temp-test / gpt_oss_vllm_harmony.py
davanstrien's picture
davanstrien HF Staff
Upload gpt_oss_vllm_harmony.py
feba30a verified
# /// script
# requires-python = ">=3.12,<3.13" # Required for vllm==0.10.1+gptoss
# dependencies = [
# "datasets",
# "huggingface-hub[hf_transfer]",
# "torch",
# "openai-harmony", # Official OpenAI harmony library
# "vllm==0.10.1+gptoss", # Specific version for GPT OSS models
# "tqdm",
# ]
#
# [[tool.uv.index]]
# url = "https://wheels.vllm.ai/gpt-oss/"
#
# [[tool.uv.index]]
# url = "https://download.pytorch.org/whl/nightly/cu128"
#
# [tool.uv]
# index-strategy = "unsafe-best-match"
# ///
"""
Generate responses with transparent reasoning using OpenAI GPT OSS models with harmony format.
This script uses the official openai_harmony library for proper message formatting
and channel parsing, as recommended in the OpenAI cookbook.
Example usage:
# Generate haiku with reasoning
uv run gpt_oss_vllm_harmony.py \\
--input-dataset davanstrien/haiku_dpo \\
--output-dataset username/haiku-reasoning \\
--prompt-column question
# Any prompt dataset with custom settings
uv run gpt_oss_vllm_harmony.py \\
--input-dataset username/prompts \\
--output-dataset username/responses-with-reasoning \\
--prompt-column prompt \\
--reasoning-level high \\
--max-samples 100
# HF Jobs execution
hf jobs uv run --flavor a10g-small \\
https://huggingface.co/datasets/uv-scripts/openai-reasoning/raw/main/gpt_oss_vllm_harmony.py \\
--input-dataset username/prompts \\
--output-dataset username/responses-with-reasoning
"""
import argparse
import json
import logging
import os
import sys
import time
from datetime import datetime
from typing import Dict, List, Optional
from datasets import Dataset, load_dataset
from huggingface_hub import DatasetCard, get_token, login
from openai_harmony import (
HarmonyEncodingName,
load_harmony_encoding,
Conversation,
Message,
Role,
SystemContent,
DeveloperContent,
)
from torch import cuda
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams
# Enable HF Transfer for faster downloads
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
# TODO: Change logging level back to INFO after initial testing
logging.basicConfig(
level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def check_gpu_availability() -> int:
"""Check if CUDA is available and return the number of GPUs."""
if not cuda.is_available():
logger.error("CUDA is not available. This script requires a GPU.")
logger.error(
"Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor."
)
sys.exit(1)
num_gpus = cuda.device_count()
for i in range(num_gpus):
gpu_name = cuda.get_device_name(i)
gpu_memory = cuda.get_device_properties(i).total_memory / 1024**3
logger.info(f"GPU {i}: {gpu_name} with {gpu_memory:.1f} GB memory")
return num_gpus
def parse_harmony_messages(entries: List, prompt: str) -> Dict[str, str]:
"""
Parse harmony message entries into think/content structure.
The harmony format produces structured messages with different channels:
- analysis: Chain of thought reasoning
- final: User-facing response
- commentary: Tool calls (if any)
"""
think = ""
content = ""
# Log what we received for debugging
logger.debug(f"[VERBOSE] Parsing {len(entries)} harmony entries")
for i, entry in enumerate(entries):
entry_dict = entry.to_dict()
logger.debug(f"[VERBOSE] Entry {i}: {json.dumps(entry_dict, indent=2)}")
# Extract content based on the message structure
if "content" in entry_dict:
if isinstance(entry_dict["content"], list):
for content_item in entry_dict["content"]:
if content_item.get("type") == "text":
text = content_item.get("text", "")
# Determine channel based on content or metadata
# This is a simplified approach - adjust based on actual harmony output
if "analysis" in str(entry_dict).lower() or i == 0:
think += text + "\n"
else:
content += text + "\n"
elif isinstance(entry_dict["content"], str):
# Simple string content
if i == 0: # First message is often reasoning
think = entry_dict["content"]
else:
content = entry_dict["content"]
# Clean up whitespace
think = think.strip()
content = content.strip()
# If we didn't parse anything, use the first entry as content
if not think and not content and entries:
content = str(entries[0].to_dict())
return {
"prompt": prompt,
"think": think,
"content": content,
"raw_output": json.dumps([e.to_dict() for e in entries], indent=2)
}
def create_dataset_card(
input_dataset: str,
model_id: str,
prompt_column: str,
reasoning_level: str,
num_examples: int,
generation_time: str,
tensor_parallel_size: int,
temperature: float,
max_tokens: int,
) -> str:
"""Create a dataset card documenting the generation process."""
return f"""---
tags:
- generated
- synthetic
- reasoning
- openai-gpt-oss
- harmony-format
---
# Generated Responses with Reasoning (Harmony Format)
This dataset contains AI-generated responses with transparent chain-of-thought reasoning using OpenAI GPT OSS models and the official harmony format.
## Generation Details
- **Source Dataset**: [{input_dataset}](https://huggingface.co/datasets/{input_dataset})
- **Model**: [{model_id}](https://huggingface.co/{model_id})
- **Reasoning Level**: {reasoning_level}
- **Number of Examples**: {num_examples:,}
- **Generation Date**: {generation_time}
- **Format**: Official OpenAI Harmony format
## Dataset Structure
Each example contains:
- `prompt`: The input prompt from the source dataset
- `think`: The model's internal reasoning process (analysis channel)
- `content`: The final response (final channel)
- `raw_output`: Complete harmony format output
- `reasoning_level`: The reasoning effort level used
- `model`: Model identifier
## Generation Script
Generated using [uv-scripts/openai-reasoning](https://huggingface.co/datasets/uv-scripts/openai-reasoning) with official harmony format.
To reproduce:
```bash
uv run gpt_oss_vllm_harmony.py \\
--input-dataset {input_dataset} \\
--output-dataset <your-dataset> \\
--prompt-column {prompt_column} \\
--model-id {model_id} \\
--reasoning-level {reasoning_level}
```
"""
def main(
input_dataset: str,
output_dataset_hub_id: str,
prompt_column: str = "prompt",
model_id: str = "openai/gpt-oss-20b",
reasoning_level: str = "high",
max_samples: Optional[int] = None,
temperature: float = 0.7,
max_tokens: int = 512,
gpu_memory_utilization: float = 0.90,
tensor_parallel_size: Optional[int] = None,
hf_token: Optional[str] = None,
):
"""
Main generation pipeline using official harmony format.
Args:
input_dataset: Source dataset on Hugging Face Hub
output_dataset_hub_id: Where to save results on Hugging Face Hub
prompt_column: Column containing the prompts
model_id: OpenAI GPT OSS model to use
reasoning_level: Reasoning effort level (high/medium/low)
max_samples: Maximum number of samples to process
temperature: Sampling temperature
max_tokens: Maximum tokens to generate
gpu_memory_utilization: GPU memory utilization factor
tensor_parallel_size: Number of GPUs to use (auto-detect if None)
hf_token: Hugging Face authentication token
"""
generation_start_time = datetime.now().isoformat()
# GPU check and configuration
num_gpus = check_gpu_availability()
if tensor_parallel_size is None:
tensor_parallel_size = num_gpus
logger.info(
f"Auto-detected {num_gpus} GPU(s), using tensor_parallel_size={tensor_parallel_size}"
)
# Authentication
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") or get_token()
if not HF_TOKEN:
logger.error("No HuggingFace token found. Please provide token via:")
logger.error(" 1. --hf-token argument")
logger.error(" 2. HF_TOKEN environment variable")
logger.error(" 3. Run 'huggingface-cli login'")
sys.exit(1)
logger.info("HuggingFace token found, authenticating...")
login(token=HF_TOKEN)
# Initialize harmony encoding
logger.info("Loading harmony encoding...")
encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
# Get stop tokens from harmony
stop_token_ids = encoding.stop_tokens_for_assistant_actions() # Note: plural "actions"
logger.info(f"[VERBOSE] Harmony stop token IDs: {stop_token_ids}")
# Initialize vLLM
logger.info(f"Loading model: {model_id}")
logger.info("Note: vLLM will handle batching automatically for optimal throughput")
try:
llm = LLM(
model=model_id,
tensor_parallel_size=tensor_parallel_size,
gpu_memory_utilization=gpu_memory_utilization,
trust_remote_code=True,
dtype="bfloat16",
)
logger.info("[VERBOSE] Model loaded successfully")
except Exception as e:
logger.error(f"Failed to load model with vLLM: {e}")
if "mxfp4" in str(e).lower():
logger.error("This appears to be a quantization format issue.")
logger.error("The model uses mxfp4 quantization which requires specific support.")
sys.exit(1)
# Create sampling parameters
sampling_params = SamplingParams(
temperature=temperature,
max_tokens=max_tokens,
stop_token_ids=stop_token_ids,
)
logger.info(f"[VERBOSE] Sampling params: temp={temperature}, max_tokens={max_tokens}")
# Load dataset
logger.info(f"Loading dataset: {input_dataset}")
dataset = load_dataset(input_dataset, split="train")
# Validate prompt column
if prompt_column not in dataset.column_names:
logger.error(
f"Column '{prompt_column}' not found. Available columns: {dataset.column_names}"
)
sys.exit(1)
# Limit samples if requested
if max_samples:
dataset = dataset.select(range(min(max_samples, len(dataset))))
total_examples = len(dataset)
logger.info(f"Processing {total_examples:,} examples")
# Prepare prompts using harmony format
logger.info(f"Preparing prompts with harmony format and reasoning_level={reasoning_level}...")
prefill_ids_list = []
prompts = []
for i, example in enumerate(tqdm(dataset, desc="Preparing prompts")):
prompt_text = example[prompt_column]
prompts.append(prompt_text)
# Create harmony conversation
# Inject reasoning level into developer message
developer_content = DeveloperContent.new()
if reasoning_level:
developer_content = developer_content.with_instructions(
f"Reasoning: {reasoning_level}"
)
convo = Conversation.from_messages([
Message.from_role_and_content(Role.SYSTEM, SystemContent.new()),
Message.from_role_and_content(Role.DEVELOPER, developer_content),
Message.from_role_and_content(Role.USER, prompt_text),
])
# Render to token IDs
prefill_ids = encoding.render_conversation_for_completion(convo, Role.ASSISTANT)
prefill_ids_list.append(prefill_ids)
# Log first few examples
if i < 10:
logger.info(f"[VERBOSE] Example {i} original text: {prompt_text[:200]}...")
logger.info(f"[VERBOSE] Example {i} prefill length: {len(prefill_ids)} tokens")
# Generate responses with vLLM
logger.info(f"Starting generation for {len(prefill_ids_list):,} prompts...")
logger.info("[VERBOSE] Using prompt_token_ids for generation")
start_time = time.time()
outputs = llm.generate(
prompt_token_ids=prefill_ids_list,
sampling_params=sampling_params,
)
end_time = time.time()
generation_time = end_time - start_time
logger.info(f"\n[VERBOSE] Generation Performance Metrics:")
logger.info(f"[VERBOSE] - Total time: {generation_time:.2f} seconds")
logger.info(f"[VERBOSE] - Throughput: {len(outputs) / generation_time:.2f} prompts/second")
logger.info(f"[VERBOSE] - Average time per prompt: {generation_time / len(outputs):.2f} seconds")
# Parse outputs using harmony format
logger.info("Parsing generated outputs with harmony format...")
results = []
# Track statistics
parse_stats = {"success": 0, "empty": 0, "error": 0}
for i, output in enumerate(tqdm(outputs, desc="Parsing outputs")):
gen = output.outputs[0]
text = gen.text
output_tokens = gen.token_ids
logger.debug(f"[VERBOSE] Output {i}: {len(output_tokens)} tokens, {len(text)} chars")
try:
# Parse with harmony
entries = encoding.parse_messages_from_completion_tokens(output_tokens, Role.ASSISTANT)
# Convert to our format
parsed = parse_harmony_messages(entries, prompts[i])
if parsed["think"] or parsed["content"]:
parse_stats["success"] += 1
else:
parse_stats["empty"] += 1
# Verbose logging for first 10 examples
if i < 10:
logger.info(f"\n[VERBOSE] ========== Example {i} Output ==========")
logger.info(f"[VERBOSE] Original prompt: {prompts[i][:200]}...")
logger.info(f"[VERBOSE] Raw text output: {text}")
logger.info(f"[VERBOSE] Harmony entries: {len(entries)}")
for j, entry in enumerate(entries):
logger.info(f"[VERBOSE] Entry {j}: {json.dumps(entry.to_dict(), indent=2)}")
logger.info(f"[VERBOSE] Parsed think ({len(parsed['think'])} chars): {parsed['think'][:500]}...")
logger.info(f"[VERBOSE] Parsed content ({len(parsed['content'])} chars): {parsed['content'][:500]}...")
logger.info(f"[VERBOSE] ====================================\n")
except Exception as e:
logger.error(f"[VERBOSE] Error parsing output {i}: {e}")
parse_stats["error"] += 1
# Fallback: use raw text
parsed = {
"prompt": prompts[i],
"think": "",
"content": text,
"raw_output": text
}
result = {
"prompt": parsed["prompt"],
"think": parsed["think"],
"content": parsed["content"],
"raw_output": parsed["raw_output"],
"reasoning_level": reasoning_level,
"model": model_id,
}
results.append(result)
# Log parsing statistics
logger.info(f"\n[VERBOSE] Parsing Statistics:")
logger.info(f"[VERBOSE] - Successfully parsed: {parse_stats['success']} ({parse_stats['success']/len(outputs)*100:.1f}%)")
logger.info(f"[VERBOSE] - Empty results: {parse_stats['empty']} ({parse_stats['empty']/len(outputs)*100:.1f}%)")
logger.info(f"[VERBOSE] - Parse errors: {parse_stats['error']} ({parse_stats['error']/len(outputs)*100:.1f}%)")
# Create dataset
logger.info("Creating output dataset...")
output_dataset = Dataset.from_list(results)
# Create dataset card
logger.info("Creating dataset card...")
card_content = create_dataset_card(
input_dataset=input_dataset,
model_id=model_id,
prompt_column=prompt_column,
reasoning_level=reasoning_level,
num_examples=total_examples,
generation_time=generation_start_time,
tensor_parallel_size=tensor_parallel_size,
temperature=temperature,
max_tokens=max_tokens,
)
# Push to hub
logger.info(f"Pushing dataset to: {output_dataset_hub_id}")
output_dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)
# Push dataset card
card = DatasetCard(card_content)
card.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)
logger.info("✅ Generation complete!")
logger.info(
f"Dataset available at: https://huggingface.co/datasets/{output_dataset_hub_id}"
)
# Final summary
logger.info(f"\n[VERBOSE] ========== FINAL SUMMARY ==========")
logger.info(f"[VERBOSE] Model: {model_id}")
logger.info(f"[VERBOSE] Reasoning level: {reasoning_level}")
logger.info(f"[VERBOSE] Examples processed: {total_examples}")
logger.info(f"[VERBOSE] Temperature: {temperature}")
logger.info(f"[VERBOSE] Max tokens: {max_tokens}")
logger.info(f"[VERBOSE] GPU config: {tensor_parallel_size} GPU(s)")
logger.info(f"[VERBOSE] ====================================")
if __name__ == "__main__":
if len(sys.argv) > 1:
parser = argparse.ArgumentParser(
description="Generate responses with reasoning using OpenAI GPT OSS models (Harmony format)",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Generate haiku with reasoning
uv run gpt_oss_vllm_harmony.py \\
--input-dataset davanstrien/haiku_dpo \\
--output-dataset username/haiku-reasoning \\
--prompt-column question
# Any prompt dataset
uv run gpt_oss_vllm_harmony.py \\
--input-dataset username/prompts \\
--output-dataset username/responses-reasoning \\
--reasoning-level high \\
--max-samples 100
# Use larger 120B model (requires 4x L40S GPUs)
uv run gpt_oss_vllm_harmony.py \\
--input-dataset username/prompts \\
--output-dataset username/responses-reasoning \\
--model-id openai/gpt-oss-120b \\
--tensor-parallel-size 4
""",
)
parser.add_argument(
"--input-dataset",
type=str,
required=True,
help="Input dataset on Hugging Face Hub",
)
parser.add_argument(
"--output-dataset",
type=str,
required=True,
help="Output dataset name on Hugging Face Hub",
)
parser.add_argument(
"--prompt-column",
type=str,
default="prompt",
help="Column containing prompts (default: prompt)",
)
parser.add_argument(
"--model-id",
type=str,
default="openai/gpt-oss-20b",
help="Model to use (default: openai/gpt-oss-20b)",
)
parser.add_argument(
"--reasoning-level",
type=str,
choices=["high", "medium", "low"],
default="high",
help="Reasoning effort level (default: high)",
)
parser.add_argument(
"--max-samples", type=int, help="Maximum number of samples to process"
)
parser.add_argument(
"--temperature",
type=float,
default=0.7,
help="Sampling temperature (default: 0.7)",
)
parser.add_argument(
"--max-tokens",
type=int,
default=512,
help="Maximum tokens to generate (default: 512)",
)
parser.add_argument(
"--gpu-memory-utilization",
type=float,
default=0.90,
help="GPU memory utilization (default: 0.90)",
)
parser.add_argument(
"--tensor-parallel-size",
type=int,
help="Number of GPUs to use (default: auto-detect)",
)
parser.add_argument(
"--hf-token",
type=str,
help="Hugging Face token (can also use HF_TOKEN env var)",
)
args = parser.parse_args()
main(
input_dataset=args.input_dataset,
output_dataset_hub_id=args.output_dataset,
prompt_column=args.prompt_column,
model_id=args.model_id,
reasoning_level=args.reasoning_level,
max_samples=args.max_samples,
temperature=args.temperature,
max_tokens=args.max_tokens,
gpu_memory_utilization=args.gpu_memory_utilization,
tensor_parallel_size=args.tensor_parallel_size,
hf_token=args.hf_token,
)
else:
# Show HF Jobs example when run without arguments
print("""
OpenAI GPT OSS Reasoning Generation Script (Harmony Format)
==========================================================
This script requires arguments. For usage information:
uv run gpt_oss_vllm_harmony.py --help
Example HF Jobs command for 20B model:
hf jobs uv run \\
--flavor a10g-large \\ # 20B model requires ~40GB memory
https://huggingface.co/datasets/uv-scripts/openai-reasoning/raw/main/gpt_oss_vllm_harmony.py \\
--input-dataset davanstrien/haiku_dpo \\
--output-dataset username/haiku-reasoning \\
--prompt-column question \\
--reasoning-level high
Example HF Jobs command for 120B model:
hf jobs uv run \\
--flavor l40s-4x \\ # 120B model requires ~240GB memory
https://huggingface.co/datasets/uv-scripts/openai-reasoning/raw/main/gpt_oss_vllm_harmony.py \\
--input-dataset username/prompts \\
--output-dataset username/responses-reasoning \\
--model-id openai/gpt-oss-120b \\
--reasoning-level high
""")