01, -2.3609e+01, -2.5863e+01, -2.8225e+01, -2.7225e+01, # -3.0486e+01, -2.1185e+01, -2.7938e+01, -3.3155e+01, -1.9076e+01, # -2.9181e+01, -2.2160e+01, -1.8352e+01, -2.5866e+01, -3.3636e+01, # -4.2016e+00, -3.1581e+01, -3.1894e+01, -2.7834e+01, -2.5429e+01, # -3.2235e+01, -3.2280e+01, -2.8786e+01, -2.3366e+01, -2.6047e+01, # -2.2075e+01, -2.3770e+01, -2.2518e+01, -2.8101e+01, -2.5745e+01, # -2.6441e+01, -2.9822e+01, -2.7109e+01, -3.0225e+01, -2.4566e+01, # -2.9268e+01, -2.7651e+01, -3.4221e+01, -2.9026e+01, -2.6009e+01, # -3.1968e+01, -3.1747e+01, -2.8156e+01, -2.9025e+01, -2.7756e+01, # -2.8052e+01, -2.9341e+01, -2.8806e+01, -2.1636e+01, -2.3992e+01, # -2.3794e+01, -3.3743e+01, -2.8332e+01, -2.7465e+01, -1.5085e-02, # -2.9094e+01, -2.1444e+01, -2.9780e+01, -3.6046e+01, -3.7401e+01, # -3.0888e+01, -3.3172e+01, -1.8931e+01, -2.2679e+01, -3.0225e+01, # -2.4995e+01, -2.1028e+01]]), tensor([-0.0151]), tensor([94]), ['th']) # The scores in the prediction[0] tensor can be interpreted as log-likelihoods that # the given utterance belongs to the given language (i.e., the larger the better) # The linear-scale likelihood can be retrieved using the following: print(prediction[1].exp()) # tensor([0.9850]) # The identified language ISO code is given in prediction[3] print(prediction[3]) # ['th: Thai'] # Alternatively, use the utterance embedding extractor: emb = language_id.encode_batch(signal) print(emb.shape) # torch.Size([1, 1, 256]) ``` To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*. #### Limitations and bias Since the model is trained on VoxLingua107, it has many limitations and biases, some of which are: - Probably it's accuracy on smaller languages is quite limited - Probably it works worse on female speech than male speech (because YouTube data includes much more male speech) - Based on subjective experiments, it doesn't work well on speech with a foreign accent - Probably it doesn't work well on children's speech and on persons with speech disorders ## Training data The model is trained on [VoxLingua107](http://bark.phon.ioc.ee/voxlingua107/). VoxLingua107 is a speech dataset for training spoken language identification models. The dataset consists of short speech segments automatically extracted from YouTube videos and labeled according the language of the video title and description, with some post-processing steps to filter out false positives. VoxLingua107 contains data for 107 languages. The total amount of speech in the training set is 6628 hours. The average amount of data per language is 62 hours. However, the real amount per language varies a lot. There is also a seperate development set containing 1609 speech segments from 33 languages, validated by at least two volunteers to really contain the given language. ## Training procedure See the [SpeechBrain recipe](https://github.com/speechbrain/speechbrain/tree/voxlingua107/recipes/VoxLingua107/lang_id). ## Evaluation results Error rate: 6.7% on the VoxLingua107 development dataset #### Referencing SpeechBrain ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and Franรงois Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ``` ### Referencing VoxLingua107 ```bibtex @inproceedings{valk2021slt, title={{VoxLingua107}: a Dataset for Spoken Language Recognition}, author={J{\"o}rgen Valk and Tanel Alum{\"a}e}, booktitle={Proc. IEEE SLT Workshop}, year={2021}, } ``` #### About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain
46fe03fa2b2c2ac9a004e462093073d7
zigg-ai/unnecessaryinventions
zigg-ai
null
31
3
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image']
false
true
true
1,505
false
### unnecessaryinventions Dreambooth model trained by zigg-ai with with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: sdcid (use that on your prompt) ![sdcid 0](https://huggingface.co/zigg-ai/unnecessaryinventions/resolve/main/concept_images/sdcid_%281%29.jpg)![sdcid 1](https://huggingface.co/zigg-ai/unnecessaryinventions/resolve/main/concept_images/sdcid_%282%29.jpg)![sdcid 2](https://huggingface.co/zigg-ai/unnecessaryinventions/resolve/main/concept_images/sdcid_%283%29.jpg)![sdcid 3](https://huggingface.co/zigg-ai/unnecessaryinventions/resolve/main/concept_images/sdcid_%284%29.jpg)![sdcid 4](https://huggingface.co/zigg-ai/unnecessaryinventions/resolve/main/concept_images/sdcid_%285%29.jpg)![sdcid 5](https://huggingface.co/zigg-ai/unnecessaryinventions/resolve/main/concept_images/sdcid_%286%29.jpg)![sdcid 6](https://huggingface.co/zigg-ai/unnecessaryinventions/resolve/main/concept_images/sdcid_%287%29.jpg)![sdcid 7](https://huggingface.co/zigg-ai/unnecessaryinventions/resolve/main/concept_images/sdcid_%288%29.jpg)![sdcid 8](https://huggingface.co/zigg-ai/unnecessaryinventions/resolve/main/concept_images/sdcid_%289%29.jpg)![sdcid 9](https://huggingface.co/zigg-ai/unnecessaryinventions/resolve/main/concept_images/sdcid_%2810%29.jpg)
8975df6d61d73b2accfebe370c52550f
chandank/bart-base-finetuned-kaggglenews-baseline-final
chandank
bart
13
2
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,625
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-kaggglenews-baseline-final This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6942 - Rouge1: 28.581 - Rouge2: 16.3417 - Rougel: 24.1277 - Rougelsum: 25.9797 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 495 | 1.7514 | 27.911 | 15.7038 | 23.6466 | 25.2111 | 20.0 | | 2.0585 | 2.0 | 990 | 1.6655 | 28.7581 | 16.4875 | 24.2669 | 26.1676 | 20.0 | | 1.4173 | 3.0 | 1485 | 1.6942 | 28.581 | 16.3417 | 24.1277 | 25.9797 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
06a18778096cd135ea61d2339d49e508
marvind434/swin-tiny-patch4-window7-224-finetuned-eurosat
marvind434
swin
26
3
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,544
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3026 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 1.0940 | 0.25 | | No log | 2.0 | 2 | 0.9836 | 0.25 | | No log | 3.0 | 3 | 0.7624 | 0.25 | | No log | 4.0 | 4 | 0.6527 | 0.5 | | No log | 5.0 | 5 | 0.5697 | 0.75 | | No log | 6.0 | 6 | 0.5167 | 1.0 | | No log | 7.0 | 7 | 0.4898 | 0.75 | | No log | 8.0 | 8 | 0.4572 | 0.75 | | No log | 9.0 | 9 | 0.4286 | 0.75 | | 0.299 | 10.0 | 10 | 0.3976 | 0.75 | | 0.299 | 11.0 | 11 | 0.3678 | 1.0 | | 0.299 | 12.0 | 12 | 0.3531 | 1.0 | | 0.299 | 13.0 | 13 | 0.3384 | 1.0 | | 0.299 | 14.0 | 14 | 0.3264 | 1.0 | | 0.299 | 15.0 | 15 | 0.3188 | 1.0 | | 0.299 | 16.0 | 16 | 0.3114 | 1.0 | | 0.299 | 17.0 | 17 | 0.3083 | 1.0 | | 0.299 | 18.0 | 18 | 0.3071 | 1.0 | | 0.299 | 19.0 | 19 | 0.3041 | 1.0 | | 0.2051 | 20.0 | 20 | 0.3026 | 1.0 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
67c39e08ca23f89aa25d54c32cc0b4bf
ylh1013/fintune-ja-chatbot
ylh1013
gpt2
10
6
transformers
0
text-generation
true
false
false
mit
['finetuned_from']
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
955
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fintune-ja-chatbot This model is a fine-tuned version of [rinna/japanese-gpt2-medium](https://huggingface.co/rinna/japanese-gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Tokenizers 0.10.3
eccb97b8d85a43e502959b0086d99bca
gchhablani/fnet-large-finetuned-cola
gchhablani
fnet
51
2
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,399
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-cola This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6243 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6195 | 1.0 | 2138 | 0.6527 | 0.0 | | 0.6168 | 2.0 | 4276 | 0.6259 | 0.0 | | 0.616 | 3.0 | 6414 | 0.6243 | 0.0 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
7db46275685808723bae4fb1249982b7
jcblaise/bert-tagalog-base-uncased
jcblaise
bert
10
18
transformers
0
fill-mask
true
false
true
gpl-3.0
['tl']
null
null
0
0
0
0
0
0
0
['bert', 'tagalog', 'filipino']
false
true
true
1,644
false
**Deprecation Notice** This model is deprecated. New Filipino Transformer models trained with a much larger corpora are available. Use [`jcblaise/roberta-tagalog-base`](https://huggingface.co/jcblaise/roberta-tagalog-base) or [`jcblaise/roberta-tagalog-large`](https://huggingface.co/jcblaise/roberta-tagalog-large) instead for better performance. --- # BERT Tagalog Base Uncased Tagalog version of BERT trained on a large preprocessed text corpus scraped and sourced from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @article{cruz2020establishing, title={Establishing Baselines for Text Classification in Low-Resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:2005.02068}, year={2020} } @article{cruz2019evaluating, title={Evaluating Language Model Finetuning Techniques for Low-resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:1907.00409}, year={2019} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
2a7230371b6ae7fac6819e1d4c31f0d7
dminiotas05/camembert-base-finetuned-ft750_reg2
dminiotas05
camembert
10
1
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,418
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-ft750_reg2 This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6449 - Mse: 0.6449 - Mae: 0.6171 - R2: 0.3929 - Accuracy: 0.504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:| | 0.6283 | 1.0 | 750 | 0.6074 | 0.6074 | 0.6086 | 0.4282 | 0.4887 | | 0.5007 | 2.0 | 1500 | 0.6449 | 0.6449 | 0.6171 | 0.3929 | 0.504 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
4b1e8f2922ee7942a87227de00f25d14
Alred/distilbert-base-uncased-finetuned-squad-ver4
Alred
distilbert
14
8
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,284
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-ver4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.4931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8147 | 1.0 | 554 | 1.6712 | | 1.4844 | 2.0 | 1108 | 1.4681 | | 1.0993 | 3.0 | 1662 | 1.4931 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
8c7c617d9613e55cdd93e9e3d47ce26b
chrisvinsen/wav2vec2-base-commonvoice-demo-colab-2
chrisvinsen
wav2vec2
12
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,844
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-commonvoice-demo-colab-2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 4.7784 | 2.58 | 500 | 2.9962 | 1.0 | | 3.0067 | 5.15 | 1000 | 3.0303 | 1.0 | | 3.0098 | 7.73 | 1500 | 3.0305 | 1.0 | | 3.0015 | 10.31 | 2000 | 3.0308 | 1.0 | | 3.0062 | 12.89 | 2500 | 3.0310 | 1.0 | | 3.0074 | 15.46 | 3000 | 3.0311 | 1.0 | | 3.0085 | 18.04 | 3500 | 3.0313 | 1.0 | | 3.0046 | 20.62 | 4000 | 3.0314 | 1.0 | | 3.0065 | 23.2 | 4500 | nan | 1.0 | | 0.0 | 25.77 | 5000 | nan | 1.0 | | 0.0 | 28.35 | 5500 | nan | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
17e67804a3161c38681e59f460768825
henryscheible/mrpc_bert-base-uncased_144_v2
henryscheible
null
13
0
null
0
null
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,058
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mrpc_bert-base-uncased_144_v2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4933 - Accuracy: 0.8480 - F1: 0.8935 - Combined Score: 0.8708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
c616ab824fb2dbe28453f906099758ed
NbAiLab/xls-npsc-oh
NbAiLab
wav2vec2
21
9
transformers
0
automatic-speech-recognition
true
false
false
cc0-1.0
null
['npsc']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'NbAiLab/NPSC', 'generated_from_trainer']
true
true
true
1,364
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-npsc-oh This model is a fine-tuned version of [KBLab/wav2vec2-large-voxrex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) on the NBAILAB/NPSC - 48K_MP3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2106 - Wer: 0.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1093 | 2.61 | 1000 | 0.2572 | 0.9293 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
be7720545b6ddbc600af8dd23e172759
rugo/distilbert-base-uncased-finetuned-imdb
rugo
distilbert
13
2
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,320
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7549 | 1.0 | 157 | 1.3539 | | 1.398 | 2.0 | 314 | 1.1894 | | 1.2894 | 3.0 | 471 | 1.1480 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
4e05d62836b1c859cdc613ab20aa00d1
abigailp/vaccinated
abigailp
bert
13
9
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,050
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vaccinated This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6907 - Accuracy: 0.9036 - F1: 0.9048 - Recall: 0.8636 - Precision: 0.95 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
4afed0aca0df37b5574824a54eed627b
sd-concepts-library/ddattender
sd-concepts-library
null
11
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,246
false
### ddattender on Stable Diffusion This is the `<ddattender>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ddattender> 0](https://huggingface.co/sd-concepts-library/ddattender/resolve/main/concept_images/0.jpeg) ![<ddattender> 1](https://huggingface.co/sd-concepts-library/ddattender/resolve/main/concept_images/3.jpeg) ![<ddattender> 2](https://huggingface.co/sd-concepts-library/ddattender/resolve/main/concept_images/5.jpeg) ![<ddattender> 3](https://huggingface.co/sd-concepts-library/ddattender/resolve/main/concept_images/1.jpeg) ![<ddattender> 4](https://huggingface.co/sd-concepts-library/ddattender/resolve/main/concept_images/2.jpeg) ![<ddattender> 5](https://huggingface.co/sd-concepts-library/ddattender/resolve/main/concept_images/4.jpeg)
4ad19c259f9402054389269c63e856b2
bergum/xtremedistil-l6-h384-go-emotion
bergum
bert
8
687
transformers
6
text-classification
true
false
false
apache-2.0
null
['go_emotions']
null
0
0
0
0
0
0
0
[]
true
true
true
1,271
false
# xtremedistil-l6-h384-go-emotion This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the [go_emotions dataset](https://huggingface.co/datasets/go_emotions). See notebook for how the model was trained and converted to ONNX format [![Training Notebook](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/jobergum/emotion/blob/main/TrainGoEmotions.ipynb) This model is deployed to [aiserv.cloud](https://aiserv.cloud/) for live demo of the model. See [https://github.com/jobergum/browser-ml-inference](https://github.com/jobergum/browser-ml-inference) for how to reproduce. ### Training hyperparameters - batch size 128 - learning_rate=3e-05 - epocs 4 <pre> Num examples = 211225 Num Epochs = 4 Instantaneous batch size per device = 128 Total train batch size (w. parallel, distributed & accumulation) = 128 Gradient Accumulation steps = 1 Total optimization steps = 6604 [6604/6604 53:23, Epoch 4/4] Step Training Loss 500 0.263200 1000 0.156900 1500 0.152500 2000 0.145400 2500 0.140500 3000 0.135900 3500 0.132800 4000 0.129400 4500 0.127200 5000 0.125700 5500 0.124400 6000 0.124100 6500 0.123400 </pre>
787765551ebbc5bce03dd5202b305b97
emre/wav2vec2-xls-r-300m-gl-CV8
emre
wav2vec2
15
6
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['gl']
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer', 'hf-asr-leaderboard', 'robust-speech-event']
true
true
true
1,483
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-gl-CV8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2151 - Wer: 0.2080 --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9427 | 4.9 | 500 | 2.8801 | 1.0 | | 2.1594 | 9.8 | 1000 | 0.4092 | 0.4001 | | 0.7332 | 14.71 | 1500 | 0.2151 | 0.2080 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
f7fe6b1b98be88cddc228f482a51475e
spacy/en_core_web_md
spacy
null
28
131
spacy
0
token-classification
false
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
2,745
false
### Details: https://spacy.io/models/en#en_core_web_md English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer. | Feature | Description | | --- | --- | | **Name** | `en_core_web_md` | | **Version** | `3.5.0` | | **spaCy** | `>=3.5.0,<3.6.0` | | **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` | | **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` | | **Vectors** | 514157 keys, 20000 unique vectors (300 dimensions) | | **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[ClearNLP Constituent-to-Dependency Conversion](https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md) (Emory University)<br />[WordNet 3.0](https://wordnet.princeton.edu/) (Princeton University)<br />[Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl)](https://github.com/explosion/spacy-vectors-builder) (Explosion) | | **License** | `MIT` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (113 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, `_SP`, ```` | | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | | **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_ACC` | 99.86 | | `TOKEN_P` | 99.57 | | `TOKEN_R` | 99.58 | | `TOKEN_F` | 99.57 | | `TAG_ACC` | 97.33 | | `SENTS_P` | 92.21 | | `SENTS_R` | 89.37 | | `SENTS_F` | 90.77 | | `DEP_UAS` | 92.05 | | `DEP_LAS` | 90.23 | | `ENTS_P` | 84.94 | | `ENTS_R` | 85.49 | | `ENTS_F` | 85.22 |
9a2ba84077277c1f09dbfda7cf0a2c04
google/t5-efficient-large-dl12
google
t5
12
7
transformers
0
text2text-generation
true
true
true
apache-2.0
['en']
['c4']
null
0
0
0
0
0
0
0
['deep-narrow']
false
true
true
6,258
false
# T5-Efficient-LARGE-DL12 (Deep-Narrow version) T5-Efficient-LARGE-DL12 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the modelโ€™s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-large-dl12** - is of model type **Large** with the following variations: - **dl** is **12** It has **536.34** million parameters and thus requires *ca.* **2145.37 MB** of memory in full precision (*fp32*) or **1072.69 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
dda893cccdf7a8f0203c8164c249d8dc
jonatasgrosman/exp_w2v2t_pt_xlsr-53_s829
jonatasgrosman
wav2vec2
10
2
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['pt']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'pt']
false
true
true
461
false
# exp_w2v2t_pt_xlsr-53_s829 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (pt)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
317c2f6919bd1e889c37c4034c48d973
UMCU/RobBERT_NegationDetection_32xTokenWindow
UMCU
roberta
9
7
transformers
1
token-classification
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,021
false
# MedRoBERTa.nl finetuned for negation ## Description This model is a finetuned RoBERTa-based model called RobBERT, this model is pre-trained on the Dutch section of OSCAR. All code used for the creation of RobBERT can be found here https://github.com/iPieter/RobBERT. The publication associated with the negation detection task can be found at https://arxiv.org/abs/2209.00470. The code for finetuning the model can be found at https://github.com/umcu/negation-detection. ## Intended use The model is finetuned for negation detection on Dutch clinical text. Since it is a domain-specific model trained on medical data, it is meant to be used on medical NLP tasks for Dutch. This particular model is trained on a 32-max token windows surrounding the concept-to-be negated. Note that we also trained a biLSTM which can be incorporated in [MedCAT](https://github.com/CogStack/MedCAT). ## Minimal example ```python tokenizer = AutoTokenizer\ .from_pretrained("UMCU/MedRoBERTa.nl_NegationDetection") model = AutoModelForTokenClassification\ .from_pretrained("UMCU/MedRoBERTa.nl_NegationDetection") some_text = "De patient was niet aanspreekbaar en hij zag er grauw uit. \ Hij heeft de inspanningstest echter goed doorstaan." inputs = tokenizer(some_text, return_tensors='pt') output = model.forward(inputs) probas = torch.nn.functional.softmax(output.logits[0]).detach().numpy() # koppel aan tokens input_tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0]) target_map = {0: 'B-Negated', 1:'B-NotNegated',2:'I-Negated',3:'I-NotNegated'} results = [{'token': input_tokens[idx], 'proba_negated': proba_arr[0]+proba_arr[2], 'proba_not_negated': proba_arr[1]+proba_arr[3] } for idx,proba_arr in enumerate(probas)] ``` It is perhaps good to note that we assume the [Inside-Outside-Beginning](https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)) format. ## Data The pre-trained model was trained the Dutch section of OSCAR (about 39GB), and is described here: http://dx.doi.org/10.18653/v1/2020.findings-emnlp.292. ## Authors RobBERT: Pieter Delobelle, Thomas Winters, Bettina Berendt, Finetuning: Bram van Es, Sebastiaan Arends. ## Contact If you are having problems with this model please add an issue on our git: https://github.com/umcu/negation-detection/issues ## Usage If you use the model in your work please refer either to https://doi.org/10.5281/zenodo.6980076 or https://doi.org/10.48550/arXiv.2209.00470 ## References Paper: Pieter Delobelle, Thomas Winters, Bettina Berendt (2020), RobBERT: a Dutch RoBERTa-based Language Model, Findings of the Association for Computational Linguistics: EMNLP 2020 Paper: Bram van Es, Leon C. Reteig, Sander C. Tan, Marijn Schraagen, Myrthe M. Hemker, Sebastiaan R.S. Arends, Miguel A.R. Rios, Saskia Haitjema (2022): Negation detection in Dutch clinical texts: an evaluation of rule-based and machine learning methods, Arxiv
ba4e283e9a23588ba2b82c351a702291
jonatasgrosman/exp_w2v2t_es_vp-nl_s878
jonatasgrosman
wav2vec2
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['es']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'es']
false
true
true
469
false
# exp_w2v2t_es_vp-nl_s878 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
26e310f92e34852fd274099bac2c74d6
MatFil99/bert-nlp-project-ft-news-ds-imdb
MatFil99
bert
10
4
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,814
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-nlp-project-ft-news-ds-imdb This model is a fine-tuned version of [jestemleon/bert-nlp-project-news](https://huggingface.co/jestemleon/bert-nlp-project-news) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2678 - Accuracy: 0.944 - F1: 0.9433 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2722 | 0.38 | 750 | 0.1888 | 0.9283 | 0.9262 | | 0.2133 | 0.75 | 1500 | 0.1709 | 0.939 | 0.9363 | | 0.1752 | 1.12 | 2250 | 0.2139 | 0.9395 | 0.9397 | | 0.1234 | 1.5 | 3000 | 0.2063 | 0.944 | 0.9428 | | 0.117 | 1.88 | 3750 | 0.2787 | 0.9327 | 0.9336 | | 0.0766 | 2.25 | 4500 | 0.2711 | 0.9417 | 0.9412 | | 0.0603 | 2.62 | 5250 | 0.2659 | 0.9423 | 0.9406 | | 0.0563 | 3.0 | 6000 | 0.2678 | 0.944 | 0.9433 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
88d4e2d919e845bcbf2d571710b8cdea
domischwimmbeck/bert-base-german-cased-fine-tuned-ner
domischwimmbeck
bert
16
19
transformers
0
token-classification
true
false
false
mit
null
['germa_ner']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,552
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-fine-tuned-ner This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the germa_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0966 - Precision: 0.8089 - Recall: 0.8728 - F1: 0.8397 - Accuracy: 0.9749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.159 | 1.0 | 737 | 0.0922 | 0.7472 | 0.8461 | 0.7936 | 0.9703 | | 0.0714 | 2.0 | 1474 | 0.0916 | 0.7886 | 0.8713 | 0.8279 | 0.9731 | | 0.0319 | 3.0 | 2211 | 0.0966 | 0.8089 | 0.8728 | 0.8397 | 0.9749 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
10ba87925e4c3236e9063f49fa8b256f
Helsinki-NLP/opus-mt-es-ber
Helsinki-NLP
marian
10
7
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
778
false
### opus-mt-es-ber * source languages: es * target languages: ber * OPUS readme: [es-ber](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-ber/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-ber/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ber/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ber/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.es.ber | 21.8 | 0.444 |
b958aa6b51e7413df5216964f0d0b142
shibing624/bert4ner-base-uncased
shibing624
bert
8
8
transformers
1
token-classification
true
false
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['bert', 'pytorch', 'en', 'ner']
false
true
true
3,782
false
# BERT for English Named Entity Recognition(bert4ner) Model ่‹ฑๆ–‡ๅฎžไฝ“่ฏ†ๅˆซๆจกๅž‹ `bert4ner-base-uncased` evaluate CoNLL-2003 test data๏ผš The overall performance of BERT on CoNLL-2003 **test**: | | Accuracy | Recall | F1 | | ------------ | ------------------ | ------------------ | ------------------ | | BertSoftmax | 0.8956 | 0.9132 | 0.9043 | ๅœจCoNLL-2003็š„ๆต‹่ฏ•้›†ไธŠ่พพๅˆฐๆŽฅ่ฟ‘SOTAๆฐดๅนณใ€‚ BertSoftmax็š„็ฝ‘็ปœ็ป“ๆž„(ๅŽŸ็”ŸBERT)ใ€‚ ๆœฌ้กน็›ฎๅผ€ๆบๅœจๅฎžไฝ“่ฏ†ๅˆซ้กน็›ฎ๏ผš[nerpy](https://github.com/shibing624/nerpy)๏ผŒๅฏๆ”ฏๆŒbert4nerๆจกๅž‹๏ผŒ้€š่ฟ‡ๅฆ‚ไธ‹ๅ‘ฝไปค่ฐƒ็”จ๏ผš #### ่‹ฑๆ–‡ๅฎžไฝ“่ฏ†ๅˆซ๏ผš ```shell >>> from nerpy import NERModel >>> model = NERModel("bert", "shibing624/bert4ner-base-uncased") >>> predictions, raw_outputs, entities = model.predict(["AL-AIN, United Arab Emirates 1996-12-06"], split_on_space=True) entities: [('AL-AIN,', 'LOC'), ('United Arab Emirates', 'LOC')] ``` ๆจกๅž‹ๆ–‡ไปถ็ป„ๆˆ๏ผš ``` bert4ner-base-uncased โ”œโ”€โ”€ config.json โ”œโ”€โ”€ model_args.json โ”œโ”€โ”€ pytorch_model.bin โ”œโ”€โ”€ special_tokens_map.json โ”œโ”€โ”€ tokenizer_config.json โ””โ”€โ”€ vocab.txt ``` ## Usage (HuggingFace Transformers) Without [nerpy](https://github.com/shibing624/nerpy), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the bio tag to get the entity words. Install package: ``` pip install transformers seqeval ``` ```python import os import torch from transformers import AutoTokenizer, AutoModelForTokenClassification from seqeval.metrics.sequence_labeling import get_entities os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("shibing624/bert4ner-base-uncased") model = AutoModelForTokenClassification.from_pretrained("shibing624/bert4ner-base-uncased") label_list = ["E-ORG", "E-LOC", "S-MISC", "I-MISC", "S-PER", "E-PER", "B-MISC", "O", "S-LOC", "E-MISC", "B-ORG", "S-ORG", "I-ORG", "B-LOC", "I-LOC", "B-PER", "I-PER"] sentence = "AL-AIN, United Arab Emirates 1996-12-06" def get_entity(sentence): tokens = tokenizer.tokenize(sentence) inputs = tokenizer.encode(sentence, return_tensors="pt") with torch.no_grad(): outputs = model(inputs).logits predictions = torch.argmax(outputs, dim=2) word_tags = [(token, label_list[prediction]) for token, prediction in zip(tokens, predictions[0].numpy()[1:-1])] print(sentence) print(word_tags) pred_labels = [i[1] for i in word_tags] entities = [] line_entities = get_entities(pred_labels) for i in line_entities: word = tokens[i[1]: i[2] + 1] entity_type = i[0] entities.append((word, entity_type)) print("Sentence entity:") print(entities) get_entity(sentence) ``` ### ๆ•ฐๆฎ้›† #### ๅฎžไฝ“่ฏ†ๅˆซๆ•ฐๆฎ้›† | ๆ•ฐๆฎ้›† | ่ฏญๆ–™ | ไธ‹่ฝฝ้“พๆŽฅ | ๆ–‡ไปถๅคงๅฐ | | :------- | :--------- | :---------: | :---------: | | **`CNERไธญๆ–‡ๅฎžไฝ“่ฏ†ๅˆซๆ•ฐๆฎ้›†`** | CNER(12ไธ‡ๅญ—) | [CNER github](https://github.com/shibing624/nerpy/tree/main/examples/data/cner)| 1.1MB | | **`PEOPLEไธญๆ–‡ๅฎžไฝ“่ฏ†ๅˆซๆ•ฐๆฎ้›†`** | ไบบๆฐ‘ๆ—ฅๆŠฅๆ•ฐๆฎ้›†๏ผˆ200ไธ‡ๅญ—๏ผ‰ | [PEOPLE github](https://github.com/shibing624/nerpy/tree/main/examples/data/people)| 12.8MB | | **`CoNLL03่‹ฑๆ–‡ๅฎžไฝ“่ฏ†ๅˆซๆ•ฐๆฎ้›†`** | CoNLL-2003ๆ•ฐๆฎ้›†๏ผˆ22ไธ‡ๅญ—๏ผ‰ | [CoNLL03 github](https://github.com/shibing624/nerpy/tree/main/examples/data/conll03)| 1.7MB | ### input format Input format (prefer BIOES tag scheme), with each character its label for one line. Sentences are splited with a null line. ```text EU S-ORG rejects O German S-MISC call O to O boycott O British S-MISC lamb O . O Peter B-PER Blackburn E-PER ``` ๅฆ‚ๆžœ้œ€่ฆ่ฎญ็ปƒbert4ner๏ผŒ่ฏทๅ‚่€ƒ[https://github.com/shibing624/nerpy/tree/main/examples](https://github.com/shibing624/nerpy/tree/main/examples) ## Citation ```latex @software{nerpy, author = {Xu Ming}, title = {nerpy: Named Entity Recognition toolkit}, year = {2022}, url = {https://github.com/shibing624/nerpy}, } ```
06c610a3b26cc65d95c3fd908e9af624
nvidia/tts_hifigan
nvidia
null
3
502
nemo
6
text-to-speech
true
false
false
cc-by-4.0
['en']
['ljspeech']
null
0
0
0
0
1
1
0
['text-to-speech', 'speech', 'audio', 'Vocoder', 'GAN', 'pytorch', 'NeMo', 'Riva']
false
true
true
4,300
false
# NVIDIA Hifigan Vocoder (en-US) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-HiFiGAN--GAN-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-85M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets) | [![Riva Compatible](https://img.shields.io/badge/NVIDIA%20Riva-compatible-brightgreen#model-badge)](#deployment-with-nvidia-riva) | HiFiGAN [1] is a generative adversarial network (GAN) model that generates audio from mel spectrograms. The generator uses transposed convolutions to upsample mel spectrograms to audio. ## Usage The model is available for use in the NeMo toolkit [2] and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed the latest PyTorch version. ``` pip install nemo_toolkit['all'] ``` ### Automatically instantiate the model NOTE: In order to generate audio, you also need a spectrogram generator from NeMo. This example uses the FastPitch model. ```python # Load FastPitch from nemo.collections.tts.models import FastPitchModel spec_generator = FastPitchModel.from_pretrained("nvidia/tts_en_fastpitch") # Load vocoder from nemo.collections.tts.models import HifiGanModel model = HifiGanModel.from_pretrained(model_name="nvidia/tts_hifigan") ``` ### Generate audio ```python import soundfile as sf parsed = spec_generator.parse("You can type your sentence here to get nemo to produce speech.") spectrogram = spec_generator.generate_spectrogram(tokens=parsed) audio = model.convert_spectrogram_to_audio(spec=spectrogram) ``` ### Save the generated audio file ```python # Save the audio to disk in a file called speech.wav sf.write("speech.wav", audio.to('cpu').numpy(), 22050) ``` ### Input This model accepts batches of mel spectrograms. ### Output This model outputs audio at 22050Hz. ## Model Architecture HiFi-GAN [1] consists of one generator and two discriminators: multi-scale and multi-period discriminators. The generator and discriminators are trained adversarially, along with two additional losses for improving training stability and model performance. ## Training The NeMo toolkit [3] was used for training the models for several epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/tts/hifigan.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/tts/conf/hifigan/hifigan.yaml). ### Datasets This model is trained on LJSpeech sampled at 22050Hz, and has been tested on generating female English voices with an American accent. ## Performance No performance information is available at this time. ## Limitations If the spectrogram generator model (example FastPitch) is trained/finetuned on new speaker's data it is recommended to finetune HiFi-GAN also. HiFi-GAN shows improvement using synthesized mel spectrograms, so the first step is to generate mel spectrograms with our finetuned FastPitch model to use as input to finetune HiFiGAN. ## Deployment with NVIDIA Riva For the best real-time accuracy, latency, and throughput, deploy the model with [NVIDIA Riva](https://developer.nvidia.com/riva), an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, at the edge, and embedded. Additionally, Riva provides: * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization * Streaming speech recognition, Kubernetes compatible scaling, and Enterprise-grade support Check out [Riva live demo](https://developer.nvidia.com/riva#demos). ## References - [1] [HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis](https://arxiv.org/abs/2010.05646) - [2] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
0fc9eb00051c7d49081da07873c6336d
sentence-transformers/bert-large-nli-stsb-mean-tokens
sentence-transformers
bert
13
3,044
sentence-transformers
1
sentence-similarity
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,831
false
**โš ๏ธ This model is deprecated. Please don't use it as it produces sentence embeddings of low quality. You can find recommended sentence embedding models here: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)** # sentence-transformers/bert-large-nli-stsb-mean-tokens This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/bert-large-nli-stsb-mean-tokens') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/bert-large-nli-stsb-mean-tokens') model = AutoModel.from_pretrained('sentence-transformers/bert-large-nli-stsb-mean-tokens') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/bert-large-nli-stsb-mean-tokens) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
91be473baee25bcc7ada442c67d95b5e
anas-awadalla/bart-base-few-shot-k-512-finetuned-squad-seed-2
anas-awadalla
bart
16
3
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
988
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
bdf4211486bdfd96b453a0d75c14872e
quincyqiang/dashdash-wonderland-heywhale
quincyqiang
null
17
11
diffusers
0
text-to-image
true
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['pytorch', 'diffusers', 'stable-diffusion', 'text-to-image', 'diffusion-models-class', 'dreambooth-hackathon', 'wildcard']
false
true
true
830
false
# DreamBooth model for the dashdash concept trained by quincyqiang. This is a Stable Diffusion model fine-tuned on the dashdash concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of dashdash wonderland** This model was created as part of the DreamBooth Hackathon ๐Ÿ”ฅ. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `wonderland` images for the wildcard theme, for the Hugging Face DreamBooth Hackathon, from the HF CN Community, corporated with the HeyWhale. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('quincyqiang/dashdash-wonderland-heywhale') image = pipeline().images[0] image ```
88b24ed9849d8b746b2c36f73cba3415
haroonrahimi/wav2vec2-large-xls-r-300m-pu-colab
haroonrahimi
wav2vec2
9
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,100
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-pu-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
00b8196916cef077f0d5b6de0aaaa856
vumichien/AnimeGANv2_Hayao
vumichien
null
3
0
null
0
null
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['AnimeGanv2']
false
true
true
678
false
## Model Description Transforming photos of real-world scenes into anime style images is a meaningful and challenging task in terms of computer vision and artistic style transfer. AnimeGANv2_Haya Made by Asher Chan. The official code in [here](https://github.com/TachibanaYoshino/AnimeGANv2) ## License This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGAN given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.
c04bc76a20f131f71addd446d49342a0
BakhtUllah123/xls-r-ur-large
BakhtUllah123
wav2vec2
17
2
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice_8_0']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,773
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-ur-large This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8056 - Wer: 0.4716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.5282 | 3.25 | 1000 | 3.0650 | 0.9989 | | 1.7351 | 6.49 | 2000 | 0.8798 | 0.6284 | | 0.7662 | 9.74 | 3000 | 0.7720 | 0.5399 | | 0.5675 | 12.99 | 4000 | 0.7661 | 0.5229 | | 0.4591 | 16.23 | 5000 | 0.7849 | 0.5041 | | 0.3881 | 19.48 | 6000 | 0.8065 | 0.4893 | | 0.3522 | 22.73 | 7000 | 0.7915 | 0.4804 | | 0.3127 | 25.97 | 8000 | 0.8119 | 0.4804 | | 0.2932 | 29.22 | 9000 | 0.8056 | 0.4716 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
d32f642fafe6bef569630a3f8e7e5fd6
jamesesguerra/distilbart-cnn-12-6-finetuned-1.3.1
jamesesguerra
bart
14
3
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,478
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-1.3.1 This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7396 - Rouge1: 50.4939 - Rouge2: 23.7745 - Rougel: 35.3779 - Rougelsum: 45.8578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.0871 | 1.0 | 982 | 1.8224 | 49.5128 | 23.1207 | 34.3412 | 44.7552 | | 1.5334 | 2.0 | 1964 | 1.7396 | 50.4939 | 23.7745 | 35.3779 | 45.8578 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
5ea2a23c99f76c48bdedc3bade30a396
izzy-lazerson/wav2vec2-base-timit-demo-colab
izzy-lazerson
wav2vec2
12
8
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,641
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4545 - Wer: 0.3450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3801 | 4.0 | 500 | 1.1501 | 0.8820 | | 0.561 | 8.0 | 1000 | 0.4583 | 0.4211 | | 0.2198 | 12.0 | 1500 | 0.4467 | 0.3997 | | 0.1255 | 16.0 | 2000 | 0.4390 | 0.3677 | | 0.0862 | 20.0 | 2500 | 0.4934 | 0.3603 | | 0.0617 | 24.0 | 3000 | 0.4641 | 0.3549 | | 0.0465 | 28.0 | 3500 | 0.4545 | 0.3450 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
12d8374d9670a9db613927de7430cbda
frieza/ddpm-butterflies-128
frieza
null
13
0
diffusers
0
null
false
false
false
apache-2.0
['en']
['huggan/few-shot-grumpy-cat']
null
0
0
0
0
0
0
0
[]
false
true
true
1,217
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [๐Ÿค— Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/few-shot-grumpy-cat` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results ๐Ÿ“ˆ [TensorBoard logs](https://huggingface.co/frieza/ddpm-butterflies-128/tensorboard?#scalars)
4c99149dde8c4879cb45cd3f88ebef1e
ali2066/finetuned_token_itr0_0.0002_essays_16_02_2022-21_04_02
ali2066
distilbert
13
10
transformers
0
token-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,801
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_0.0002_essays_16_02_2022-21_04_02 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2158 - Precision: 0.5814 - Recall: 0.7073 - F1: 0.6382 - Accuracy: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 11 | 0.3920 | 0.4392 | 0.6069 | 0.5096 | 0.8593 | | No log | 2.0 | 22 | 0.3304 | 0.4282 | 0.6260 | 0.5085 | 0.8672 | | No log | 3.0 | 33 | 0.3361 | 0.4840 | 0.6336 | 0.5488 | 0.8685 | | No log | 4.0 | 44 | 0.3258 | 0.5163 | 0.6641 | 0.5810 | 0.8722 | | No log | 5.0 | 55 | 0.3472 | 0.5192 | 0.6718 | 0.5857 | 0.8743 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
be416d65bee285769883d3460d13abcf
kiddothe2b/hierarchical-transformer-EC2-mini-1024
kiddothe2b
hierarchical-transformer
12
0
transformers
0
fill-mask
true
false
false
cc-by-sa-4.0
['en']
['wikipedia']
null
0
0
0
0
0
0
0
['long-documents']
true
true
true
4,283
false
# Hierarchical Attention Transformer (HAT) / hierarchical-transformer-EC2-mini-1024 ## Model description This is a Hierarchical Attention Transformer (HAT) model as presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/2210.05529). The model has been warm-started re-using the weights of miniature BERT (Turc et al., 2019), and continued pre-trained for MLM following the paradigm of Longformer released by Beltagy et al. (2020). It supports sequences of length up to 1,024. HAT uses hierarchical attention, which is a combination of segment-wise and cross-segment attention operations. You can think of segments as paragraphs or sentences. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?other=hierarchical-transformer) to look for other versions of HAT or fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole document to make decisions, such as document classification, sequential sentence classification, or question answering. ## How to use You can use this model directly for masked language modeling: ```python from transformers import AutoTokenizer, AutoModelforForMaskedLM tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-EC2-mini-1024", trust_remote_code=True) mlm_model = AutoModelforForMaskedLM(kiddothe2b/hierarchical-transformer-EC2-mini-1024", trust_remote_code=True) ``` You can also fine-tune it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks: ```python from transformers import AutoTokenizer, AutoModelforSequenceClassification tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-EC2-mini-1024", trust_remote_code=True) doc_classifier = AutoModelforSequenceClassification("kiddothe2b/hierarchical-transformer-EC2-mini-1024", trust_remote_code=True) ``` ## Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training procedure ### Training and evaluation data The model has been warm-started from [google/bert_uncased_L-6_H-256_A-4](https://huggingface.co/google/bert_uncased_L-6_H-256_A-4) checkpoint and has been continued pre-trained for additional 50k steps on English [Wikipedia](https://huggingface.co/datasets/wikipedia). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: tpu - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3798 | 0.2 | 10000 | 2.2014 | | 2.3267 | 0.4 | 20000 | 2.1535 | | 2.2976 | 0.6 | 30000 | 2.1234 | | 2.2649 | 0.8 | 40000 | 2.1010 | | 2.254 | 1.14 | 50000 | 2.0870 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6 ## Citing If you use HAT in your research, please cite: [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/2210.05529). Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint). ``` @misc{chalkidis-etal-2022-hat, url = {https://arxiv.org/abs/2210.05529}, author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond}, title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification}, publisher = {arXiv}, year = {2022}, } ```
e7a10dc825a41b8240cd1cabb25d577d
jonatasgrosman/exp_w2v2t_it_unispeech-ml_s213
jonatasgrosman
unispeech
10
4
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['it']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'it']
false
true
true
500
false
# exp_w2v2t_it_unispeech-ml_s213 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
601c38dd027de1aa03e99cc5f8b2d15c
tensorspeech/tts-tacotron2-kss-ko
tensorspeech
null
5
0
tensorflowtts
3
text-to-speech
false
false
false
apache-2.0
['ko']
['kss']
null
0
0
0
0
0
0
0
['tensorflowtts', 'audio', 'text-to-speech', 'text-to-mel']
false
true
true
2,660
false
# Tacotron 2 with Guided Attention trained on KSS (Korean) This repository provides a pretrained [Tacotron2](https://arxiv.org/abs/1712.05884) trained with [Guided Attention](https://arxiv.org/abs/1710.08969) on KSS dataset (KO). For a detail of the model, we encourage you to read more about [TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS). ## Install TensorFlowTTS First of all, please install TensorFlowTTS with the following command: ``` pip install TensorFlowTTS ``` ### Converting your Text to Mel Spectrogram ```python import numpy as np import soundfile as sf import yaml import tensorflow as tf from tensorflow_tts.inference import AutoProcessor from tensorflow_tts.inference import TFAutoModel processor = AutoProcessor.from_pretrained("tensorspeech/tts-tacotron2-kss-ko") tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-kss-ko") text = "์‹ ์€ ์šฐ๋ฆฌ์˜ ์ˆ˜ํ•™ ๋ฌธ์ œ์—๋Š” ๊ด€์‹ฌ์ด ์—†๋‹ค. ์‹ ์€ ๋‹ค๋งŒ ๊ฒฝํ—˜์ ์œผ๋กœ ํ†ตํ•ฉํ•  ๋ฟ์ด๋‹ค." input_ids = processor.text_to_sequence(text) decoder_output, mel_outputs, stop_token_prediction, alignment_history = tacotron2.inference( input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), input_lengths=tf.convert_to_tensor([len(input_ids)], tf.int32), speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32), ) ``` #### Referencing Tacotron 2 ``` @article{DBLP:journals/corr/abs-1712-05884, author = {Jonathan Shen and Ruoming Pang and Ron J. Weiss and Mike Schuster and Navdeep Jaitly and Zongheng Yang and Zhifeng Chen and Yu Zhang and Yuxuan Wang and R. J. Skerry{-}Ryan and Rif A. Saurous and Yannis Agiomyrgiannakis and Yonghui Wu}, title = {Natural {TTS} Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions}, journal = {CoRR}, volume = {abs/1712.05884}, year = {2017}, url = {http://arxiv.org/abs/1712.05884}, archivePrefix = {arXiv}, eprint = {1712.05884}, timestamp = {Thu, 28 Nov 2019 08:59:52 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1712-05884.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` #### Referencing TensorFlowTTS ``` @misc{TFTTS, author = {Minh Nguyen, Alejandro Miguel Velasquez, Erogol, Kuan Chen, Dawid Kobus, Takuya Ebata, Trinh Le and Yunchao He}, title = {TensorflowTTS}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\url{https://github.com/TensorSpeech/TensorFlowTTS}}, } ```
7a803c440b434f3e1ebf8c5e7bf8dc28
FredZhang7/google-safesearch-mini-v2
FredZhang7
null
6
85
timm
3
image-classification
true
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
1
0
1
['safety-checker', 'explicit-filter']
false
true
true
3,188
false
## Google Safesearch Mini V2 is an ultra-precise multi-class image classifier that accurately detects explicit content Google Safesearch Mini V2 took a different approach to its training than [V1](https://huggingface.co/FredZhang7/google-safesearch-mini); it used the InceptionResNetV2 architecture and a dataset of roughly **3,400,000 images** randomly sourced from the internet, some of which were generated via data argumentation. The training and validation data are sourced from Google Images, Reddit, Kaggle, and Imgur, and were classified as safe or nsfw by companies, Google SafeSearch, and moderators. After training the model for 5 epochs with cross entropy loss and evaluating it on both the training and validation sets to identify images with predicted probabilities below 0.90, some necessary corrections were made to the curated dataset and the model was trained for an additional 8 epochs. Next, I tested the model on various cases that it may struggle to classify and observed that it was mistaking the fur of a brown cat for human skin. To improve the accuracy, I fine-tuned the model with [15 additional datasets from Kaggle](./kaggle-datasets.txt) for one epoch, and then trained it for the last epoch with a combination of training and test data. This resulted in **97% accuracy** on both training and validation data. A safesearch filter is not only a great tool for moderating social media, but it also can be used to filter datasets. Compared to stable diffusion safety checkers, this model offers a major advantage - users can save 1.0 GB of RAM and disk space. ## PyTorch ```bash pip install --upgrade torchvision ``` ```python import torch, os from torchvision import transforms from PIL import Image import urllib.request import timm image_path = "https://www.allaboutcats.ca/wp-content/uploads/sites/235/2022/03/shutterstock_320462102-2500-e1647917149997.jpg" device = "cuda" def preprocess_image(image_path): # Define image pre-processing transforms transform = transforms.Compose([ transforms.Resize(299), transforms.CenterCrop(299), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) if image_path.startswith('http://') or image_path.startswith('https://'): import requests from io import BytesIO response = requests.get(image_path) img = Image.open(BytesIO(response.content)).convert('RGB') else: img = Image.open(image_path).convert('RGB') img = transform(img).unsqueeze(0) img = img.cuda() if device.lower() == "cuda" else img.cpu() return img def eval(): model = timm.create_model("hf_hub:FredZhang7/google-safesearch-mini-v2", pretrained=True) model.to(device) img = preprocess_image(image_path) with torch.no_grad(): out = model(img) _, predicted = torch.max(out.data, 1) classes = { 0: 'nsfw_gore', 1: 'nsfw_suggestive', 2: 'safe' } print('\n\033[1;31m' + classes[predicted.item()] + '\033[0m' if predicted.item() != 2 else '\033[1;32m' + classes[predicted.item()] + '\033[0m\n') if __name__ == '__main__': eval() ```
63d69f51980b0ca3909217428dfcb903
tonyalves/output
tonyalves
wav2vec2
13
4
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['pt']
['common_voice']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer']
true
true
true
6,006
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PT dataset. It achieves the following results on the evaluation set: - Loss: 0.1505 - Wer: 0.1352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.1367 | 0.64 | 500 | 3.8825 | 1.0 | | 2.9677 | 1.29 | 1000 | 2.9498 | 1.0 | | 1.5884 | 1.93 | 1500 | 0.6722 | 0.6493 | | 1.2292 | 2.57 | 2000 | 0.3635 | 0.3202 | | 1.1314 | 3.22 | 2500 | 0.2970 | 0.2680 | | 1.0879 | 3.86 | 3000 | 0.2671 | 0.2486 | | 1.0344 | 4.5 | 3500 | 0.2625 | 0.2239 | | 1.0109 | 5.15 | 4000 | 0.2520 | 0.2230 | | 0.9966 | 5.79 | 4500 | 0.2280 | 0.2105 | | 0.9815 | 6.43 | 5000 | 0.2254 | 0.2179 | | 0.9744 | 7.08 | 5500 | 0.2301 | 0.2137 | | 0.9487 | 7.72 | 6000 | 0.2224 | 0.2051 | | 0.9431 | 8.37 | 6500 | 0.2105 | 0.1992 | | 0.9365 | 9.01 | 7000 | 0.2114 | 0.2019 | | 0.9268 | 9.65 | 7500 | 0.2097 | 0.1988 | | 0.9292 | 10.3 | 8000 | 0.2120 | 0.1986 | | 0.929 | 10.94 | 8500 | 0.2048 | 0.1998 | | 0.9017 | 11.58 | 9000 | 0.2035 | 0.1999 | | 0.8898 | 12.23 | 9500 | 0.1961 | 0.1908 | | 0.8799 | 12.87 | 10000 | 0.1945 | 0.1817 | | 0.869 | 13.51 | 10500 | 0.1929 | 0.1844 | | 0.8572 | 14.16 | 11000 | 0.1941 | 0.1888 | | 0.8691 | 14.8 | 11500 | 0.1912 | 0.1804 | | 0.8645 | 15.44 | 12000 | 0.1950 | 0.1851 | | 0.8468 | 16.09 | 12500 | 0.1879 | 0.1770 | | 0.8405 | 16.73 | 13000 | 0.1881 | 0.1759 | | 0.8647 | 17.37 | 13500 | 0.1861 | 0.1740 | | 0.8477 | 18.02 | 14000 | 0.1782 | 0.1702 | | 0.811 | 18.66 | 14500 | 0.1915 | 0.1757 | | 0.8165 | 19.3 | 15000 | 0.1820 | 0.1724 | | 0.8166 | 19.95 | 15500 | 0.1798 | 0.1697 | | 0.8167 | 20.59 | 16000 | 0.1805 | 0.1752 | | 0.7908 | 21.24 | 16500 | 0.1761 | 0.1699 | | 0.7925 | 21.88 | 17000 | 0.1740 | 0.1709 | | 0.7803 | 22.52 | 17500 | 0.1815 | 0.1727 | | 0.7839 | 23.17 | 18000 | 0.1737 | 0.1694 | | 0.7815 | 23.81 | 18500 | 0.1732 | 0.1630 | | 0.767 | 24.45 | 19000 | 0.1724 | 0.1648 | | 0.7672 | 25.1 | 19500 | 0.1706 | 0.1596 | | 0.7691 | 25.74 | 20000 | 0.1718 | 0.1618 | | 0.7547 | 26.38 | 20500 | 0.1694 | 0.1565 | | 0.7498 | 27.03 | 21000 | 0.1706 | 0.1582 | | 0.7459 | 27.67 | 21500 | 0.1663 | 0.1586 | | 0.7374 | 28.31 | 22000 | 0.1651 | 0.1567 | | 0.7499 | 28.96 | 22500 | 0.1668 | 0.1549 | | 0.7471 | 29.6 | 23000 | 0.1667 | 0.1553 | | 0.7369 | 30.24 | 23500 | 0.1659 | 0.1556 | | 0.7389 | 30.89 | 24000 | 0.1668 | 0.1538 | | 0.7197 | 31.53 | 24500 | 0.1687 | 0.1561 | | 0.71 | 32.17 | 25000 | 0.1666 | 0.1516 | | 0.7199 | 32.82 | 25500 | 0.1640 | 0.1523 | | 0.7194 | 33.46 | 26000 | 0.1659 | 0.1528 | | 0.6923 | 34.11 | 26500 | 0.1662 | 0.1507 | | 0.7054 | 34.75 | 27000 | 0.1641 | 0.1486 | | 0.6955 | 35.39 | 27500 | 0.1634 | 0.1497 | | 0.7084 | 36.04 | 28000 | 0.1618 | 0.1478 | | 0.6917 | 36.68 | 28500 | 0.1589 | 0.1471 | | 0.687 | 37.32 | 29000 | 0.1589 | 0.1450 | | 0.6914 | 37.97 | 29500 | 0.1588 | 0.1465 | | 0.6646 | 38.61 | 30000 | 0.1602 | 0.1468 | | 0.6667 | 39.25 | 30500 | 0.1588 | 0.1444 | | 0.6754 | 39.9 | 31000 | 0.1587 | 0.1455 | | 0.6632 | 40.54 | 31500 | 0.1586 | 0.1461 | | 0.6619 | 41.18 | 32000 | 0.1571 | 0.1441 | | 0.6561 | 41.83 | 32500 | 0.1564 | 0.1420 | | 0.6492 | 42.47 | 33000 | 0.1539 | 0.1437 | | 0.6649 | 43.11 | 33500 | 0.1512 | 0.1406 | | 0.6511 | 43.76 | 34000 | 0.1539 | 0.1384 | | 0.6551 | 44.4 | 34500 | 0.1520 | 0.1384 | | 0.6452 | 45.05 | 35000 | 0.1510 | 0.1368 | | 0.6155 | 45.69 | 35500 | 0.1522 | 0.1375 | | 0.628 | 46.33 | 36000 | 0.1522 | 0.1366 | | 0.6389 | 46.97 | 36500 | 0.1513 | 0.1377 | | 0.6265 | 47.62 | 37000 | 0.1512 | 0.1369 | | 0.6197 | 48.26 | 37500 | 0.1511 | 0.1362 | | 0.621 | 48.91 | 38000 | 0.1510 | 0.1357 | | 0.6259 | 49.55 | 38500 | 0.1506 | 0.1353 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.1+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
7576bb0700d9b1d72e32e4dbba570239
polejowska/convnext-tiny-224-finetuned-eurosat-att
polejowska
convnext
11
5
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,036
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224-finetuned-eurosat-att This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
f19c62ab843b5b7f9fd1d759613d4b59