filefolder_name
stringlengths 4
88
| file_name
stringlengths 1
77
| input
stringlengths 84
5.03k
| output
stringlengths 136
5.55k
| source
stringclasses 3
values | instruct
stringclasses 1
value |
---|---|---|---|---|---|
code2_1 | 1 | void main() {
int x;
int y;
x = 1;
y = 0;
while (y < 100000) {
x = x + y;
y = y + 1;
}
//@ assert (x >= y) ;
} | void main() {
int x;
int y;
x = 1;
y = 0;
/*@
loop invariant y <= x;
loop invariant 0 <= y <= 100000;
loop invariant 1 <= x;
loop assigns y,x;
*/
while (y < 100000) {
x = x + y;
y = y + 1;
}
//@ assert (x >= y) ;
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
stack_pop_wd | stack_pop_wd | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns s->size;
ensures valid: \valid(s) && StackInvariant(s);
behavior empty:
assumes StackEmpty(s);
assigns \nothing;
ensures empty: StackEmpty(s);
ensures unchanged: StackUnchanged{Old,Here}(s);
behavior not_empty:
assumes !StackEmpty(s);
assigns s->size;
ensures size: StackSize(s) == StackSize{Old}(s) - 1;
ensures full: !StackFull(s);
ensures storage: StackStorage(s) == StackStorage{Old}(s);
ensures capacity: StackCapacity(s) == StackCapacity{Old}(s);
ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize(s));
complete behaviors;
disjoint behaviors;
*/
void
stack_pop(Stack* s);
void
stack_pop_wd(Stack* s, Stack* t)
{
//@ assert StackEqual{Here,Here}(s, t);
stack_pop(s);
stack_pop(t);
//@ assert StackEqual{Here,Here}(s, t);
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns s->size;
ensures valid: \valid(s) && StackInvariant(s);
behavior empty:
assumes StackEmpty(s);
assigns \nothing;
ensures empty: StackEmpty(s);
ensures unchanged: StackUnchanged{Old,Here}(s);
behavior not_empty:
assumes !StackEmpty(s);
assigns s->size;
ensures size: StackSize(s) == StackSize{Old}(s) - 1;
ensures full: !StackFull(s);
ensures storage: StackStorage(s) == StackStorage{Old}(s);
ensures capacity: StackCapacity(s) == StackCapacity{Old}(s);
ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize(s));
complete behaviors;
disjoint behaviors;
*/
void
stack_pop(Stack* s);
/*@
requires valid: \valid(s) && StackInvariant(s);
requires valid: \valid(t) && StackInvariant(t);
requires equal: StackEqual{Here,Here}(s, t);
requires sep: StackSeparated(s, t);
assigns s->size;
assigns t->size;
ensures valid: StackInvariant(s);
ensures valid: StackInvariant(t);
ensures equal: StackEqual{Here,Here}(s, t);
*/
void
stack_pop_wd(Stack* s, Stack* t)
{
//@ assert StackEqual{Here,Here}(s, t);
stack_pop(s);
stack_pop(t);
//@ assert StackEqual{Here,Here}(s, t);
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
general_wp_problem_add | add | #include <limits.h>
int add(int x, int y) {
return x+y;
}
void foo() {
int a = add(1, 43);
//@ assert a == 44;
int b = add(INT_MAX, INT_MAX);
} | #include <limits.h>
/*@
requires x >= INT_MIN && y >= INT_MIN;
ensures \result == x+y;
*/
int add(int x, int y) {
return x+y;
}
void foo() {
int a = add(1, 43);
//@ assert a == 44;
int b = add(INT_MAX, INT_MAX);
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
find2 | find2 | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic SomeNone
{
predicate
SomeEqual{A}(value_type* a, integer m, integer n, value_type v) =
\exists integer i; m <= i < n && a[i] == v;
predicate
SomeEqual{A}(value_type* a, integer n, value_type v) =
SomeEqual(a, 0, n, v);
predicate
NoneEqual(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] != v;
predicate
NoneEqual(value_type* a, integer n, value_type v) =
NoneEqual(a, 0, n, v);
lemma NotSomeEqual_NoneEqual:
\forall value_type *a, v, integer m, n;
!SomeEqual(a, m, n, v) ==> NoneEqual(a, m, n, v);
lemma NoneEqual_NotSomeEqual:
\forall value_type *a, v, integer m, n;
NoneEqual(a, m, n, v) ==> !SomeEqual(a, m, n, v);
}
*/
size_type
find2(const value_type* a, size_type n, value_type v)
{
for (size_type i = 0u; i < n; i++) {
if (a[i] == v) {
//@ assert SomeEqual(a, i+1, v);
return i;
}
}
//@ assert NoneEqual(a, n, v);
return n;
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic SomeNone
{
predicate
SomeEqual{A}(value_type* a, integer m, integer n, value_type v) =
\exists integer i; m <= i < n && a[i] == v;
predicate
SomeEqual{A}(value_type* a, integer n, value_type v) =
SomeEqual(a, 0, n, v);
predicate
NoneEqual(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] != v;
predicate
NoneEqual(value_type* a, integer n, value_type v) =
NoneEqual(a, 0, n, v);
lemma NotSomeEqual_NoneEqual:
\forall value_type *a, v, integer m, n;
!SomeEqual(a, m, n, v) ==> NoneEqual(a, m, n, v);
lemma NoneEqual_NotSomeEqual:
\forall value_type *a, v, integer m, n;
NoneEqual(a, m, n, v) ==> !SomeEqual(a, m, n, v);
}
*/
/*@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= n;
behavior some:
assumes SomeEqual(a, n, v);
assigns \nothing;
ensures bound: 0 <= \result < n;
ensures result: a[\result] == v;
ensures first: NoneEqual(a, \result, v);
behavior none:
assumes NoneEqual(a, n, v);
assigns \nothing;
ensures result: \result == n;
complete behaviors;
disjoint behaviors;
*/
size_type
find2(const value_type* a, size_type n, value_type v)
{
/*@
loop invariant bound: 0 <= i <= n;
loop invariant not_found: NoneEqual(a, i, v);
loop assigns i;
loop variant n-i;
*/
for (size_type i = 0u; i < n; i++) {
if (a[i] == v) {
//@ assert SomeEqual(a, i+1, v);
return i;
}
}
//@ assert NoneEqual(a, n, v);
return n;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_78 | 78 | /*@
requires x >= 0;
requires y >= 0;
requires x >= y;
*/
void foo(int x, int y) {
int i = 0;
while (unknown()) {
if (i < y)
{
i = i + 1;
}
}
if (i < y) {
//@ assert 0 <= i;
}
} | /*@
requires x >= 0;
requires y >= 0;
requires x >= y;
*/
void foo(int x, int y) {
int i = 0;
/*@
loop invariant i <= y;
loop invariant 0 <= i;
loop assigns i;
*/
while (unknown()) {
if (i < y)
{
i = i + 1;
}
}
if (i < y) {
//@ assert 0 <= i;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_88 | 88 | void foo(int x) {
int lock = 0;
int y = x + 1;
while (x != y) {
if (unknown()) {
lock = 1;
x = y;
} else {
lock = 0;
x = y;
y = y + 1;
}
}
//@ assert lock == 1;
} | void foo(int x) {
int lock = 0;
int y = x + 1;
/*@
loop invariant y <= x || x <= y;
loop invariant x <= y;
loop invariant x != y || x != y + 1;
loop invariant lock == 1 || lock != 1;
loop invariant lock == 1 ==> x == y;
loop invariant lock == 0 ==> y == x + 1;
loop invariant lock == 0 ==> x != y;
loop invariant x == y || x == y - 1;
loop invariant x == y || x != y;
loop invariant lock == 1 || lock == 0;
loop invariant lock == 0 || lock == 1;
loop invariant lock == 0 ==> lock != 1;
loop assigns x,y,lock;
*/
while (x != y) {
if (unknown()) {
lock = 1;
x = y;
} else {
lock = 0;
x = y;
y = y + 1;
}
}
//@ assert lock == 1;
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
replace_copy | replace_copy | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic Replace
{
predicate
Replace{K,L}(value_type* a, integer n, value_type* b,
value_type v, value_type w) =
\forall integer i; 0 <= i < n ==>
\let ai = \at(a[i],K);
\let bi = \at(b[i],L);
(ai == v ==> bi == w) && (ai != v ==> bi == ai) ;
predicate
Replace{K,L}(value_type* a, integer n, value_type v, value_type w) =
Replace{K,L}(a, n, a, v, w);
}
*/
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
size_type
replace_copy(const value_type* a, size_type n, value_type* b, value_type v,
value_type w)
{
for (size_type i = 0u; i < n; ++i) {
b[i] = (a[i] == v ? w : a[i]);
}
//@ assert Replace{Pre,Here}(a, n, b, v, w);
return n;
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic Replace
{
predicate
Replace{K,L}(value_type* a, integer n, value_type* b,
value_type v, value_type w) =
\forall integer i; 0 <= i < n ==>
\let ai = \at(a[i],K);
\let bi = \at(b[i],L);
(ai == v ==> bi == w) && (ai != v ==> bi == ai) ;
predicate
Replace{K,L}(value_type* a, integer n, value_type v, value_type w) =
Replace{K,L}(a, n, a, v, w);
}
*/
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b + (0..n-1));
assigns b[0..n-1];
ensures result: \result == n;
ensures replace: Replace{Old,Here}(a, n, b, v, w);
ensures unchanged: Unchanged{Old,Here}(a, n);
*/
size_type
replace_copy(const value_type* a, size_type n, value_type* b, value_type v,
value_type w)
{
/*@
loop invariant bounds: 0 <= i <= n;
loop invariant replace: Replace{Pre,Here}(a, i, b, v, w);
loop assigns i, b[0..n-1];
loop variant n-i;
*/
for (size_type i = 0u; i < n; ++i) {
b[i] = (a[i] == v ? w : a[i]);
}
//@ assert Replace{Pre,Here}(a, n, b, v, w);
return n;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_133 | 133 | /*@
requires n >= 0;
*/
void foo(int n) {
int x = 0;
while (x < n) {
x = x + 1;
}
//@ assert x == n;
} | /*@
requires n >= 0;
*/
void foo(int n) {
int x = 0;
/*@
loop invariant x <= n;
loop invariant 0 <= x;
loop assigns x;
*/
while (x < n) {
x = x + 1;
}
//@ assert x == n;
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
general_wp_problem_triangle_angles | triangle_angles | int triangle(int a, int b, int c) {
if ((a+b+c == 180) && a > 0 && b > 0 && c > 0) {
return 1;
} else {
return 0;
}
}
void check_validity() {
int res = triangle(90, 45, 45);
//@ assert res == 1;
res = triangle(90, 145, 145);
//@ assert res == 0;
} | /*@
requires a>0 && b>0 && c>0;
ensures \result == 1 <==> (a+b+c == 180) && (a > 0) && (b > 0) && (c > 0);
ensures \result == 0 <==> (a+b+c != 180) || (a <= 0) || (b <= 0) || (c <= 0);
*/
int triangle(int a, int b, int c) {
if ((a+b+c == 180) && a > 0 && b > 0 && c > 0) {
return 1;
} else {
return 0;
}
}
void check_validity() {
int res = triangle(90, 45, 45);
//@ assert res == 1;
res = triangle(90, 145, 145);
//@ assert res == 0;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
arrays_and_loops_1 | 1 | int area(int base, int height){
int res = (base * height)/2;
return res;
}
int main() {
int a = area(4, 5);
//@ assert a == 10;
} | /*@
requires base >= 0 && height >= 0;
ensures \result == (base * height)/2;
*/
int area(int base, int height){
int res = (base * height)/2;
return res;
}
int main() {
int a = area(4, 5);
//@ assert a == 10;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
pointers_max_pointer | max_pointers | int max_ptr(int *a, int *b){
return (*a < *b) ? *b : *a ;
}
extern int h;
int main() {
h = 42;
int a = 24;
int b = 42;
int x = max_ptr(&a, &b);
//@ assert x == 42;
//@ assert h == 42;
} | /*@
requires \valid_read(a) && \valid_read(b);
requires \separated(a, b);
assigns \nothing;
ensures \result >= *a && \result >= *b;
ensures \result == *a || \result == *b;
*/
int max_ptr(int *a, int *b){
return (*a < *b) ? *b : *a ;
}
extern int h;
int main() {
h = 42;
int a = 24;
int b = 42;
int x = max_ptr(&a, &b);
//@ assert x == 42;
//@ assert h == 42;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
arepina_sign | sign | int spec_sign(int x)
{
return (x > 0) - (x < 0);
}
#ifdef OUT_OF_TASK
#include <stdio.h>
int main(void)
{
int a = spec_sign(10);
//@ assert a == 1;
int b = spec_sign(0);
//@ assert b == 0;
}
#endif | /*@ assigns \nothing;
ensures \result == 0 || \result == 1 || \result == -1;
behavior positive:
assumes x > 0;
ensures \result == 1;
behavior zero:
assumes x == 0;
ensures \result == 0;
behavior negative:
assumes x < 0;
ensures \result == -1;
complete behaviors;
disjoint behaviors;
*/
int spec_sign(int x)
{
return (x > 0) - (x < 0);
}
#ifdef OUT_OF_TASK
#include <stdio.h>
int main(void)
{
int a = spec_sign(10);
//@ assert a == 1;
int b = spec_sign(0);
//@ assert b == 0;
}
#endif | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_132 | 132 | void foo(int j, int c, int t) {
int i = 0;
while(unknown()) {
if(c > 48) {
if (c < 57) {
j = i + i;
t = c - 48;
i = j + t;
}
}
}
//@ assert i >= 0;
} | void foo(int j, int c, int t) {
int i = 0;
/*@
loop invariant 0 <= i;
loop assigns t,j,i,c;
*/
while(unknown()) {
if(c > 48) {
if (c < 57) {
j = i + i;
t = c - 48;
i = j + t;
}
}
}
//@ assert i >= 0;
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
loops_fact | fact | #include <stdio.h>
/*@
axiomatic Factorial {
logic integer fact(integer n);
axiom case_n:
\forall integer n;
n >= 1 ==> fact(n) == n*fact(n-1);
axiom case_0:
fact(0) == 1;
}
*/
int factorial(int n) {
int i = 1;
int f = 1;
while (i <= n) {
f = f * i;
i = i + 1;
}
return f;
}
void main() {
int t = factorial(5);
//@ assert t == 120;
} | #include <stdio.h>
/*@
axiomatic Factorial {
logic integer fact(integer n);
axiom case_n:
\forall integer n;
n >= 1 ==> fact(n) == n*fact(n-1);
axiom case_0:
fact(0) == 1;
}
*/
/*@
requires n >= 0;
ensures \result == fact(n);
assigns \nothing ;
*/
int factorial(int n) {
int i = 1;
int f = 1;
/*@
loop invariant f == fact(i-1);
loop invariant 0 < i <= n+1;
loop assigns i, f;
*/
while (i <= n) {
f = f * i;
i = i + 1;
}
return f;
}
void main() {
int t = factorial(5);
//@ assert t == 120;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
nabinkrsah_Linear Search problem using behavior | Linear Search problem using behavior | #include <stddef.h>
int* search(int* array, size_t length, int element) {
for(size_t i = 0; i < length; i++)
if(array[i]==element) return &array[i];
return NULL;
}
void main() {
int a[] = {1, 5, 6, 7};
int* res = search(a, 4, 5);
} | #include <stddef.h>
/*@
requires \valid_read(array+(0..length-1));
assigns \nothing;
behavior in:
assumes \exists size_t off;0<=off<length&&array[off]==element;
ensures array<=\result<array+length&&*\result==element;
behavior notin:
assumes \forall size_t off;0<=off<length==>array[off]!=element;
ensures \result==NULL;
disjoint behaviors;
complete behaviors;
*/
int* search(int* array, size_t length, int element) {
/*@
loop invariant 0<=i<=length;
loop invariant \forall size_t j;0<=j<i==>array[j]!=element;
loop assigns i;
loop variant length-i;
*/
for(size_t i = 0; i < length; i++)
if(array[i]==element) return &array[i];
return NULL;
}
void main() {
int a[] = {1, 5, 6, 7};
int* res = search(a, 4, 5);
//@ assert *res == 5;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
corinnt_vowel-or-cons | vowel-or-cons | enum Kind { VOWEL, CONSONANT };
enum Kind kind_of_letter(char c) {
if (c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u'){
return VOWEL;
}
return CONSONANT;
}
void test(){
char a = 'a', b = 'b', c = 'c', e = 'e', z = 'z';
enum Kind kind_a = kind_of_letter(a);
//@ assert kind_a == VOWEL ;
enum Kind kind_b = kind_of_letter(b);
//@ assert kind_b == CONSONANT ;
enum Kind kind_c = kind_of_letter(c);
//@ assert kind_c == CONSONANT ;
enum Kind kind_e = kind_of_letter(e);
//@ assert kind_e == VOWEL ;
enum Kind kind_z = kind_of_letter(z);
//@ assert kind_z == CONSONANT ;
} | enum Kind { VOWEL, CONSONANT };
/*@
requires lowercase: 'a' <= c <= 'z' ;
assigns \nothing ;
behavior vowel:
assumes c \in {'a', 'e', 'i', 'o', 'u'} ;
ensures \result == VOWEL ;
behavior consonant:
assumes !(c \in {'a', 'e', 'i', 'o', 'u'}) ;
ensures \result == CONSONANT ;
complete behaviors;
disjoint behaviors;
*/
enum Kind kind_of_letter(char c) {
if (c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u'){
return VOWEL;
}
return CONSONANT;
}
void test(){
char a = 'a', b = 'b', c = 'c', e = 'e', z = 'z';
enum Kind kind_a = kind_of_letter(a);
//@ assert kind_a == VOWEL ;
enum Kind kind_b = kind_of_letter(b);
//@ assert kind_b == CONSONANT ;
enum Kind kind_c = kind_of_letter(c);
//@ assert kind_c == CONSONANT ;
enum Kind kind_e = kind_of_letter(e);
//@ assert kind_e == VOWEL ;
enum Kind kind_z = kind_of_letter(z);
//@ assert kind_z == CONSONANT ;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
miscellaneous_increment_arr | increment_arr | void increment_array_by(int* arr, int n, int c) {
for (int i = 0; i < n; i++) {
arr[i] = arr[i] + c;
}
}
void main() {
int arr[5] = {1, 2, 3, 4, 5};
increment_array_by(arr, 5, 2);
//@ assert arr[0] == 3;
//@ assert arr[1] == 4;
//@ assert arr[2] == 5;
//@ assert arr[3] == 6;
//@ assert arr[4] == 7;
} | /*@
requires n > 0;
requires \valid_read(arr+(0..n-1));
ensures \forall integer k; 0 <= k < n ==> arr[k] == (\at(arr[k], Pre) + c);
*/
void increment_array_by(int* arr, int n, int c) {
/*@
loop invariant 0 <= i <= n;
loop invariant \forall integer k; 0 <= k < i ==> arr[k] == \at(arr[k], Pre) + c;
loop invariant \forall integer k; i <= k < n ==> arr[k] == \at(arr[k], Pre);
loop assigns i, arr[0..n-1];
*/
for (int i = 0; i < n; i++) {
arr[i] = arr[i] + c;
}
}
void main() {
int arr[5] = {1, 2, 3, 4, 5};
increment_array_by(arr, 5, 2);
//@ assert arr[0] == 3;
//@ assert arr[1] == 4;
//@ assert arr[2] == 5;
//@ assert arr[3] == 6;
//@ assert arr[4] == 7;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_70 | 70 | /*@
requires n > 0;
*/
void foo(int n) {
int x = 1;
int y = 0;
while (x <= n) {
y = n - x;
x = x +1;
}
if (n > 0) {
//@ assert y < n;
}
} | /*@
requires n > 0;
*/
void foo(int n) {
int x = 1;
int y = 0;
/*@
loop invariant n > 0 ==> y >= 0;
loop invariant n > 0 ==> y < n;
loop invariant y <= n;
loop invariant x <= n+1;
loop invariant x <= n + 1;
loop invariant 1 <= x;
loop invariant 0 <= y;
loop invariant 0 <= x;
loop assigns y;
loop assigns x;
*/
while (x <= n) {
y = n - x;
x = x +1;
}
if (n > 0) {
//@ assert y < n;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_121 | 121 | int main() {
int i = 1;
int sn = 0;
while (i <= 8) {
i = i + 1;
sn = sn + 1;
}
if (sn != 0) {
//@ assert sn == 8;
}
} | int main() {
int i = 1;
int sn = 0;
/*@
loop invariant sn == i-1;
loop invariant sn == i - 1;
loop invariant i <= 9;
loop invariant 1 <= i;
loop assigns sn;
loop assigns i;
*/
while (i <= 8) {
i = i + 1;
sn = sn + 1;
}
if (sn != 0) {
//@ assert sn == 8;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_105 | 105 | /*@
requires n >= 0;
*/
void foo(int n) {
int x = 0;
while (x < n) {
x = x + 1;
}
if (n >= 0) {
//@ assert x == n;
}
} | /*@
requires n >= 0;
*/
void foo(int n) {
int x = 0;
/*@
loop invariant x <= n;
loop invariant 0 <= x;
loop assigns x;
*/
while (x < n) {
x = x + 1;
}
if (n >= 0) {
//@ assert x == n;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_49 | 49 | int unknown();
/*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
while (unknown()) {
if (unknown()) {
if (c != n) {
c = c + 1;
}
} else {
if (c == n) {
c = 1;
}
}
}
if (n <= -1) {
//@ assert c != n;
}
} | int unknown();
/*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
/*@
loop invariant \exists integer k; k < 0 && c == n ==> c == 1;
loop invariant 0 <= c;
loop assigns n,c;
*/
while (unknown()) {
if (unknown()) {
if (c != n) {
c = c + 1;
}
} else {
if (c == n) {
c = 1;
}
}
}
if (n <= -1) {
//@ assert c != n;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
nabinkrsah_Binary Search problem using behavior | Binary Search problem using behavior | #include<stdio.h>
/*@
predicate sorted(int* a, int length)=\forall integer i,j;0<=i<j<length==>a[i]<=a[j];
*/
int binary_search(int* a, int n, int v) {
int l=0,u=n-1;
while(l<=u) {
int m=l+(u-l)/2;
if(a[m]==v) return m;
else if(a[m]<v) l=m+1;
else u=m-1;
}
return -1;
}
void main() {
int a[] = {1, 3, 4, 5, 9};
int n = sizeof(a) / sizeof(a[0]);
//@ assert sorted(a + 0, n);
int res = binary_search(a, n, 5);
//@ assert res==3;
} | #include<stdio.h>
/*@
predicate sorted(int* a, int length)=\forall integer i,j;0<=i<j<length==>a[i]<=a[j];
*/
/*@
requires n>=0&&\valid_read(a+(0..n-1));
requires sorted(a,n);
assigns \nothing;
behavior exists:
assumes \exists integer i;0<=i<n&&a[i]==v;
ensures 0<=\result<n&&a[\result]==v;
behavior not_exists:
assumes \forall integer i;0<=i<n==>a[i]!=v;
ensures \result==-1;
complete behaviors;
disjoint behaviors;
*/
int binary_search(int* a, int n, int v) {
int l=0,u=n-1;
/*@
loop invariant 0<=l<=u+1;
loop invariant u<n;
loop assigns l,u;
loop invariant \forall integer k;0<=k<l==>a[k]<v;
loop invariant \forall integer k;u<k<n==>a[k]>v;
loop variant u-l;
*/
while(l<=u) {
int m=l+(u-l)/2;
if(a[m]==v) return m;
else if(a[m]<v) l=m+1;
else u=m-1;
}
return -1;
}
void main() {
int a[] = {1, 3, 4, 5, 9};
int n = sizeof(a) / sizeof(a[0]);
//@ assert sorted(a + 0, n);
int res = binary_search(a, n, 5);
//@ assert res==3;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
min_element | min_element | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic ArrayBounds
{
predicate
LowerBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> v <= a[i];
predicate
LowerBound{L}(value_type* a, integer n, value_type v) =
LowerBound{L}(a, 0, n, v);
predicate
StrictLowerBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> v < a[i];
predicate
StrictLowerBound{L}(value_type* a, integer n, value_type v) =
StrictLowerBound{L}(a, 0, n, v);
predicate
UpperBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] <= v;
predicate
UpperBound{L}(value_type* a, integer n, value_type v) =
UpperBound{L}(a, 0, n, v);
predicate
StrictUpperBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] < v;
predicate
StrictUpperBound{L}(value_type* a, integer n, value_type v) =
StrictUpperBound{L}(a, 0, n, v);
}
*/
/*@
axiomatic ArrayExtrema
{
predicate
MaxElement{L}(value_type* a, integer n, integer max) =
0 <= max < n && UpperBound(a, n, a[max]);
predicate
MinElement{L}(value_type* a, integer n, integer min) =
0 <= min < n && LowerBound(a, n, a[min]);
}
*/
size_type
min_element(const value_type* a, size_type n)
{
if (0u < n) {
size_type min = 0u;
for (size_type i = 0u; i < n; i++) {
if (a[i] < a[min]) {
min = i;
}
}
//@ assert MinElement(a, n, min);
return min;
}
return n;
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic ArrayBounds
{
predicate
LowerBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> v <= a[i];
predicate
LowerBound{L}(value_type* a, integer n, value_type v) =
LowerBound{L}(a, 0, n, v);
predicate
StrictLowerBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> v < a[i];
predicate
StrictLowerBound{L}(value_type* a, integer n, value_type v) =
StrictLowerBound{L}(a, 0, n, v);
predicate
UpperBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] <= v;
predicate
UpperBound{L}(value_type* a, integer n, value_type v) =
UpperBound{L}(a, 0, n, v);
predicate
StrictUpperBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] < v;
predicate
StrictUpperBound{L}(value_type* a, integer n, value_type v) =
StrictUpperBound{L}(a, 0, n, v);
}
*/
/*@
axiomatic ArrayExtrema
{
predicate
MaxElement{L}(value_type* a, integer n, integer max) =
0 <= max < n && UpperBound(a, n, a[max]);
predicate
MinElement{L}(value_type* a, integer n, integer min) =
0 <= min < n && LowerBound(a, n, a[min]);
}
*/
/*@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= n;
behavior empty:
assumes n == 0;
assigns \nothing;
ensures result: \result == 0;
behavior not_empty:
assumes 0 < n;
assigns \nothing;
ensures result: 0 <= \result < n;
ensures min: MinElement(a, n, \result);
ensures first: StrictLowerBound(a, \result, a[\result]);
complete behaviors;
disjoint behaviors;
*/
size_type
min_element(const value_type* a, size_type n)
{
if (0u < n) {
size_type min = 0u;
/*@
loop invariant bound: 0 <= i <= n;
loop invariant min: 0 <= min < n;
loop invariant lower: LowerBound(a, i, a[min]);
loop invariant first: StrictLowerBound(a, min, a[min]);
loop assigns min, i;
loop variant n-i;
*/
for (size_type i = 0u; i < n; i++) {
if (a[i] < a[min]) {
min = i;
}
}
//@ assert MinElement(a, n, min);
return min;
}
return n;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
corinnt_dist | dist | #include <limits.h>
int distance(int a, int b) {
if (a < b) return b - a;
else return a - b;
}
int main(){
int a = -10;
int b = 10;
int result = distance(a, b);
//@ assert result == 20;
return 0;
} | #include <limits.h>
/*@
requires INT_MIN < a - b < INT_MAX ||
INT_MIN < b - a < INT_MAX;
ensures positive_value: function_result: \result >= 0;
ensures correct_sum: (a - b) >= 0 <==> \result == (a - b) &&
(a - b) <= 0 <==> \result == (b - a);
assigns \nothing;
*/
int distance(int a, int b) {
if (a < b) return b - a;
else return a - b;
}
int main(){
int a = -10;
int b = 10;
int result = distance(a, b);
//@ assert result == 20;
return 0;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
axiom_top_of_push | axiom_top_of_push | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns s->size, s->obj[s->size];
behavior full:
assumes StackFull(s);
assigns \nothing;
ensures valid: \valid(s) && StackInvariant(s);
ensures full: StackFull(s);
ensures unchanged: StackUnchanged{Old,Here}(s);
behavior not_full:
assumes !StackFull(s);
assigns s->size;
assigns s->obj[s->size];
ensures valid: \valid(s) && StackInvariant(s);
ensures size: StackSize(s) == StackSize{Old}(s) + 1;
ensures top: StackTop(s) == v;
ensures storage: StackStorage(s) == StackStorage{Old}(s);
ensures capacity: StackCapacity(s) == StackCapacity{Old}(s);
ensures not_empty: !StackEmpty(s);
ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize{Old}(s));
complete behaviors;
disjoint behaviors;
*/
void
stack_push(Stack* s, value_type v);
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns \nothing;
ensures top: !StackEmpty(s) ==> \result == StackTop(s);
*/
value_type
stack_top(const Stack* s);
value_type
axiom_top_of_push(Stack* s, value_type v)
{
stack_push(s, v);
//@ assert StackTop(s) == v;
return stack_top(s);
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns s->size, s->obj[s->size];
behavior full:
assumes StackFull(s);
assigns \nothing;
ensures valid: \valid(s) && StackInvariant(s);
ensures full: StackFull(s);
ensures unchanged: StackUnchanged{Old,Here}(s);
behavior not_full:
assumes !StackFull(s);
assigns s->size;
assigns s->obj[s->size];
ensures valid: \valid(s) && StackInvariant(s);
ensures size: StackSize(s) == StackSize{Old}(s) + 1;
ensures top: StackTop(s) == v;
ensures storage: StackStorage(s) == StackStorage{Old}(s);
ensures capacity: StackCapacity(s) == StackCapacity{Old}(s);
ensures not_empty: !StackEmpty(s);
ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize{Old}(s));
complete behaviors;
disjoint behaviors;
*/
void
stack_push(Stack* s, value_type v);
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns \nothing;
ensures top: !StackEmpty(s) ==> \result == StackTop(s);
*/
value_type
stack_top(const Stack* s);
/*@
requires valid: \valid(s) && StackInvariant(s);
requires not_full: !StackFull(s);
assigns s->size, s->obj[s->size];
ensures top: \result == v;
*/
value_type
axiom_top_of_push(Stack* s, value_type v)
{
stack_push(s, v);
//@ assert StackTop(s) == v;
return stack_top(s);
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
mutable_arrays_array_double | array_double | void arrayDouble(int *a, unsigned int n) {
int p = 0;
while (p < n) {
a[p] = a[p] * 2;
p = p + 1;
}
}
int main() {
int arr[] = {0,1,2,3,4,5};
arrayDouble(arr, 6);
//@ assert arr[0] == 0;
//@ assert arr[1] == 2;
//@ assert arr[2] == 4;
//@ assert arr[3] == 6;
//@ assert arr[4] == 8;
//@ assert arr[5] == 10;
} | /*@
requires n > 0;
requires \valid_read(a+(0..n-1));
ensures \forall integer k; 0 <= k < n ==> a[k] == \old(a[k])*2;
*/
void arrayDouble(int *a, unsigned int n) {
int p = 0;
/*@
loop invariant 0 <= p <= n;
loop invariant \forall integer k; 0 <= k < p ==> a[k] == \at(a[k], Pre) * 2;
loop invariant \forall integer k; p <= k < n ==> a[k] == \at(a[k], Pre);
loop assigns p, a[0..n-1];
loop variant n - p;
*/
while (p < n) {
a[p] = a[p] * 2;
p = p + 1;
}
}
int main() {
int arr[] = {1,3,5,7,8};
arrayDouble(arr, 5);
//@ assert arr[0] == 2;
//@ assert arr[1] == 6;
//@ assert arr[2] == 10;
//@ assert arr[3] == 14;
//@ assert arr[4] == 16;
return 0;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
general_wp_problem_diff | diff | #include <limits.h>
int diff (int x, int y) {
return x-y;
}
void main() {
int t = diff(10, 5);
//@ assert t == 5;
} | #include <limits.h>
/*@
requires (x > INT_MIN) && (y > INT_MIN);
ensures y == x-\result;
*/
int diff (int x, int y) {
return x-y;
}
void main() {
int t = diff(10, 5);
//@ assert t == 5;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_59 | 59 | /*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
while (unknown()) {
if (unknown()) {
if (c != n) {
c = c + 1;
}
} else {
if (c == n) {
c = 1;
}
}
}
if (c != n) {
//@ assert c <= n;
}
} | /*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
/*@
loop invariant 0 <= c <= n;
loop invariant c <= n || 0 < n;
loop invariant 0 < n;
loop invariant (c == n || c != n);
loop assigns n,c;
*/
while (unknown()) {
if (unknown()) {
if (c != n) {
c = c + 1;
}
} else {
if (c == n) {
c = 1;
}
}
}
if (c != n) {
//@ assert c <= n;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
evdenis_small-examples_lower_bound | lower_bound | unsigned lower_bound(const int *a, unsigned n, int val)
{
unsigned left = 0;
unsigned right = n;
unsigned middle = 0;
while (left < right) {
middle = left + (right - left) / 2;
if (a[middle] < val) {
//@ assert \forall integer i; 0 <= i < middle+1 ==> a[i] < val;
left = middle + 1;
} else right = middle;
}
return left;
}
int main(){
unsigned n = 5;
int a[5] = {1, 2, 3, 4, 5};
unsigned result = lower_bound(a, n, 3);
//@ assert result == 2;
return 0;
} | /*@ requires \valid(a + (0..n-1));
requires \forall integer i, integer j; 0 <= i < j < n ==> a[i] <= a[j];
assigns \nothing;
ensures 0 <= \result <= n;
ensures \forall integer k; 0 <= k < \result ==> a[k] < val;
ensures \forall integer k; \result <= k < n ==> val <= a[k];
*/
unsigned lower_bound(const int *a, unsigned n, int val)
{
unsigned left = 0;
unsigned right = n;
unsigned middle = 0;
/*@ loop invariant 0 <= left <= right <= n;
loop assigns middle, left, right;
loop invariant \forall integer i; 0 <= i < left ==> a[i] < val;
loop invariant \forall integer i; right <= i < n ==> val <= a[i];
loop variant right - left;
*/
while (left < right) {
middle = left + (right - left) / 2;
if (a[middle] < val) {
//@ assert \forall integer i; 0 <= i < middle+1 ==> a[i] < val;
left = middle + 1;
} else right = middle;
}
return left;
}
int main(){
unsigned n = 5;
int a[5] = {1, 2, 3, 4, 5};
unsigned result = lower_bound(a, n, 3);
//@ assert result == 2;
return 0;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
suman1406_FindMaxElement | FindMaxElement | int findMax(int arr[], int n) {
int max = arr[0];
for (int i = 1; i < n; i++) {
if (arr[i] > max) {
max = arr[i];
}
}
return max;
}
int main(){
int arr[] = {0, 1, 2, 3, 4};
int n = sizeof(arr) / sizeof(arr[0]);
int max = findMax(arr, n);
//@ assert \forall integer i; 0 <= i < n ==> arr[i] <= max;
return 0;
} | /*@ requires n > 0;
requires \valid(arr + (0..n-1));
assigns \nothing;
ensures \forall integer i; 0 <= i < n ==> arr[i] <= \result;
*/
int findMax(int arr[], int n) {
int max = arr[0];
/*@ loop invariant 1 <= i <= n;
loop invariant \forall integer j; 0 <= j < i ==> arr[j] <= max;
loop assigns i,max;
loop variant n - i;
*/
for (int i = 1; i < n; i++) {
if (arr[i] > max) {
max = arr[i];
}
}
return max;
}
int main(){
int arr[] = {0, 1, 2, 3, 4};
int n = sizeof(arr) / sizeof(arr[0]);
int max = findMax(arr, n);
//@ assert \forall integer i; 0 <= i < n ==> arr[i] <= max;
return 0;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_9 | 9 | /*@
requires 0 <= x <= 2;
requires 0 <= y <= 2;
*/
void foo(int x, int y) {
while (unknown()) {
x = x + 2;
y = y + 2;
}
if (x == 4) {
//@ assert y != 0;
}
} | /*@
requires 0 <= x <= 2;
requires 0 <= y <= 2;
*/
void foo(int x, int y) {
/*@
loop invariant x == 4 ==> y != 0;
loop invariant 0 <= y;
loop invariant 0 <= x;
loop assigns y,x;
*/
while (unknown()) {
x = x + 2;
y = y + 2;
}
if (x == 4) {
//@ assert y != 0;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
gpetiot_Frama-C-StaDy_first_subset | first_subset | void firstSubset(int s[], int n) {
int k;
for ( k = 0; k < n; k++) {
s[k] = 0;
}
}
int main(){
int s[3];
firstSubset(s, 3);
//@ assert s[0] == 0 && s[1] == 0 && s[2] == 0;
} | /*@
requires \valid(s + (0 .. n - 1)) && n >= 1;
assigns s[0 .. n - 1];
ensures \forall integer k; 0 <= k < n ==> s[k] == 0;
*/
void firstSubset(int s[], int n) {
/*@
loop invariant 0 <= k <= n;
loop invariant \forall integer i; 0 <= i < k ==> s[i] == 0;
loop assigns k, s[0 .. n - 1];
loop variant n - k;
*/
for (int k = 0; k < n; k++) {
s[k] = 0;
}
}
int main(){
int s[3];
firstSubset(s, 3);
//@ assert s[0] == 0 && s[1] == 0 && s[2] == 0;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
loops_1 | 1 | int main(){
int i=0;
while (i<30){
++i;
}
//@assert i==30;
} | int main(){
int i=0;
/*@
loop invariant 0 <= i <= 30;
*/
while (i<30){
++i;
}
//@assert i==30;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
general_wp_problem_gcd | gcd | /*@
logic integer gcd(integer a, integer b) =
(a==0)?b:
(b==0)?a:
(a==b)?a:
(a>b)? gcd(a-b, b) : gcd(a, b-a);
*/
int gcd(int a, int b) {
if (a == 0)
return b;
if (b == 0)
return a;
if (a == b)
return a;
if (a > b)
return gcd(a-b, b);
return gcd(a, b-a);
}
int main()
{
int a = 98, b = 56;
int c = gcd(a, b);
//@ assert c == 14;
return 0;
} | /*@
logic integer gcd(integer a, integer b) =
(a==0)?b:
(b==0)?a:
(a==b)?a:
(a>b)? gcd(a-b, b) : gcd(a, b-a);
*/
/*@
requires a>0 && b>0;
assigns \nothing;
behavior exit1:
assumes a == 0;
ensures \result == b;
behavior exit2:
assumes b == 0;
ensures \result == a;
behavior exit3:
assumes a == b;
ensures \result == a;
behavior exit4:
assumes a > b;
ensures \result == gcd(a-b,b);
behavior exit5:
assumes a < b;
ensures \result == gcd(a,b-a);
complete behaviors;
disjoint behaviors;
*/
int gcd(int a, int b) {
if (a == 0)
return b;
if (b == 0)
return a;
if (a == b)
return a;
if (a > b)
return gcd(a-b, b);
return gcd(a, b-a);
}
int main()
{
int a = 98, b = 56;
int c = gcd(a, b);
//@ assert c == 14;
return 0;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
evdenis_small-examples_mod | mod | int mod(int a, int b)
{
return a % b;
}
int main(){
int a = 10000;
int b = 3;
int c = mod(a,b);
//@ assert c == 1;
} | /*@ requires b != 0;
assigns \nothing;
ensures \result == (a % b);
*/
int mod(int a, int b)
{
return a % b;
}
int main(){
int a = 10000;
int b = 3;
int c = mod(a,b);
//@ assert c == 1;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_129 | 129 | void foo(int y) {
int x = 1;
while (x < y) {
x = x + x;
}
//@ assert x >= 1;
} | void foo(int y) {
int x = 1;
/*@
loop invariant 1 <= x;
loop assigns y;
loop assigns x;
*/
while (x < y) {
x = x + x;
}
//@ assert x >= 1;
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_42 | 42 | int unknown();
/*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
while (unknown()) {
if (unknown()) {
if (c > n) {
c = c + 1;
}
} else {
if (c == n) {
c = 1;
}
}
}
if (c < 0) {
if (c > n) {
//@ assert c == n;
}
}
} | int unknown();
/*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
/*@
loop invariant c > n ==> c == n + 1;
loop invariant c <= n;
loop invariant c <= 1 || c > n;
loop invariant c < 0 ==> c == n;
loop invariant c != n;
loop invariant c != -1;
loop invariant 0 <= c;
loop invariant (c > n) || (c <= n);
loop assigns n,c;
*/
while (unknown()) {
if (unknown()) {
if (c > n) {
c = c + 1;
}
} else {
if (c == n) {
c = 1;
}
}
}
if (c < 0) {
if (c > n) {
//@ assert c == n;
}
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
copy | copy | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
void
copy(const value_type* a, size_type n, value_type* b)
{
for (size_type i = 0u; i < n; ++i) {
b[i] = a[i];
}
//@ assert Equal{Pre,Here}(a, n, b);
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b);
assigns b[0..n-1];
ensures equal: Equal{Old,Here}(a, n, b);
*/
void
copy(const value_type* a, size_type n, value_type* b)
{
/*@
loop invariant bound: 0 <= i <= n;
loop invariant equal: Equal{Pre,Here}(a, i, b);
loop invariant unchanged: Unchanged{Pre,Here}(a, i, n);
loop assigns i, b[0..n-1];
loop variant n-i;
*/
for (size_type i = 0u; i < n; ++i) {
b[i] = a[i];
}
//@ assert Equal{Pre,Here}(a, n, b);
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
miscellaneous_array_find | array_find | int array_find(int* arr, int n, int x) {
int i = 0;
for (i = 0; i < n; i++) {
if (arr[i] == x) {
return i;
}
}
return -1;
}
void main() {
int arr[5] = {1, 2, 3, 4, 5};
int index = array_find(arr, 5, 3);
//@ assert index == 2;
} | /*@
requires n >= 0;
requires \valid_read(arr+(0..n-1));
assigns \nothing;
ensures -1 <= \result < n;
ensures 0 <= \result < n ==> arr[\result] == x;
ensures (\result == -1) ==> (\forall integer i; 0 <= i < n ==> arr[i] != x);
assigns \nothing;
*/
int array_find(int* arr, int n, int x) {
int i = 0;
/*@
loop invariant 0 <= i <= n;
loop invariant \forall integer k; 0 <= k < i ==> arr[k] != x;
loop assigns i;
loop variant n-i;
*/
for (i = 0; i < n; i++) {
if (arr[i] == x) {
return i;
}
}
return -1;
}
void main() {
int arr[5] = {1, 2, 3, 4, 5};
int index = array_find(arr, 5, 3);
//@ assert index == 2;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
evdenis_small-examples_rshift | rshift | unsigned rshift(unsigned a)
{
return a >> 1;
}
int main(){
unsigned a = 10;
unsigned b = rshift(a);
//@ assert b == 5;
} | /*@ assigns \nothing;
ensures \result == a / 2;
*/
unsigned rshift(unsigned a)
{
return a >> 1;
}
int main(){
unsigned a = 10;
unsigned b = rshift(a);
//@ assert b == 5;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
arepina_abs_impletentation | abs_impletentation | #define SPEC_INT_MIN -2147483648
#define SPEC_INT_MAX 2147483647
long spec_abs1(int a)
{
long abs;
abs = a;
if (a < 0) {
abs = -abs;
}
return abs;
}
#ifdef OUT_OF_TASK
#include <stdio.h>
int main(void)
{
int a = spec_abs1(SPEC_INT_MIN+1);
//@ assert a == SPEC_INT_MAX;
}
#endif | #define SPEC_INT_MIN -2147483648
#define SPEC_INT_MAX 2147483647
/*@ assigns \nothing;
ensures \result >= 0;
behavior positive:
assumes a > 0;
ensures \result == a;
behavior zero:
assumes a == 0;
ensures \result == 0;
ensures \result == a;
behavior negative:
assumes a < 0;
ensures \result == -a;
complete behaviors;
disjoint behaviors;
*/
long spec_abs1(int a)
{
long abs;
abs = a;
if (a < 0) {
abs = -abs;
}
return abs;
}
#ifdef OUT_OF_TASK
#include <stdio.h>
int main(void)
{
int a = spec_abs1(SPEC_INT_MIN+1);
//@ assert a == SPEC_INT_MAX;
}
#endif | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_90 | 90 | void foo(int x) {
int lock = 0;
int y = x + 1;
while (x != y) {
if (unknown()) {
lock = 1;
x = y;
} else {
lock = 0;
x = y;
y = y + 1;
}
}
//@ assert lock == 1;
} | void foo(int x) {
int lock = 0;
int y = x + 1;
/*@
loop invariant x <= y;
loop invariant x != y ==> lock == 0;
loop invariant lock == 0 ==> x + 1 == y;
loop invariant x == y || x == y - 1;
loop invariant x == y || x + 1 == y;
loop invariant lock == 1 ==> x == y;
loop invariant lock == 0 || lock == 1;
loop invariant lock <= 1;
loop invariant 0 <= lock;
loop assigns x,y,lock;
*/
while (x != y) {
if (unknown()) {
lock = 1;
x = y;
} else {
lock = 0;
x = y;
y = y + 1;
}
}
//@ assert lock == 1;
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
rotate | rotate | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic Reverse
{
predicate
Reverse{K,L}(value_type* a, integer n, value_type* b) =
\forall integer i; 0 <= i < n ==> \at(a[i],K) == \at(b[n-1-i], L);
predicate
Reverse{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Reverse{K,L}(a+m, n-m, b+p);
predicate
Reverse{K,L}(value_type* a, integer m, integer n, value_type* b) =
Reverse{K,L}(a, m, n, b, m);
predicate
Reverse{K,L}(value_type* a, integer m, integer n, integer p) =
Reverse{K,L}(a, m, n, a, p);
predicate
Reverse{K,L}(value_type* a, integer m, integer n) =
Reverse{K,L}(a, m, n, m);
predicate
Reverse{K,L}(value_type* a, integer n) = Reverse{K,L}(a, 0, n);
}
*/
/*@
requires valid: \valid(a + (0..n-1));
assigns a[0..n-1];
ensures reverse: Reverse{Old,Here}(a, n);
*/
void
reverse(value_type* a, size_type n);
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
size_type
rotate(value_type* a, size_type m, size_type n)
{
if ((0u < m) && (m < n)) {
reverse(a, m);
reverse(a + m, n - m);
reverse(a, n);
//@ assert left: Equal{Pre,Here}(a, 0, m, n-m);
//@ assert right: Equal{Pre,Here}(a, m, n, 0);
}
return n - m;
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic Reverse
{
predicate
Reverse{K,L}(value_type* a, integer n, value_type* b) =
\forall integer i; 0 <= i < n ==> \at(a[i],K) == \at(b[n-1-i], L);
predicate
Reverse{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Reverse{K,L}(a+m, n-m, b+p);
predicate
Reverse{K,L}(value_type* a, integer m, integer n, value_type* b) =
Reverse{K,L}(a, m, n, b, m);
predicate
Reverse{K,L}(value_type* a, integer m, integer n, integer p) =
Reverse{K,L}(a, m, n, a, p);
predicate
Reverse{K,L}(value_type* a, integer m, integer n) =
Reverse{K,L}(a, m, n, m);
predicate
Reverse{K,L}(value_type* a, integer n) = Reverse{K,L}(a, 0, n);
}
*/
/*@
requires valid: \valid(a + (0..n-1));
assigns a[0..n-1];
ensures reverse: Reverse{Old,Here}(a, n);
*/
void
reverse(value_type* a, size_type n);
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
requires valid: \valid(a + (0..n-1));
requires bound: m <= n;
assigns a[0..n-1];
ensures result: \result == n-m;
ensures left: Equal{Old,Here}(a, 0, m, n-m);
ensures right: Equal{Old,Here}(a, m, n, 0);
*/
size_type
rotate(value_type* a, size_type m, size_type n)
{
if ((0u < m) && (m < n)) {
reverse(a, m);
reverse(a + m, n - m);
/*@
requires left: Reverse{Pre,Here}(a, 0, m, 0);
requires right: Reverse{Pre,Here}(a, m, n, m);
assigns a[0..n-1];
ensures left: Reverse{Old,Here}(a, 0, m, n-m);
ensures right: Reverse{Old,Here}(a, m, n, 0);
*/
reverse(a, n);
//@ assert left: Equal{Pre,Here}(a, 0, m, n-m);
//@ assert right: Equal{Pre,Here}(a, m, n, 0);
}
return n - m;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
nabinkrsah_Increment function with precondition and postcondition. | Increment function with precondition and postcondition. | #include<stdio.h>
#include<limits.h>
int inc(int n)
{
return n+1;
}
void main()
{
int a=10;
int k=inc(a);
//@ assert k==11;
} | #include<stdio.h>
#include<limits.h>
/*@ requires -100000<=n<=100000;
ensures \result==n+1;
*/
int inc(int n)
{
return n+1;
}
void main()
{
int a=10;
int k=inc(a);
//@ assert k==11;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
arepina_lower_bound | lower_bound | unsigned lower_bound(const int *a, unsigned n, int val)
{
unsigned left = 0;
unsigned right = n;
unsigned middle = 0;
while (left < right) {
middle = left + (right - left) / 2;
if (a[middle] < val) {
//@ assert \forall integer i; 0 <= i < middle+1 ==> a[i] < val;
left = middle + 1;
} else right = middle;
}
return left;
}
#ifdef OUT_OF_TASK
#include <stdio.h>
#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
int main(void)
{
int a[] = {0};
int b[] = {0,1};
int c[] = {0,1,2,3,4,5};
int res;
res = lower_bound(a, ARRAY_SIZE(a), 0);
printf("res: %d\n", res);
res = lower_bound(b, ARRAY_SIZE(b), 1);
printf("res: %d\n", res);
res = lower_bound(c, ARRAY_SIZE(c), 10);
printf("res: %d\n", res);
}
#endif | /*@ requires \valid(a + (0..n-1));
requires \forall integer i, integer j; 0 <= i < j < n ==> a[i] <= a[j];
assigns \nothing;
ensures 0 <= \result <= n;
ensures \forall integer k; 0 <= k < \result ==> a[k] < val;
ensures \forall integer k; \result <= k < n ==> val <= a[k];
*/
unsigned lower_bound(const int *a, unsigned n, int val)
{
unsigned left = 0;
unsigned right = n;
unsigned middle = 0;
/*@ loop invariant 0 <= left <= right <= n;
loop assigns middle, left, right;
loop invariant \forall integer i; 0 <= i < left ==> a[i] < val;
loop invariant \forall integer i; right <= i < n ==> val <= a[i];
loop variant right - left;
*/
while (left < right) {
middle = left + (right - left) / 2;
if (a[middle] < val) {
//@ assert \forall integer i; 0 <= i < middle+1 ==> a[i] < val;
left = middle + 1;
} else right = middle;
}
return left;
}
#ifdef OUT_OF_TASK
#include <stdio.h>
#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
int main(void)
{
int a[] = {0};
int b[] = {0,1};
int c[] = {0,1,2,3,4,5};
int res;
res = lower_bound(a, ARRAY_SIZE(a), 0);
printf("res: %d\n", res);
res = lower_bound(b, ARRAY_SIZE(b), 1);
printf("res: %d\n", res);
res = lower_bound(c, ARRAY_SIZE(c), 10);
printf("res: %d\n", res);
}
#endif | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_15 | 15 | /*@
requires n > 0;
*/
void foo(int n)
{
int x = 0;
int m = 0;
while (x < n) {
if (unknown()) {
m = x;
}
x = x + 1;
}
if(n > 0) {
//@ assert m < n;
//@ assert m >= 0;
}
} | /*@
requires n > 0;
*/
void foo(int n)
{
int x = 0;
int m = 0;
/*@
loop invariant x <= n;
loop invariant n > 0 ==> m >= 0;
loop invariant n > 0 ==> m < n;
loop invariant m <= x;
loop invariant 0 <= x;
loop assigns x,m;
*/
while (x < n) {
if (unknown()) {
m = x;
}
x = x + 1;
}
if(n > 0) {
//@ assert m < n;
//@ assert m >= 0;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
X509-parser_bufs_differ | bufs_differ | #include <stdint.h>
#include <unistd.h>
#include <string.h>
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
#define X509_FILE_NUM 0
/*@
predicate bmatch(u8 *b1, u8 *b2, u32 n) =
\forall integer i; 0 <= i < n ==> b1[i] == b2[i];
predicate bdiffer(u8 *b1, u8 *b2, u32 n) =
! bmatch(b1, b2, n);
*/
int bufs_differ(const u8 *b1, const u8 *b2, u32 n)
{
int ret = 0;
u32 i = 0;
for (i = 0; i < n; i++) {
if(b1[i] != b2[i]) {
ret = 1;
break;
}
}
return ret;
}
int main() {
u8 b1[10] = {1,2,3,4,5,6,7,8,9,10};
u8 b2[10] = {10,9,8,7,6,5,4,3,2,1};
u8 b3[10] = {1,2,3,4,5,6,7,8,9,10};
u32 n = 10;
int ret1 = bufs_differ(b1, b3, n);
//@ assert ret1 == 0;
int ret2 = bufs_differ(b1, b2, n);
//@ assert ret2 == 1;
return 0;
} | #include <stdint.h>
#include <unistd.h>
#include <string.h>
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
#define X509_FILE_NUM 0
/*@
predicate bmatch(u8 *b1, u8 *b2, u32 n) =
\forall integer i; 0 <= i < n ==> b1[i] == b2[i];
predicate bdiffer(u8 *b1, u8 *b2, u32 n) =
! bmatch(b1, b2, n);
*/
/*@
requires \valid_read(b1 + (0 .. n-1));
requires \valid_read(b2 + (0 .. n-1));
requires \valid(b1 + (0 .. n-1));
requires \valid(b2 + (0 .. n-1));
requires n >= 0;
ensures \result == 0 <==> bmatch(b1, b2, n);
ensures \result == 1 <==> bdiffer(b1, b2, n);
assigns \nothing;
*/
int bufs_differ(const u8 *b1, const u8 *b2, u32 n)
{
int ret = 0;
u32 i = 0;
/*@
loop invariant 0 <= i <= n;
loop invariant bmatch(b1, b2, i);
loop assigns i;
loop variant n - i;
*/
for (i = 0; i < n; i++) {
if(b1[i] != b2[i]) {
ret = 1;
break;
}
}
return ret;
}
int main() {
u8 b1[10] = {1,2,3,4,5,6,7,8,9,10};
u8 b2[10] = {10,9,8,7,6,5,4,3,2,1};
u8 b3[10] = {1,2,3,4,5,6,7,8,9,10};
u32 n = 10;
int ret1 = bufs_differ(b1, b3, n);
//@ assert ret1 == 0;
int ret2 = bufs_differ(b1, b2, n);
//@ assert ret2 == 1;
return 0;
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_67 | 67 | /*@
requires n > 0;
*/
void foo(int n) {
int y = 0;
int x = 1;
while (x <= n) {
y = n - x;
x = x +1;
}
if (n > 0) {
//@ assert y >= 0;
}
} | /*@
requires n > 0;
*/
void foo(int n) {
int y = 0;
int x = 1;
/*@
loop invariant y <= n;
loop invariant x <= n+1;
loop invariant x <= n + 1;
loop invariant 1 <= x;
loop invariant 0 <= y;
loop invariant 0 <= x;
loop assigns y,x;
*/
while (x <= n) {
y = n - x;
x = x +1;
}
if (n > 0) {
//@ assert y >= 0;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
pointers_reset_1st | reset_1st | void reset_1st_if_2nd_is_true(int* a, int const* b){
if(*b) *a = 0 ;
}
int main(){
int a = 5 ;
int x = 0 ;
reset_1st_if_2nd_is_true(&a, &x);
//@ assert a == 5 ;
//@ assert x == 0 ;
int const b = 1 ;
reset_1st_if_2nd_is_true(&a, &b);
//@ assert a == 0 ;
//@ assert b == 1 ;
} | /*@
requires \valid(a) && \valid_read(b);
requires \separated(a, b);
assigns *a;
ensures \old(*b) ==> *a == 0;
ensures ! \old(*b) ==> *a == \old(*a);
ensures *b == \old(*b);
*/
void reset_1st_if_2nd_is_true(int* a, int const* b){
if(*b) *a = 0 ;
}
int main(){
int a = 5 ;
int x = 0 ;
reset_1st_if_2nd_is_true(&a, &x);
//@ assert a == 5 ;
//@ assert x == 0 ;
int const b = 1 ;
reset_1st_if_2nd_is_true(&a, &b);
//@ assert a == 0 ;
//@ assert b == 1 ;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_64 | 64 | int main() {
int x = 1;
int y = 0;
while (x <= 10) {
y = 10 - x;
x = x +1;
}
//@ assert y < 10;
} | int main() {
int x = 1;
int y = 0;
/*@
loop invariant y < 10;
loop invariant y <= 10;
loop invariant x <= 11;
loop invariant 1 <= x;
loop invariant 0 <= y;
loop invariant 0 <= x;
loop assigns y,x;
*/
while (x <= 10) {
y = 10 - x;
x = x +1;
}
//@ assert y < 10;
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_115 | 115 | int main() {
int sn = 0;
int x = 0;
while (unknown()) {
x = x + 1;
sn = sn + 1;
}
if (sn != -1) {
//@ assert sn == x;
}
} | int main() {
int sn = 0;
int x = 0;
/*@
loop invariant x == sn;
loop invariant sn == x;
loop invariant 0 <= x;
loop invariant 0 <= sn;
loop assigns x;
loop assigns sn;
*/
while (unknown()) {
x = x + 1;
sn = sn + 1;
}
if (sn != -1) {
//@ assert sn == x;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
general_wp_problem_wp1 | wp1 | #include <limits.h>
int function(int x, int y) {
int res ;
y += 10 ;
x -= 5 ;
res = x + y ;
//@ assert -15 <= res <= 5;
return res ;
}
void main() {
int t = function(-5, 5);
//@ assert t == 5;
} | #include <limits.h>
/*@
requires INT_MIN <= x <= INT_MAX;
requires INT_MIN <= y <= INT_MAX;
requires -20 <= x + y <= 0;
ensures \result == x + y + 5;
*/
int function(int x, int y) {
int res ;
y += 10 ;
x -= 5 ;
res = x + y ;
//@ assert -15 <= res <= 5;
return res ;
}
// write a test
void main() {
int t = function(-5, 5);
// -5 -5 + 5 + 10 = 5
//@ assert t == 5;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
suman1406_Q4 | Q4 | #include <assert.h>
int unknown1();
int unknown2();
int unknown3();
int unknown4();
int main() {
int w = 1;
int z = 0;
int x = 0;
int y = 0;
while (unknown2()) {
if (w % 2 == 1) {
x++;
w++;
}
if (z % 2 == 0) {
y++;
z++;
}
}
//@ assert x <= 1;
return 0;
} | #include <assert.h>
int unknown1();
int unknown2();
int unknown3();
int unknown4();
int main() {
int w = 1;
int z = 0;
int x = 0;
int y = 0;
/*@
loop invariant z % 2 == 0 ==> y == z;
loop invariant x <= 1;
loop invariant w % 2 == 1 ==> x == w - 1;
loop invariant z % 2 == y;
loop invariant y == z;
loop invariant w == z || w == z + 1;
loop invariant w == 2 * x || w == 2 * x + 1;
loop invariant 1 <= w;
loop assigns x,y,w,z;
*/
while (unknown2()) {
if (w % 2 == 1) {
x++;
w++;
}
if (z % 2 == 0) {
y++;
z++;
}
}
//@ assert x <= 1;
return 0;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
pointers_add_pointers | add_pointers | #include <limits.h>
int add(int *p, int *q) {
return *p + *q;
}
int main() {
int a = 24;
int b = 32;
int x;
x = add(&a, &b) ;
//@ assert x == a + b ;
//@ assert x == 56 ;
x = add(&a, &a) ;
//@ assert x == a + a ;
//@ assert x == 48 ;
} | #include <limits.h>
/*@
requires \valid_read(p) && \valid_read(q);
requires *p + *q <= INT_MAX;
requires *p + *q >= INT_MIN;
assigns \nothing;
ensures \result == *p + *q;
*/
int add(int *p, int *q) {
return *p + *q;
}
int main() {
int a = 24;
int b = 32;
int x;
x = add(&a, &b) ;
//@ assert x == a + b ;
//@ assert x == 56 ;
x = add(&a, &a) ;
//@ assert x == a + a ;
//@ assert x == 48 ;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
evdenis_small-examples_clamp | clamp | int clamp(int v, int min, int max)
{
int low = v > min ? v : min;
return low < max ? low : max;
}
int main(){
int a = 10;
int b = 20;
int c = clamp(a, b, 15);
//@ assert c == 15;
} | /*@
assigns \nothing;
ensures \result == \min(\max(min, v), max);
*/
int clamp(int v, int min, int max)
{
int low = v > min ? v : min;
return low < max ? low : max;
}
int main(){
int a = 10;
int b = 20;
int c = clamp(a, b, 15);
//@ assert c == 15;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
nabinkrsah_Examples illustrating the usage of labels | Examples illustrating the usage of labels | #include<stdio.h>
#include<limits.h>
void function(int* a, int const* b)
{
*a += *b;
}
void main() {
int a = 6;
int b = 4;
L1:
function(&a, &b);
//@assert \at(a,Here)==10 && b==4;
//@assert \at(a,L1)==6 && \at(b,L1)==4;
} | #include<stdio.h>
#include<limits.h>
/*@
requires INT_MIN<=*a+*b<=INT_MAX;
requires \valid(a) && \valid_read(b);
requires \separated(a, b);
assigns *a;
ensures *a==\old(*a)+*b;
ensures *b==\old(*b);
*/
void function(int* a, int const* b)
{
*a += *b;
}
void main() {
int a = 6;
int b = 4;
L1:
function(&a, &b);
//@assert \at(a,Here)==10 && b==4;
//@assert \at(a,L1)==6 && \at(b,L1)==4;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
21176_BL.EN.U4CSE21176_4 | BL.EN.U4CSE21176_4 | #include<limits.h>
int check(int n){
if(n%2==0)
return 1;
else
return 0;
}
int main(){
int a=4;
int r=check(a);
//@assert a==4;
} | #include<limits.h>
/*@
requires INT_MIN<=n<INT_MAX;
ensures (n%2==0 ==> \result==1) && (n%2!=0 ==> \result==0);
*/
int check(int n){
if(n%2==0)
return 1;
else
return 0;
}
int main(){
int a=4;
int r=check(a);
//@assert a==4;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
frama-c-wp-tutorial-en_8 | 8 | int day_of(int m){
int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
return days[m-1];
}
int main(){
int m2 = day_of(2);
//@ assert m2 == 28;
int m1 = day_of(1);
//@ assert m1 == 31;
int m4 = day_of(4);
//@ assert m4 == 30;
return 0;
} | /*@
requires 1 <= m <= 12;
ensures m \in {2} ==> \result == 28;
ensures m \in {1, 3, 5, 7, 8, 10, 12} ==> \result == 31;
ensures m \in {4, 6, 9, 11} ==> \result == 30;
*/
int day_of(int m){
int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
return days[m-1];
}
int main(){
int m2 = day_of(2);
//@ assert m2 == 28;
int m1 = day_of(1);
//@ assert m1 == 31;
int m4 = day_of(4);
//@ assert m4 == 30;
return 0;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_8 | 8 | /*@
requires 0 <= x <= 10;
requires 0 <= y <= 10;
*/
void foo(int x, int y) {
while (unknown()) {
x = x + 10;
y = y + 10;
}
if (y == 0) {
//@ assert x != 20;
}
} | /*@
requires 0 <= x <= 10;
requires 0 <= y <= 10;
*/
void foo(int x, int y) {
/*@
loop invariant y == 0 ==> x != 20;
loop invariant y <= x + 10;
loop invariant 0 <= y;
loop invariant 0 <= x;
loop assigns y,x;
*/
while (unknown()) {
x = x + 10;
y = y + 10;
}
if (y == 0) {
//@ assert x != 20;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_95 | 95 | void foo(int x) {
int i = 0;
int j = 0;
int y = 0;
while (i <= x) {
i = i + 1;
j = j + y;
}
if (y == 1) {
//@ assert i == j;
}
} | void foo(int x) {
int i = 0;
int j = 0;
int y = 0;
/*@
loop invariant y == 0 || y == 1;
loop invariant y <= 1;
loop invariant j == y*i;
loop invariant j == y*(i-1);
loop invariant j == y * i;
loop invariant j <= y*(x+1);
loop invariant j <= i*y;
loop invariant 0 <= y;
loop invariant 0 <= j;
loop invariant 0 <= i;
loop assigns y,i,j;
*/
while (i <= x) {
i = i + 1;
j = j + y;
}
if (y == 1) {
//@ assert i == j;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
axiom_push_of_pop_top | axiom_push_of_pop_top | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns s->size;
ensures valid: \valid(s) && StackInvariant(s);
behavior empty:
assumes StackEmpty(s);
assigns \nothing;
ensures empty: StackEmpty(s);
ensures unchanged: StackUnchanged{Old,Here}(s);
behavior not_empty:
assumes !StackEmpty(s);
assigns s->size;
ensures size: StackSize(s) == StackSize{Old}(s) - 1;
ensures full: !StackFull(s);
ensures storage: StackStorage(s) == StackStorage{Old}(s);
ensures capacity: StackCapacity(s) == StackCapacity{Old}(s);
ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize(s));
complete behaviors;
disjoint behaviors;
*/
void
stack_pop(Stack* s);
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns s->size, s->obj[s->size];
behavior full:
assumes StackFull(s);
assigns \nothing;
ensures valid: \valid(s) && StackInvariant(s);
ensures full: StackFull(s);
ensures unchanged: StackUnchanged{Old,Here}(s);
behavior not_full:
assumes !StackFull(s);
assigns s->size;
assigns s->obj[s->size];
ensures valid: \valid(s) && StackInvariant(s);
ensures size: StackSize(s) == StackSize{Old}(s) + 1;
ensures top: StackTop(s) == v;
ensures storage: StackStorage(s) == StackStorage{Old}(s);
ensures capacity: StackCapacity(s) == StackCapacity{Old}(s);
ensures not_empty: !StackEmpty(s);
ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize{Old}(s));
complete behaviors;
disjoint behaviors;
*/
void
stack_push(Stack* s, value_type v);
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns \nothing;
ensures top: !StackEmpty(s) ==> \result == StackTop(s);
*/
value_type
stack_top(const Stack* s);
void
axiom_push_of_pop_top(Stack* s)
{
const value_type v = stack_top(s);
//@ assert StackTop(s) == v;
stack_pop(s);
stack_push(s, v);
//@ assert StackTop(s) == v;
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns s->size;
ensures valid: \valid(s) && StackInvariant(s);
behavior empty:
assumes StackEmpty(s);
assigns \nothing;
ensures empty: StackEmpty(s);
ensures unchanged: StackUnchanged{Old,Here}(s);
behavior not_empty:
assumes !StackEmpty(s);
assigns s->size;
ensures size: StackSize(s) == StackSize{Old}(s) - 1;
ensures full: !StackFull(s);
ensures storage: StackStorage(s) == StackStorage{Old}(s);
ensures capacity: StackCapacity(s) == StackCapacity{Old}(s);
ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize(s));
complete behaviors;
disjoint behaviors;
*/
void
stack_pop(Stack* s);
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns s->size, s->obj[s->size];
behavior full:
assumes StackFull(s);
assigns \nothing;
ensures valid: \valid(s) && StackInvariant(s);
ensures full: StackFull(s);
ensures unchanged: StackUnchanged{Old,Here}(s);
behavior not_full:
assumes !StackFull(s);
assigns s->size;
assigns s->obj[s->size];
ensures valid: \valid(s) && StackInvariant(s);
ensures size: StackSize(s) == StackSize{Old}(s) + 1;
ensures top: StackTop(s) == v;
ensures storage: StackStorage(s) == StackStorage{Old}(s);
ensures capacity: StackCapacity(s) == StackCapacity{Old}(s);
ensures not_empty: !StackEmpty(s);
ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize{Old}(s));
complete behaviors;
disjoint behaviors;
*/
void
stack_push(Stack* s, value_type v);
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns \nothing;
ensures top: !StackEmpty(s) ==> \result == StackTop(s);
*/
value_type
stack_top(const Stack* s);
/*@
requires valid: \valid(s) && StackInvariant(s);
requires not_empty: !StackEmpty(s);
assigns s->size, s->obj[s->size-1];
ensures equal: StackEqual{Old,Here}(s, s);
*/
void
axiom_push_of_pop_top(Stack* s)
{
const value_type v = stack_top(s);
//@ assert StackTop(s) == v;
stack_pop(s);
stack_push(s, v);
//@ assert StackTop(s) == v;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_123 | 123 | /*@
requires size >= 1;
*/
void foo(int size) {
int i = 1;
int sn = 0;
while (i <= size) {
i = i + 1;
sn = sn + 1;
}
if(sn != 0) {
//@ assert sn == size;
}
} | /*@
requires size >= 1;
*/
void foo(int size) {
int i = 1;
int sn = 0;
/*@
loop invariant sn == i-1;
loop invariant sn == i - 1;
loop invariant sn <= size;
loop invariant i <= size+1;
loop invariant i <= size + 1;
loop invariant 1 <= i;
loop invariant 0 <= sn;
loop assigns sn;
loop assigns i;
*/
while (i <= size) {
i = i + 1;
sn = sn + 1;
}
if(sn != 0) {
//@ assert sn == size;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_18 | 18 | /*@
requires n > 1;
*/
void foo(int n)
{
int x = 1;
int m = 1;
while (x < n) {
if (unknown()) {
m = x;
}
x = x + 1;
}
if(n > 1) {
//@ assert m < n;
//@ assert m >= 1;
}
} | /*@
requires n > 1;
*/
void foo(int n)
{
int x = 1;
int m = 1;
/*@
loop invariant 1 <= x <= n;
loop invariant 1 <= m <= x;
loop invariant m <= n;
loop invariant (m == 1 || (m >= 1 && m < x));
loop assigns x,m;
*/
while (x < n) {
if (unknown()) {
m = x;
}
x = x + 1;
}
if(n > 1) {
//@ assert m < n;
//@ assert m >= 1;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
corinnt_order_inc_min | order_inc_min | /*@
requires \valid(a) && \valid(b);
assigns *a, *b ;
behavior reorder:
assumes *a < *b ;
ensures *a == \old(*b) && *b == \old(*a) ;
behavior do_not_change:
assumes *a >= *b ;
ensures *a == \old(*a) && *b == \old(*b) ;
complete behaviors ;
disjoint behaviors ;
*/
void max_ptr(int* a, int* b){
if(*a < *b){
int tmp = *b ;
*b = *a ;
*a = tmp ;
}
//@ assert *a >= *b ;
}
/*@
requires \valid(a) && \valid(b);
assigns *a, *b ;
behavior reorder:
assumes *a > *b ;
ensures *a == \old(*b) && *b == \old(*a) ;
behavior do_not_change:
assumes *a <= *b ;
ensures *a == \old(*a) && *b == \old(*b) ;
complete behaviors ;
disjoint behaviors ;
*/
void min_ptr(int* a, int* b){
max_ptr(b, a);
//@ assert *a <= *b ;
}
void order_3_inc_min(int* a, int* b, int* c) {
min_ptr(a, b) ;
min_ptr(a, c);
min_ptr(b, c);
//@ assert *a <= *b && *b <= *c ;
} | /*@
requires \valid(a) && \valid(b);
assigns *a, *b ;
behavior reorder:
assumes *a < *b ;
ensures *a == \old(*b) && *b == \old(*a) ;
behavior do_not_change:
assumes *a >= *b ;
ensures *a == \old(*a) && *b == \old(*b) ;
complete behaviors ;
disjoint behaviors ;
*/
void max_ptr(int* a, int* b){
if(*a < *b){
int tmp = *b ;
*b = *a ;
*a = tmp ;
}
//@ assert *a >= *b ;
}
/*@
requires \valid(a) && \valid(b);
assigns *a, *b ;
behavior reorder:
assumes *a > *b ;
ensures *a == \old(*b) && *b == \old(*a) ;
behavior do_not_change:
assumes *a <= *b ;
ensures *a == \old(*a) && *b == \old(*b) ;
complete behaviors ;
disjoint behaviors ;
*/
void min_ptr(int* a, int* b){
max_ptr(b, a);
//@ assert *a <= *b ;
}
/*@ requires \valid(a) && \valid(b) && \valid(c) ;
requires \separated(a, b, c);
assigns *a, *b, *c ;
ensures { \old(*a), \old(*b), \old(*c) } == { *a, *b, *c };
behavior all_equal:
assumes *a == *b == *c ;
ensures *a == *b == *c;
behavior all_uequal:
assumes *a != *b && *a != *c && *b != *c ;
ensures *a != *b && *a != *c && *b != *c ;
behavior two_eq_lt:
assumes *a == *b < *c ||
*a == *c < *b ||
*b == *c < *a;
ensures *a == *b;
behavior two_eq_gt:
assumes *a == *b > *c ||
*a == *c > *b ||
*b == *c > *a;
ensures *b == *c;
complete behaviors ;
disjoint behaviors ;
*/
void order_3_inc_min(int* a, int* b, int* c) {
min_ptr(a, b) ;
min_ptr(a, c);
min_ptr(b, c);
//@ assert *a <= *b && *b <= *c ;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
loops_2 | 2 | #include <stdlib.h>
int sum(char n) {
int s = 0;
char k = 0;
while(k <= n) {
s = s + (int)k;
k = k + 1;
}
//@ assert s == (int)((n+1)*(n)/2);
return (int)s;
}
int main() {
int s = sum(5);
//@ assert s == 15;
} | #include <stdlib.h>
/*@
requires n >= 0 && n <= 100;
ensures \result >= 0;
ensures \result == (int)((n+1)*(n)/2);
assigns \nothing;
*/
int sum(char n) {
int s = 0;
char k = 0;
/*@
loop invariant 0 <= k <= n+1;
loop invariant s == (k-1)*(k)/2;
loop assigns k, s;
loop variant n - k;
*/
while(k <= n) {
s = s + (int)k;
k = k + 1;
}
//@ assert s == (int)((n+1)*(n)/2);
return (int)s;
}
int main() {
int s = sum(5);
//@ assert s == 15;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_20 | 20 | /*@
requires n > 0;
*/
void foo(int n)
{
int x = 0;
int m = 0;
while (x < n) {
if (unknown()) {
m = x;
}
x = x + 1;
}
if(n > 0) {
//@ assert m < n;
//@ assert m >= 0;
}
} | /*@
requires n > 0;
*/
void foo(int n)
{
int x = 0;
int m = 0;
/*@
loop invariant 0 <= x <= n;
loop invariant 0 <= m <= x;
loop invariant m < n;
loop assigns x,m;
*/
while (x < n) {
if (unknown()) {
m = x;
}
x = x + 1;
}
//post-condition
if(n > 0) {
//@ assert m < n;
//@ assert m >= 0;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
miscellaneous_max_of_2 | max_of_2 | int max(int x, int y) {
if (x >= y) {
return x;
}
return y;
}
int main() {
int a = 5;
int b = 10;
int result = max(a, b);
//@ assert result == 10;
return 0;
} | /*@
ensures \result == x || \result == y;
ensures \result >= x && \result >= y;
*/
int max(int x, int y) {
if (x >= y) {
return x;
}
return y;
}
int main() {
int a = 5;
int b = 10;
int result = max(a, b);
//@ assert result == 10;
return 0;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
nikunjjain02_Arrays_4 | Arrays_4 | #include<stdio.h>
/*@predicate sorted(int* a, int length)=\forall integer i,j;0<=i<=j<length==>a[i]<=a[j];
*/
int binary_search(int* a, int n, int v) {
int l=0,u=n-1;
while(l<=u) {
int m=l+(u-l)/2;
if(a[m]==v) return m;
else if(a[m]<v) l=m+1;
else u=m-1;
}
return -1;
}
void main() {
int a[] = {3,4,5,13,21};
//@ assert sorted(a, 5);
int res = binary_search(a, 5, 5);
//@ assert res == 2;
} | #include<stdio.h>
/*@predicate sorted(int* a, int length)=\forall integer i,j;0<=i<=j<length==>a[i]<=a[j];
*/
/*@
requires n>=0&&\valid_read(a+(0..n-1));
requires sorted(a,n);
assigns \nothing;
behavior exists:
assumes \exists integer i;0<=i<n&&a[i]==v;
ensures 0<=\result<n&&a[\result]==v;
behavior not_exists:
assumes \forall integer i;0<=i<n==>a[i]!=v;
ensures \result==-1;
complete behaviors;
disjoint behaviors;
*/
int binary_search(int* a, int n, int v) {
int l=0,u=n-1;
/*@
loop invariant 0<=l<=u+1;
loop invariant u<n;
loop assigns l,u;
loop invariant \forall integer k;0<=k<l==>a[k]<v;
loop invariant \forall integer k;u<k<n==>a[k]>v;
loop variant u-l;
*/
while(l<=u) {
int m=l+(u-l)/2;
if(a[m]==v) return m;
else if(a[m]<v) l=m+1;
else u=m-1;
}
return -1;
}
void main() {
int a[] = {3,4,5,13,21};
int res = binary_search(a, 5, 5);
//@ assert res == 2;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
evdenis_small-examples_divmult | divmult | int divmult(int a, int b)
{
return (a / b) * b + (a % b);
}
int main(){
int a = 10;
int b = 3;
int c = divmult(a, b);
//@ assert c == 10;
return 0;
} | /*@
requires b != 0;
requires b != -1;
assigns \nothing;
ensures \result == a/b * b + a % b;
*/
int divmult(int a, int b)
{
return (a / b) * b + (a % b);
}
int main(){
int a = 10;
int b = 3;
int c = divmult(a, b);
//@ assert c == 10;
return 0;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_44 | 44 | int unknown();
/*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
while (unknown()) {
if (unknown()) {
if (c > n) {
c = c + 1;
}
} else {
if (c == n) {
c = 1;
}
}
}
if (n <= -1) {
//@ assert c != n;
}
} | int unknown();
/*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
/*@
loop invariant n - c;
loop invariant c != n;
loop invariant 0 <= c <= n;
loop invariant 0 < n;
loop assigns n,c;
*/
while (unknown()) {
if (unknown()) {
if (c > n) {
c = c + 1;
}
} else {
if (c == n) {
c = 1;
}
}
}
if (n <= -1) {
//@ assert c != n;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_112 | 112 | /*@
requires 1 <= n;
*/
void foo(int n) {
int i = 1;
int sn = 0;
while (i <= n) {
i = i + 1;
sn = sn + 1;
}
if(sn != n) {
//@ assert sn == 0;
}
} | /*@
requires 1 <= n;
*/
void foo(int n) {
int i = 1;
int sn = 0;
/*@
loop invariant sn == i-1;
loop invariant sn == i - 1;
loop invariant i <= n+1;
loop invariant i <= n + 1;
loop invariant 1 <= i;
loop assigns sn;
loop assigns i;
*/
while (i <= n) {
i = i + 1;
sn = sn + 1;
}
if(sn != n) {
//@ assert sn == 0;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
21176_BL.EN.U4CSE21176_22 | BL.EN.U4CSE21176_22 | #include<stddef.h>
void reset(int* array,size_t length){
for(size_t i=0;i<length;i++){
array[i]=0;}
}
int main(){
int a[]={1,2,3,4,5};
reset(a,5);
//@ assert a[0] == 0;
//@ assert a[1] == 0;
//@ assert a[2] == 0;
//@ assert a[3] == 0;
//@ assert a[4] == 0;
} | #include<stddef.h>
/*@
requires \valid(array + (0..length-1));
assigns array[0..length-1];
ensures \forall size_t i; 0 <= i < length ==> array[i] == 0;
*/
void reset(int* array,size_t length){
/*@
loop invariant 0 <= i <=length;
loop invariant \forall size_t j; 0 <= j < i ==> array[j] == 0;
loop assigns i,array[0..length-1];
loop variant length-i;
*/
for(size_t i=0;i<length;i++){
array[i]=0;}
}
int main(){
int a[]={1,2,3,4,5};
reset(a,5);
//@ assert a[0] == 0;
//@ assert a[1] == 0;
//@ assert a[2] == 0;
//@ assert a[3] == 0;
//@ assert a[4] == 0;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
immutable_array_max | max | int arraymax(int* a, int n) {
int i = 1;
int max = a[0];
while (i < n) {
if (max < a[i])
max = a[i];
i = i + 1;
}
return max;
}
void main() {
int arr[5] = {1, 2, 3, 4, 5};
int sum = arraymax(arr, 5);
//@ assert sum == 5;
} | /*@
requires \valid_read(a + (0..n-1));
requires n > 0;
ensures \forall integer k; 0 <= k < n ==> \result >= a[k];
ensures \exists integer k; 0 <= k < n && \result == a[k];
assigns \nothing;
*/
int arraymax(int* a, int n) {
int i = 1;
int max = a[0];
/*@
loop invariant \forall integer k; 0 <= k < i ==> max >= a[k];
loop invariant \exists integer k; 0 <= k < i && max == a[k];
loop invariant 0 <= i <= n;
loop assigns i,max;
*/
while (i < n) {
if (max < a[i])
max = a[i];
i = i + 1;
}
return max;
}
// write a test
void main() {
int arr[5] = {1, 2, 3, 4, 5};
int sum = arraymax(arr, 5);
//@ assert sum == 5;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
arepina_lower_bound_raw | lower_bound_raw | unsigned lower_bound_raw(const int *a, unsigned n, int val)
{
unsigned i = 0;
for(; i < n; ++i) {
if (a[i] >= val) {
break;
}
}
//@ assert \forall integer k; 0 <= k < i ==> a[k] < val;
return i;
} | /*@ requires \valid(a + (0..n-1));
requires \forall integer i, integer j; 0 <= i < j < n ==> a[i] <= a[j];
assigns \nothing;
ensures 0 <= \result <= n;
ensures \forall integer k; 0 <= k < \result ==> a[k] < val;
ensures \forall integer k; \result <= k < n ==> val <= a[k];
*/
unsigned lower_bound_raw(const int *a, unsigned n, int val)
{
unsigned i = 0;
/*@ loop invariant 0 <= i <= n;
loop assigns i;
loop invariant \forall integer k; 0 <= k < i ==> a[k] < val;
loop invariant \forall integer k; i <= k < n ==> a[k] >= a[i];
loop variant n - i;
*/
for(; i < n; ++i) {
if (a[i] >= val) {
break;
}
}
//@ assert \forall integer k; 0 <= k < i ==> a[k] < val;
return i;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_117 | 117 | int main() {
int sn = 0;
int x = 0;
while (unknown()) {
x = x + 1;
sn = sn + 1;
}
if (sn != -1) {
//@ assert sn == x;
}
} | int main() {
int sn = 0;
int x = 0;
/*@
loop invariant x == sn;
loop invariant sn == x;
loop invariant 0 <= x;
loop invariant 0 <= sn;
loop assigns x;
loop assigns sn;
*/
while (unknown()) {
x = x + 1;
sn = sn + 1;
}
if (sn != -1) {
//@ assert sn == x;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
minmax_element | minmax_element | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct size_type_pair {
size_type first;
size_type second;
};
typedef struct size_type_pair size_type_pair;
/*@
assigns \nothing;
ensures result: \result.first == first;
ensures result: \result.second == second;
*/
static inline
size_type_pair
make_pair(size_type first, size_type second)
{
size_type_pair pair;
pair.first = first;
pair.second = second;
return pair;
}
/*@
axiomatic ArrayBounds
{
predicate
LowerBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> v <= a[i];
predicate
LowerBound{L}(value_type* a, integer n, value_type v) =
LowerBound{L}(a, 0, n, v);
predicate
StrictLowerBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> v < a[i];
predicate
StrictLowerBound{L}(value_type* a, integer n, value_type v) =
StrictLowerBound{L}(a, 0, n, v);
predicate
UpperBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] <= v;
predicate
UpperBound{L}(value_type* a, integer n, value_type v) =
UpperBound{L}(a, 0, n, v);
predicate
StrictUpperBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] < v;
predicate
StrictUpperBound{L}(value_type* a, integer n, value_type v) =
StrictUpperBound{L}(a, 0, n, v);
}
*/
/*@
axiomatic ArrayExtrema
{
predicate
MaxElement{L}(value_type* a, integer n, integer max) =
0 <= max < n && UpperBound(a, n, a[max]);
predicate
MinElement{L}(value_type* a, integer n, integer min) =
0 <= min < n && LowerBound(a, n, a[min]);
}
*/
/*@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result.first <= n;
ensures result: 0 <= \result.second <= n;
behavior empty:
assumes 0 == n;
assigns \nothing;
ensures result: \result.first == 0;
ensures result: \result.second == 0;
behavior not_empty:
assumes 0 < n;
assigns \nothing;
ensures result: 0 <= \result.first < n;
ensures result: 0 <= \result.second < n;
ensures min: MinElement(a, n, \result.first);
ensures first: StrictLowerBound(a, \result.first, a[\result.first]);
ensures max: MaxElement(a, n, \result.second);
ensures last: StrictUpperBound(a, \result.second+1, n, a[\result.second]);
*/
size_type_pair
minmax_element(const value_type* a, size_type n)
{
if (0u < n) {
size_type min = 0u;
size_type max = 0u;
for (size_type i = 0u; i < n; i++) {
if (a[i] >= a[max]) {
max = i;
}
if (a[i] < a[min]) {
min = i;
}
}
//@ assert MinElement(a, n, min) && MaxElement(a, n, max);
return make_pair(min, max);
}
return make_pair(n, n);
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct size_type_pair {
size_type first;
size_type second;
};
typedef struct size_type_pair size_type_pair;
/*@
assigns \nothing;
ensures result: \result.first == first;
ensures result: \result.second == second;
*/
static inline
size_type_pair
make_pair(size_type first, size_type second)
{
size_type_pair pair;
pair.first = first;
pair.second = second;
return pair;
}
/*@
axiomatic ArrayBounds
{
predicate
LowerBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> v <= a[i];
predicate
LowerBound{L}(value_type* a, integer n, value_type v) =
LowerBound{L}(a, 0, n, v);
predicate
StrictLowerBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> v < a[i];
predicate
StrictLowerBound{L}(value_type* a, integer n, value_type v) =
StrictLowerBound{L}(a, 0, n, v);
predicate
UpperBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] <= v;
predicate
UpperBound{L}(value_type* a, integer n, value_type v) =
UpperBound{L}(a, 0, n, v);
predicate
StrictUpperBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] < v;
predicate
StrictUpperBound{L}(value_type* a, integer n, value_type v) =
StrictUpperBound{L}(a, 0, n, v);
}
*/
/*@
axiomatic ArrayExtrema
{
predicate
MaxElement{L}(value_type* a, integer n, integer max) =
0 <= max < n && UpperBound(a, n, a[max]);
predicate
MinElement{L}(value_type* a, integer n, integer min) =
0 <= min < n && LowerBound(a, n, a[min]);
}
*/
/*@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result.first <= n;
ensures result: 0 <= \result.second <= n;
behavior empty:
assumes 0 == n;
assigns \nothing;
ensures result: \result.first == 0;
ensures result: \result.second == 0;
behavior not_empty:
assumes 0 < n;
assigns \nothing;
ensures result: 0 <= \result.first < n;
ensures result: 0 <= \result.second < n;
ensures min: MinElement(a, n, \result.first);
ensures first: StrictLowerBound(a, \result.first, a[\result.first]);
ensures max: MaxElement(a, n, \result.second);
ensures last: StrictUpperBound(a, \result.second+1, n, a[\result.second]);
*/
size_type_pair
minmax_element(const value_type* a, size_type n)
{
if (0u < n) {
size_type min = 0u;
size_type max = 0u;
/*@
loop invariant bound: 0 <= i <= n;
loop invariant min: 0 <= min < n;
loop invariant max: 0 <= max < n;
loop invariant lower: LowerBound(a, i, a[min]);
loop invariant upper: UpperBound(a, i, a[max]);
loop invariant first: StrictLowerBound(a, min, a[min]);
loop invariant last: StrictUpperBound(a, max+1, i, a[max]);
loop assigns min, max, i;
loop variant n-i;
*/
for (size_type i = 0u; i < n; i++) {
if (a[i] >= a[max]) {
max = i;
}
if (a[i] < a[min]) {
min = i;
}
}
//@ assert MinElement(a, n, min) && MaxElement(a, n, max);
return make_pair(min, max);
}
return make_pair(n, n);
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
axiom_size_of_init | axiom_size_of_init | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s);
requires capacity: 0 < capacity;
requires storage: \valid(storage + (0..capacity-1));
requires sep: \separated(s, storage + (0..capacity-1));
assigns s->obj, s->capacity, s->size;
ensures valid: \valid(s);
ensures capacity: StackCapacity(s) == capacity;
ensures storage: StackStorage(s) == storage;
ensures invariant: StackInvariant(s);
ensures empty: StackEmpty(s);
*/
void
stack_init(Stack* s, value_type* storage, size_type capacity);
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns \nothing;
ensures size: \result == StackSize(s);
*/
size_type
stack_size(const Stack* s);
size_type
axiom_size_of_init(Stack* s, value_type* a, size_type n)
{
stack_init(s, a, n);
//@ assert StackSize(s) == 0;
return stack_size(s);
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s);
requires capacity: 0 < capacity;
requires storage: \valid(storage + (0..capacity-1));
requires sep: \separated(s, storage + (0..capacity-1));
assigns s->obj, s->capacity, s->size;
ensures valid: \valid(s);
ensures capacity: StackCapacity(s) == capacity;
ensures storage: StackStorage(s) == storage;
ensures invariant: StackInvariant(s);
ensures empty: StackEmpty(s);
*/
void
stack_init(Stack* s, value_type* storage, size_type capacity);
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns \nothing;
ensures size: \result == StackSize(s);
*/
size_type
stack_size(const Stack* s);
/*@
requires valid: \valid(s);
requires valid: \valid(a + (0..n-1));
requires sep: \separated(s, a + (0..n-1));
requires pos: 0 < n;
assigns s->obj, s->capacity, s->size;
ensures size: \result == 0;
ensures valid: StackInvariant(s);
*/
size_type
axiom_size_of_init(Stack* s, value_type* a, size_type n)
{
stack_init(s, a, n);
//@ assert StackSize(s) == 0;
return stack_size(s);
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
evdenis_small-examples_max3 | max3 | int max3(int a, int b, int c)
{
return a > b ? (a > c ? a : c) : (b > c ? b : c);
}
int main(){
int a = 1;
int b = 2;
int c = 3;
int d = max3(a, b, c);
//@ assert d == 3;
} | /*@ assigns \nothing;
ensures \result == \max(\max(a, b), \max(b, c));
*/
int max3(int a, int b, int c)
{
return a > b ? (a > c ? a : c) : (b > c ? b : c);
}
int main(){
int a = 1;
int b = 2;
int c = 3;
int d = max3(a, b, c);
//@ assert d == 3;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_60 | 60 | /*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
while (unknown()) {
if (unknown()) {
if (c != n) {
c = c + 1;
}
} else {
if (c == n) {
c = 1;
}
}
}
if(c < 0) {
if(c > n) {
//@ assert c == n;
}
}
} | /*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
/*@
loop invariant c > 0 ==> c <= n;
loop invariant c <= n;
loop invariant 0 <= c;
loop invariant (c == n) || (c < n);
loop assigns c;
*/
while (unknown()) {
if (unknown()) {
if (c != n) {
c = c + 1;
}
} else {
if (c == n) {
c = 1;
}
}
}
if(c < 0) {
if(c > n) {
//@ assert c == n;
}
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
upper_bound | upper_bound | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic WeaklyIncreasing
{
predicate
WeaklyIncreasing{L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n-1 ==> a[i] <= a[i+1];
predicate
WeaklyIncreasing{L}(value_type* a, integer n) = WeaklyIncreasing{L}(a, 0, n);
}
*/
/*@
axiomatic Increasing
{
predicate
Increasing{L}(value_type* a, integer m, integer n) =
\forall integer i, j; m <= i < j < n ==> a[i] <= a[j];
predicate
Increasing{L}(value_type* a, integer n) = Increasing{L}(a, 0, n);
}
*/
/*@
axiomatic ArrayBounds
{
predicate
LowerBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> v <= a[i];
predicate
LowerBound{L}(value_type* a, integer n, value_type v) =
LowerBound{L}(a, 0, n, v);
predicate
StrictLowerBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> v < a[i];
predicate
StrictLowerBound{L}(value_type* a, integer n, value_type v) =
StrictLowerBound{L}(a, 0, n, v);
predicate
UpperBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] <= v;
predicate
UpperBound{L}(value_type* a, integer n, value_type v) =
UpperBound{L}(a, 0, n, v);
predicate
StrictUpperBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] < v;
predicate
StrictUpperBound{L}(value_type* a, integer n, value_type v) =
StrictUpperBound{L}(a, 0, n, v);
}
*/
size_type
upper_bound(const value_type* a, size_type n, value_type v)
{
size_type left = 0u;
size_type right = n;
while (left < right) {
const size_type middle = left + (right - left) / 2u;
if (a[middle] <= v) {
left = middle + 1u;
}
else {
right = middle;
}
}
//@ assert UpperBound(a, 0, right, v);
return right;
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic WeaklyIncreasing
{
predicate
WeaklyIncreasing{L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n-1 ==> a[i] <= a[i+1];
predicate
WeaklyIncreasing{L}(value_type* a, integer n) = WeaklyIncreasing{L}(a, 0, n);
}
*/
/*@
axiomatic Increasing
{
predicate
Increasing{L}(value_type* a, integer m, integer n) =
\forall integer i, j; m <= i < j < n ==> a[i] <= a[j];
predicate
Increasing{L}(value_type* a, integer n) = Increasing{L}(a, 0, n);
}
*/
/*@
axiomatic ArrayBounds
{
predicate
LowerBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> v <= a[i];
predicate
LowerBound{L}(value_type* a, integer n, value_type v) =
LowerBound{L}(a, 0, n, v);
predicate
StrictLowerBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> v < a[i];
predicate
StrictLowerBound{L}(value_type* a, integer n, value_type v) =
StrictLowerBound{L}(a, 0, n, v);
predicate
UpperBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] <= v;
predicate
UpperBound{L}(value_type* a, integer n, value_type v) =
UpperBound{L}(a, 0, n, v);
predicate
StrictUpperBound{L}(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] < v;
predicate
StrictUpperBound{L}(value_type* a, integer n, value_type v) =
StrictUpperBound{L}(a, 0, n, v);
}
*/
/*@
requires valid: \valid_read(a + (0..n-1));
requires increasing: Increasing(a, n);
assigns \nothing;
ensures result: 0 <= \result <= n;
ensures left: UpperBound(a, 0, \result, v);
ensures right: StrictLowerBound(a, \result, n, v);
*/
size_type
upper_bound(const value_type* a, size_type n, value_type v)
{
size_type left = 0u;
size_type right = n;
/*@
loop invariant bound: 0 <= left <= right <= n;
loop invariant left: UpperBound(a, 0, left, v);
loop invariant right: StrictLowerBound(a, right, n, v);
loop assigns left, right;
loop variant right - left;
*/
while (left < right) {
const size_type middle = left + (right - left) / 2u;
if (a[middle] <= v) {
left = middle + 1u;
}
else {
right = middle;
}
}
//@ assert UpperBound(a, 0, right, v);
return right;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
nikunjjain02_Arrays_7 | Arrays_7 | #include<stdio.h>
/*@
requires n>=0&&\valid_read(a+(0..n-1));
assigns \nothing;
ensures \forall integer k;0<=k<n==>\result>=a[k];
*/
int max(int a[], int n) {
int max = a[0];
int i = 0;
/*@
loop invariant 0<=i<=n;
loop invariant \forall integer k;0<=k<i==>max>=a[k];
loop assigns i,max;
loop variant n-i;
*/
while(i<n) {
if(a[i]>max)
max = a[i];
i++;
}
return max;
}
int min(int a[], int n) {
int min = a[0];
int i = 0;
while(i<n) {
if(a[i]<min)
min = a[i];
i++;
}
return min;
}
void main() {
int a[] = {11, 23, 13, 16, 54, 59};
int max_val = max(a, 6);
//@ assert \forall integer k; 0 <= k < 6 ==> max_val >= a[k];
int min_val = min(a, 6);
//@ assert \forall integer k; 0 <= k < 6 ==> min_val <= a[k];
} | #include<stdio.h>
/*@
requires n>=0&&\valid_read(a+(0..n-1));
assigns \nothing;
ensures \forall integer k;0<=k<n==>\result>=a[k];
*/
int max(int a[], int n) {
int max = a[0];
int i = 0;
/*@
loop invariant 0<=i<=n;
loop invariant \forall integer k;0<=k<i==>max>=a[k];
loop assigns i,max;
loop variant n-i;
*/
while(i<n) {
if(a[i]>max)
max = a[i];
i++;
}
return max;
}
/*@
requires n>=0&&\valid_read(a+(0..n-1));
assigns \nothing;
ensures \forall integer k;0<=k<n==>\result<=a[k];
*/
int min(int a[], int n) {
int min = a[0];
int i = 0;
/*@
loop invariant 0<=i<=n;
loop invariant \forall integer k;0<=k<i==>min<=a[k];
loop assigns i,min;
loop variant n-i;
*/
while(i<n) {
if(a[i]<min)
min = a[i];
i++;
}
return min;
}
void main() {
int a[] = {11, 23, 13, 16, 54, 59};
int max_val = max(a, 6);
//@ assert \forall integer k; 0 <= k < 6 ==> max_val >= a[k];
int min_val = min(a, 6);
//@ assert \forall integer k; 0 <= k < 6 ==> min_val <= a[k];
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
replace | replace | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic Replace
{
predicate
Replace{K,L}(value_type* a, integer n, value_type* b,
value_type v, value_type w) =
\forall integer i; 0 <= i < n ==>
\let ai = \at(a[i],K);
\let bi = \at(b[i],L);
(ai == v ==> bi == w) && (ai != v ==> bi == ai) ;
predicate
Replace{K,L}(value_type* a, integer n, value_type v, value_type w) =
Replace{K,L}(a, n, a, v, w);
}
*/
void
replace(value_type* a, size_type n, value_type v, value_type w)
{
for (size_type i = 0u; i < n; ++i) {
if (a[i] == v) {
a[i] = w;
}
}
//@ assert Replace{Pre,Here}(a, n, v, w);
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic Replace
{
predicate
Replace{K,L}(value_type* a, integer n, value_type* b,
value_type v, value_type w) =
\forall integer i; 0 <= i < n ==>
\let ai = \at(a[i],K);
\let bi = \at(b[i],L);
(ai == v ==> bi == w) && (ai != v ==> bi == ai) ;
predicate
Replace{K,L}(value_type* a, integer n, value_type v, value_type w) =
Replace{K,L}(a, n, a, v, w);
}
*/
/*@
requires valid: \valid(a + (0..n-1));
assigns a[0..n-1];
ensures replace: Replace{Old,Here}(a, n, v, w);
*/
void
replace(value_type* a, size_type n, value_type v, value_type w)
{
/*@
loop invariant bounds: 0 <= i <= n;
loop invariant replace: Replace{Pre,Here}(a, i, v, w);
loop invariant unchanged: Unchanged{Pre,Here}(a, i, n);
loop assigns i, a[0..n-1];
loop variant n-i;
*/
for (size_type i = 0u; i < n; ++i) {
if (a[i] == v) {
a[i] = w;
}
}
//@ assert Replace{Pre,Here}(a, n, v, w);
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
stack_top_wd | stack_top_wd | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns \nothing;
ensures top: !StackEmpty(s) ==> \result == StackTop(s);
*/
value_type
stack_top(const Stack* s);
bool
stack_top_wd(const Stack* s, const Stack* t)
{
return stack_top(s) == stack_top(t);
}
int main(){
Stack s1, s2;
value_type arr1[3] = {1, 2, 3};
value_type arr2[3] = {1, 2, 3};
s1.obj = arr1;
s1.capacity = 3;
s1.size = 3;
s2.obj = arr2;
s2.capacity = 3;
s2.size = 3;
bool result = stack_top_wd(&s1, &s2);
//@ assert result == true;
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns \nothing;
ensures top: !StackEmpty(s) ==> \result == StackTop(s);
*/
value_type
stack_top(const Stack* s);
/*@
requires valid: \valid(s) && StackInvariant(s) && !StackEmpty(s);
requires valid: \valid(t) && StackInvariant(t) && !StackEmpty(t);
requires equal: StackEqual{Here,Here}(s, t);
assigns \nothing;
ensures equal: \result == true <==> StackTop(s) == StackTop(t);
ensures not_equal: \result == false <==> StackTop(s) != StackTop(t);
*/
bool
stack_top_wd(const Stack* s, const Stack* t)
{
return stack_top(s) == stack_top(t);
}
int main(){
Stack s1, s2;
value_type arr1[3] = {1, 2, 3};
value_type arr2[3] = {1, 2, 3};
s1.obj = arr1;
s1.capacity = 3;
s1.size = 3;
s2.obj = arr2;
s2.capacity = 3;
s2.size = 3;
bool result = stack_top_wd(&s1, &s2);
//@ assert result == true;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
axiom_pop_of_push | axiom_pop_of_push | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns s->size;
ensures valid: \valid(s) && StackInvariant(s);
behavior empty:
assumes StackEmpty(s);
assigns \nothing;
ensures empty: StackEmpty(s);
ensures unchanged: StackUnchanged{Old,Here}(s);
behavior not_empty:
assumes !StackEmpty(s);
assigns s->size;
ensures size: StackSize(s) == StackSize{Old}(s) - 1;
ensures full: !StackFull(s);
ensures storage: StackStorage(s) == StackStorage{Old}(s);
ensures capacity: StackCapacity(s) == StackCapacity{Old}(s);
ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize(s));
complete behaviors;
disjoint behaviors;
*/
void
stack_pop(Stack* s);
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns s->size, s->obj[s->size];
behavior full:
assumes StackFull(s);
assigns \nothing;
ensures valid: \valid(s) && StackInvariant(s);
ensures full: StackFull(s);
ensures unchanged: StackUnchanged{Old,Here}(s);
behavior not_full:
assumes !StackFull(s);
assigns s->size;
assigns s->obj[s->size];
ensures valid: \valid(s) && StackInvariant(s);
ensures size: StackSize(s) == StackSize{Old}(s) + 1;
ensures top: StackTop(s) == v;
ensures storage: StackStorage(s) == StackStorage{Old}(s);
ensures capacity: StackCapacity(s) == StackCapacity{Old}(s);
ensures not_empty: !StackEmpty(s);
ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize{Old}(s));
complete behaviors;
disjoint behaviors;
*/
void
stack_push(Stack* s, value_type v);
void
axiom_pop_of_push(Stack* s, value_type v)
{
stack_push(s, v);
stack_pop(s);
//@ assert StackEqual{Pre,Here}(s, s);
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns s->size;
ensures valid: \valid(s) && StackInvariant(s);
behavior empty:
assumes StackEmpty(s);
assigns \nothing;
ensures empty: StackEmpty(s);
ensures unchanged: StackUnchanged{Old,Here}(s);
behavior not_empty:
assumes !StackEmpty(s);
assigns s->size;
ensures size: StackSize(s) == StackSize{Old}(s) - 1;
ensures full: !StackFull(s);
ensures storage: StackStorage(s) == StackStorage{Old}(s);
ensures capacity: StackCapacity(s) == StackCapacity{Old}(s);
ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize(s));
complete behaviors;
disjoint behaviors;
*/
void
stack_pop(Stack* s);
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns s->size, s->obj[s->size];
behavior full:
assumes StackFull(s);
assigns \nothing;
ensures valid: \valid(s) && StackInvariant(s);
ensures full: StackFull(s);
ensures unchanged: StackUnchanged{Old,Here}(s);
behavior not_full:
assumes !StackFull(s);
assigns s->size;
assigns s->obj[s->size];
ensures valid: \valid(s) && StackInvariant(s);
ensures size: StackSize(s) == StackSize{Old}(s) + 1;
ensures top: StackTop(s) == v;
ensures storage: StackStorage(s) == StackStorage{Old}(s);
ensures capacity: StackCapacity(s) == StackCapacity{Old}(s);
ensures not_empty: !StackEmpty(s);
ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize{Old}(s));
complete behaviors;
disjoint behaviors;
*/
void
stack_push(Stack* s, value_type v);
/*@
requires valid: \valid(s) && StackInvariant(s);
requires not_full: !StackFull(s);
assigns s->size, s->obj[s->size];
ensures equal: StackEqual{Old,Here}(s, s);
*/
void
axiom_pop_of_push(Stack* s, value_type v)
{
stack_push(s, v);
stack_pop(s);
//@ assert StackEqual{Pre,Here}(s, s);
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
nikunjjain02_Arrays_1 | Arrays_1 | #include<stddef.h>
void reset(int* array,size_t length)
{
for(size_t i =0;i<length;i++)
{
array[i] = 0;
}
}
void main()
{
int a[6] = {4,6,3,6,7,89};
reset(a,6);
//@ assert \forall integer i; 0<= i < 6 ==> a[i] == 0;
} | #include<stddef.h>
/*@
requires \valid(array +(0 .. length-1));
assigns array[0..length-1];
ensures \forall size_t i; 0<= i<length ==>array[i] ==0;
*/
void reset(int* array,size_t length)
{
/*@
loop invariant 0<= i<=length;
loop invariant \forall size_t j; 0<= j<i ==> array[j] ==0;
loop assigns i,array[0..length-1];
loop variant length-i;
*/
for(size_t i =0;i<length;i++)
{
array[i] = 0;
}
}
void main()
{
int a[6] = {4,6,3,6,7,89};
reset(a,6);
//@ assert \forall integer i; 0<= i < 6 ==> a[i] == 0;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
arrays_and_loops_2 | 2 | int arraymax(int* a, int n) {
int i = 1;
int max = a[0];
while (i < n) {
if (max < a[i])
max = a[i];
i = i + 1;
}
//@ assert \forall integer k; 0 <= k < n ==> max >= a[k];
return max;
} | /*@
requires \valid_read(a + (0..n-1));
requires n > 0;
ensures \forall integer k; 0 <= k < n ==> \result >= a[k];
ensures \exists integer k; 0 <= k < n && \result == a[k];
assigns \nothing;
*/
int arraymax(int* a, int n) {
int i = 1;
int max = a[0];
/*@
loop invariant \forall integer k; 0 <= k < i ==> max >= a[k];
loop invariant \exists integer k; 0 <= k < i && max == a[k];
loop invariant 0 <= i <= n;
loop assigns i,max;
*/
while (i < n) {
if (max < a[i])
max = a[i];
i = i + 1;
}
//@ assert \forall integer k; 0 <= k < n ==> max >= a[k];
return max;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
frama-c-acsl-implementation_1 | 1 | void f(int n, int *p, int *q) {
if (n > 0) *p = n;
else *q = n;
}
int main(){
int n = 10;
int p = 1,q = 2;
f(n, &p, &q);
//@ assert p == 10;
n = -10;
f(n, &p, &q);
//@ assert q == -10;
} | /*@ behavior p_changed:
assumes n > 0;
requires \valid(p);
assigns *p;
ensures *p == n;
behavior q_changed:
assumes n <= 0;
requires \valid(q);
assigns *q;
ensures *q == n;
*/
void f(int n, int *p, int *q) {
if (n > 0) *p = n;
else *q = n;
}
int main(){
int n = 10;
int p = 1,q = 2;
f(n, &p, &q);
//@ assert p == 10;
n = -10;
f(n, &p, &q);
//@ assert q == -10;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_14 | 14 | /*@
requires 0 <= x <= 2;
requires 0 <= y <= 2;
*/
void foo(int x, int y) {
int z1;
int z2;
int z3;
while (unknown()) {
x = x + 2;
y = y + 2;
}
if (y == 0) {
//@ assert x != 4;
}
} | /*@
requires 0 <= x <= 2;
requires 0 <= y <= 2;
*/
void foo(int x, int y) {
int z1;
int z2;
int z3;
/*@
loop invariant y == 0 ==> x != 4;
loop invariant 0 <= y;
loop invariant 0 <= x;
loop assigns x,y;
*/
while (unknown()) {
x = x + 2;
y = y + 2;
}
if (y == 0) {
//@ assert x != 4;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_126 | 126 | void foo(int x, int y) {
int i = x;
int j = y;
while (x != 0) {
x = x - 1;
y = y - 1;
}
if (i == j) {
//@ assert y == 0;
}
} | void foo(int x, int y) {
int i = x;
int j = y;
/*@
loop invariant y <= j;
loop invariant x <= i;
loop invariant j == y + i - x;
loop invariant j - i == y - x;
loop invariant i == x + j - y;
loop invariant i - x == j - y;
loop invariant \forall integer k; 0 <= k < x ==> j - i - k == (j - i) - k;
loop assigns x,y,i,j;
*/
while (x != 0) {
x = x - 1;
y = y - 1;
}
if (i == j) {
//@ assert y == 0;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
evdenis_small-examples_avr | avr | int avr(int a, int b)
{
int avr;
if (a >= 0 && b >= 0) {
if (b > a) {
avr = a + (b - a) / 2;
} else {
avr = b + (a - b) / 2;
}
} else if (a < 0 && b < 0) {
if (b > a) {
avr = b + (a - b) / 2;
} else {
avr = a + (b - a) / 2;
}
} else {
avr = (a + b) / 2;
}
return avr;
}
int main(){
int a = 10;
int b = 20;
int c = avr(a,b);
//@ assert c == 15;
} | /*@ assigns \nothing;
ensures \result == (a + b) / 2;
*/
int avr(int a, int b)
{
int avr;
if (a >= 0 && b >= 0) {
if (b > a) {
avr = a + (b - a) / 2;
} else {
avr = b + (a - b) / 2;
}
} else if (a < 0 && b < 0) {
if (b > a) {
avr = b + (a - b) / 2;
} else {
avr = a + (b - a) / 2;
}
} else {
avr = (a + b) / 2;
}
return avr;
}
int main(){
int a = 10;
int b = 20;
int c = avr(a,b);
//@ assert c == 15;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
pointers_add_pointers_3_vars | add_pointers_3_vars | #include <limits.h>
int add(int *a, int *b, int *r) {
return *a + *b + *r;
}
int main() {
int a = 24;
int b = 32;
int r = 12;
int x;
x = add(&a, &b, &r) ;
//@ assert x == a + b + r;
//@ assert x == 68 ;
x = add(&a, &a, &a) ;
//@ assert x == a + a + a;
//@ assert x == 72 ;
} | #include <limits.h>
/*@
requires \valid_read(a) && \valid_read(b) && \valid_read(r);
requires *a + *b + *r <= INT_MAX;
requires *a + *b + *r >= INT_MIN;
assigns \nothing;
ensures \result == *a + *b + *r;
*/
int add(int *a, int *b, int *r) {
return *a + *b + *r;
}
int main() {
int a = 24;
int b = 32;
int r = 12;
int x;
x = add(&a, &b, &r) ;
//@ assert x == a + b + r;
//@ assert x == 68 ;
x = add(&a, &a, &a) ;
//@ assert x == a + a + a;
//@ assert x == 72 ;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
search_n | search_n | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic AllSomeNot
{
predicate
AllEqual(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] == v;
predicate
AllEqual(value_type* a, integer m, integer n) =
AllEqual(a, m, n, a[m]);
predicate
AllEqual(value_type* a, integer n, value_type v) =
AllEqual(a, 0, n, v);
predicate
SomeNotEqual{A}(value_type* a, integer m, integer n, value_type v) =
\exists integer i; m <= i < n && a[i] != v;
predicate
SomeNotEqual{A}(value_type* a, integer n, value_type v) =
SomeNotEqual(a, 0, n, v);
lemma NotAllEqual_SomeNotEqual:
\forall value_type *a, v, integer m, n;
!AllEqual(a, m, n, v) ==> SomeNotEqual(a, m, n, v);
lemma SomeNotEqual_NotAllEqual:
\forall value_type *a, v, integer m, n;
SomeNotEqual(a, m, n, v) ==> !AllEqual(a, m, n, v);
}
*/
/*@
axiomatic HasConstantSubRange
{
predicate
HasConstantSubRange{L}(value_type* a, integer m, integer n, value_type v, integer p) =
\exists integer k; m <= k <= n-p && AllEqual(a, k, k+p, v);
predicate
HasConstantSubRange{L}(value_type* a, integer n, value_type v, integer p) =
HasConstantSubRange(a, 0, n, v, p);
lemma HasConstantSubRange_Sizes:
\forall value_type *a, v, integer n, p;
HasConstantSubRange(a, n, v, p) ==> p <= n;
}
*/
size_type
search_n(const value_type* a, size_type n, value_type v, size_type p)
{
if (0u < p) {
if (p <= n) {
size_type start = 0u;
for (size_type i = 0u; i < n; ++i) {
if (a[i] != v) {
start = i + 1u;
//@ assert not_found: !HasConstantSubRange(a, i+1, v, p);
}
else {
//@ assert match: a[i] == v;
//@ assert match: AllEqual(a, start, i+1, v);
if (p == i + 1u - start) {
//@ assert bound: start + p == i + 1;
//@ assert match: AllEqual(a, start, start+p, v);
//@ assert match: \exists integer k; 0 <= k <= n-p && AllEqual(a, k, k+p, v);
//@ assert match: HasConstantSubRange(a, n, v, p);
return start;
}
else {
//@ assert bound: i + 1 < start + p;
continue;
}
}
//@ assert not_found: !HasConstantSubRange(a, i+1, v, p);
}
//@ assert not_found: !HasConstantSubRange(a, n, v, p);
return n;
}
else {
//@ assert not_found: n < p;
//@ assert not_found: !HasConstantSubRange(a, n, v, p);
return n;
}
}
else {
//@ assert bound: p == 0;
//@ assert match: AllEqual(a, 0, 0, v);
//@ assert match: HasConstantSubRange(a, n, v, 0);
return 0u;
}
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
/*@
axiomatic AllSomeNot
{
predicate
AllEqual(value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> a[i] == v;
predicate
AllEqual(value_type* a, integer m, integer n) =
AllEqual(a, m, n, a[m]);
predicate
AllEqual(value_type* a, integer n, value_type v) =
AllEqual(a, 0, n, v);
predicate
SomeNotEqual{A}(value_type* a, integer m, integer n, value_type v) =
\exists integer i; m <= i < n && a[i] != v;
predicate
SomeNotEqual{A}(value_type* a, integer n, value_type v) =
SomeNotEqual(a, 0, n, v);
lemma NotAllEqual_SomeNotEqual:
\forall value_type *a, v, integer m, n;
!AllEqual(a, m, n, v) ==> SomeNotEqual(a, m, n, v);
lemma SomeNotEqual_NotAllEqual:
\forall value_type *a, v, integer m, n;
SomeNotEqual(a, m, n, v) ==> !AllEqual(a, m, n, v);
}
*/
/*@
axiomatic HasConstantSubRange
{
predicate
HasConstantSubRange{L}(value_type* a, integer m, integer n, value_type v, integer p) =
\exists integer k; m <= k <= n-p && AllEqual(a, k, k+p, v);
predicate
HasConstantSubRange{L}(value_type* a, integer n, value_type v, integer p) =
HasConstantSubRange(a, 0, n, v, p);
lemma HasConstantSubRange_Sizes:
\forall value_type *a, v, integer n, p;
HasConstantSubRange(a, n, v, p) ==> p <= n;
}
*/
/*@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= n;
behavior has_match:
assumes HasConstantSubRange(a, n, v, p);
assigns \nothing;
ensures result: 0 <= \result <= n-p;
ensures match: AllEqual(a, \result, \result+p, v);
ensures first: !HasConstantSubRange(a, \result+p-1, v, p);
behavior no_match:
assumes !HasConstantSubRange(a, n, v, p);
assigns \nothing;
ensures result: \result == n;
complete behaviors;
disjoint behaviors;
*/
size_type
search_n(const value_type* a, size_type n, value_type v, size_type p)
{
if (0u < p) {
if (p <= n) {
size_type start = 0u;
/*@
loop invariant match: AllEqual(a, start, i, v);
loop invariant start: 0 < start ==> a[start-1] != v;
loop invariant bound: start <= i + 1 <= start + p;
loop invariant not_found: !HasConstantSubRange(a, i, v, p);
loop assigns i, start;
loop variant n - i;
*/
for (size_type i = 0u; i < n; ++i) {
if (a[i] != v) {
start = i + 1u;
//@ assert not_found: !HasConstantSubRange(a, i+1, v, p);
}
else {
//@ assert match: a[i] == v;
//@ assert match: AllEqual(a, start, i+1, v);
if (p == i + 1u - start) {
//@ assert bound: start + p == i + 1;
//@ assert match: AllEqual(a, start, start+p, v);
//@ assert match: \exists integer k; 0 <= k <= n-p && AllEqual(a, k, k+p, v);
//@ assert match: HasConstantSubRange(a, n, v, p);
return start;
}
else {
//@ assert bound: i + 1 < start + p;
continue;
}
}
//@ assert not_found: !HasConstantSubRange(a, i+1, v, p);
}
//@ assert not_found: !HasConstantSubRange(a, n, v, p);
return n;
}
else {
//@ assert not_found: n < p;
//@ assert not_found: !HasConstantSubRange(a, n, v, p);
return n;
}
}
else {
//@ assert bound: p == 0;
//@ assert match: AllEqual(a, 0, 0, v);
//@ assert match: HasConstantSubRange(a, n, v, 0);
return 0u;
}
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
general_wp_problem_absolute_value | absolute_value | #include <limits.h>
int abs(int val) {
if(val < 0) return -val;
return val;
}
void foo(int a) {
int b = abs(-42);
//@ assert b == 42;
int c = abs(42);
//@ assert c == 42;
int e = abs(INT_MIN);
} | #include <limits.h>
/*@
requires INT_MIN <= val < INT_MAX;
ensures \result >= 0;
behavior positive:
assumes val >= 0;
ensures \result == val;
behavior negative:
assumes val < 0;
ensures \result == -val;
assigns \nothing;
*/
int abs(int val) {
if(val < 0) return -val;
return val;
}
void foo(int a) {
int b = abs(-42);
//@ assert b == 42;
int c = abs(42);
//@ assert c == 42;
int e = abs(INT_MIN);
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_39 | 39 | int unknown();
/*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
while (unknown()) {
if(c == n) {
c = 1;
}
else {
c = c + 1;
}
}
if(c == n) {
//@ assert c >= 0;
//@ assert c <= n;
}
} | int unknown();
/*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
/*@
loop invariant c <= n;
loop invariant 0 <= c;
loop assigns c;
*/
while (unknown()) {
if(c == n) {
c = 1;
}
else {
c = c + 1;
}
}
if(c == n) {
//@ assert c >= 0;
//@ assert c <= n;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_57 | 57 | /*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
while (unknown()) {
if (unknown()) {
if (c > n) {
c = c + 1;
}
} else {
if (c == n) {
c = 1;
}
}
}
if (n > -1) {
//@ assert c != n;
}
} | /*@
requires n > 0;
*/
void foo(int n) {
int c = 0;
/*@
loop invariant n-c;
loop invariant n > -1 ==> c != n;
loop invariant c >= 0 && c <= n+1;
loop invariant 0 <= c <= n;
loop invariant c != n;
loop assigns n,c;
*/
while (unknown()) {
if (unknown()) {
if (c > n) {
c = c + 1;
}
} else {
if (c == n) {
c = 1;
}
}
}
if (n > -1) {
//@ assert c != n;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
stack_size_wd | stack_size_wd | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns \nothing;
ensures size: \result == StackSize(s);
*/
size_type
stack_size(const Stack* s);
bool
stack_size_wd(const Stack* s, const Stack* t)
{
return stack_size(s) == stack_size(t);
}
int main(){
value_type a[5] = {1, 2, 3, 4, 5};
value_type b[5] = {1, 2, 3, 4, 5};
Stack s1, s2;
s1.capacity = 5;
s1.size = 5;
s1.obj = a;
s2.capacity = 5;
s2.size = 5;
s2.obj = b;
bool result = stack_size_wd(&s1, &s2);
//@ assert result == true;
} | #include <limits.h>
#ifndef __cplusplus
typedef int bool;
#define false ((bool)0)
#define true ((bool)1)
#endif
typedef int value_type;
#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN
typedef unsigned int size_type;
#define SIZE_TYPE_MAX UINT_MAX
struct Stack
{
value_type* obj;
size_type capacity;
size_type size;
};
typedef struct Stack Stack;
/*@
axiomatic Unchanged
{
predicate
Unchanged{K,L}(value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L);
predicate
Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n);
}
*/
/*@
axiomatic Equal
{
predicate
Equal{K,L}(value_type* a, integer m, integer n, value_type* b) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L);
predicate
Equal{K,L}(value_type* a, integer n, value_type* b) =
Equal{K,L}(a, 0, n, b);
predicate
Equal{K,L}(value_type* a, integer m, integer n,
value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p);
predicate
Equal{K,L}(value_type* a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);
}
*/
/*@
axiomatic StackInvariant
{
logic integer
StackCapacity{L}(Stack* s) = s->capacity;
logic integer
StackSize{L}(Stack* s) = s->size;
logic value_type*
StackStorage{L}(Stack* s) = s->obj;
logic integer
StackTop{L}(Stack* s) = s->obj[s->size-1];
predicate
StackEmpty{L}(Stack* s) = StackSize(s) == 0;
predicate
StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s);
predicate
StackInvariant{L}(Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated(s, StackStorage(s) + (0..StackCapacity(s)-1));
}
*/
/*@
axiomatic StackUtility
{
predicate
StackSeparated(Stack* s, Stack* t) =
\separated(s, s->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));
predicate
StackUnchanged{K,L}(Stack* s) =
StackSize{K}(s) == StackSize{L}(s) &&
StackStorage{K}(s) == StackStorage{L}(s) &&
StackCapacity{K}(s) == StackCapacity{L}(s) &&
Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s));
}
*/
/*@
axiomatic StackEquality
{
predicate
StackEqual{S,T}(Stack* s, Stack* t) =
StackSize{S}(s) == StackSize{T}(t) &&
Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t));
lemma StackEqual_Reflexive{S} :
\forall Stack* s; StackEqual{S,S}(s, s);
lemma StackEqual_Symmetric{S,T} :
\forall Stack *s, *t;
StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s);
lemma StackEqual_Transitive{S,T,U}:
\forall Stack *s, *t, *u;
StackEqual{S,T}(s, t) ==>
StackEqual{T,U}(t, u) ==>
StackEqual{S,U}(s, u);
}
*/
/*@
requires valid: \valid(s) && StackInvariant(s);
assigns \nothing;
ensures size: \result == StackSize(s);
*/
size_type
stack_size(const Stack* s);
/*@
requires valid: \valid(s) && StackInvariant(s);
requires valid: \valid(t) && StackInvariant(t);
requires equal: StackEqual{Here,Here}(s, t);
assigns \nothing;
ensures equal: \result == true <==> StackSize(s) == StackSize(t);
ensures not_equal: \result == false <==> StackSize(s) != StackSize(t);
*/
bool
stack_size_wd(const Stack* s, const Stack* t)
{
return stack_size(s) == stack_size(t);
}
int main(){
value_type a[5] = {1, 2, 3, 4, 5};
value_type b[5] = {1, 2, 3, 4, 5};
Stack s1, s2;
s1.capacity = 5;
s1.size = 5;
s1.obj = a;
s2.capacity = 5;
s2.size = 5;
s2.obj = b;
bool result = stack_size_wd(&s1, &s2);
//@ assert result == true;
}
| fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
equal_arrays | equal_arrays | int check(int *a, int *b, int n) {
for (int i = 0; i < n; i++) {
if (a[i] != b[i]) {
return 0;
}
}
return 1;
}
int main() {
int a[] = {1,2,3,4,5};
int b[] = {1,2,3,4,5};
int ans = check(a, b, 5);
//@ assert ans == 1;
} | /*@
requires n > 0;
requires \valid_read (a + (0..n-1));
requires \valid_read (b + (0..n-1));
assigns \nothing;
behavior equal:
assumes \forall integer k; 0 <= k < n ==> b[k] == a[k];
ensures \result == 1;
behavior not_equal:
assumes \exists integer k; 0 <= k < n && b[k] != a[k];
ensures \result == 0;
*/
int check(int *a, int *b, int n) {
/*@
loop invariant 0 <= i <= n;
loop invariant \forall integer k; 0 <= k < i ==> a[k] == b[k];
loop assigns i;
*/
for (int i = 0; i < n; i++) {
if (a[i] != b[i]) {
return 0;
}
}
return 1;
}
int main() {
int a[] = {1,2,3,4,5};
int b[] = {1,2,3,4,5};
int ans = check(a, b, 5);
//@ assert ans == 1;
} | fmbench | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_85 | 85 | int main() {
int x = -15000;
int y = 0;
while (x < 0) {
x = x + y;
y = y + 1;
}
//@ assert y > 0;
} | int main() {
int x = -15000;
int y = 0;
/*@
loop invariant x <= -15000 || 1 <= y;
loop invariant x <= -15000 || 0 <= y;
loop invariant x < 0 || 1 <= y;
loop invariant x < 0 || 0 <= y;
loop invariant x < 0 || -15000 <= x;
loop invariant 1 <= y || x <= 0;
loop invariant 1 <= y || 0 <= y;
loop invariant 1 <= y || -15000 <= x;
loop invariant 0 <= y || x <= 0;
loop invariant 0 <= y || -15000 <= x;
loop invariant -15000 <= x || x <= 0;
loop assigns x,y;
loop invariant 0 <= y;
loop invariant -15000 <= x;
*/
while (x < 0) {
x = x + y;
y = y + 1;
}
//@ assert y > 0;
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
code2_35 | 35 | int unknown();
int main() {
int c = 0;
while (unknown()) {
if (unknown()) {
if (c != 40) {
c = c + 1;
}
} else {
if (c == 40) {
c = 1;
}
}
}
if (c != 40) {
//@ assert c >= 0;
}
} | int unknown();
int main() {
int c = 0;
/*@
loop invariant c <= 40;
loop invariant c != 40 ==> c >= 0;
loop invariant 0 <= c;
loop assigns c;
*/
while (unknown()) {
if (unknown()) {
if (c != 40) {
c = c + 1;
}
} else {
if (c == 40) {
c = 1;
}
}
}
// post-condition
if (c != 40) {
//@ assert c >= 0;
}
} | autospec | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
nabinkrsah_Compute the GCD of two numbers with precondition and postcondition | Compute the GCD of two numbers with precondition and postcondition | #include <stdio.h>
/*@
axiomatic GCD {
logic integer Gcd(integer p, integer q);
axiom Gcd1:
\forall integer m, n;
m > n ==> Gcd(m,n) == Gcd(m-n, n);
axiom Gcd2:
\forall integer m, n;
n > m ==> Gcd(m,n) == Gcd(m, n-m);
axiom Gcd3:
\forall integer m, n;
m == n ==> Gcd(m,n) == m;
}
*/
int gcd(int p, int q) {
while (p != q) {
if (p > q)
p = p - q;
if (q > p)
q = q - p;
}
return p;
}
int main() {
int p = 48;
int q = 18;
int result = gcd(p, q);
//@ assert result == 6;
return 0;
} | #include <stdio.h>
/*@
axiomatic GCD {
logic integer Gcd(integer p, integer q);
axiom Gcd1:
\forall integer m, n;
m > n ==> Gcd(m,n) == Gcd(m-n, n);
axiom Gcd2:
\forall integer m, n;
n > m ==> Gcd(m,n) == Gcd(m, n-m);
axiom Gcd3:
\forall integer m, n;
m == n ==> Gcd(m,n) == m;
}
*/
/*@
requires p >= 1;
requires p >= 1;
ensures \result == Gcd(\old(p), \old(q));
assigns \nothing;
*/
int gcd(int p, int q) {
/*@ loop invariant Gcd(p,q) ==
Gcd(\at(p,Pre), \at(q,Pre));
loop assigns p, q;
*/
while (p != q) {
if (p > q)
p = p - q;
if (q > p)
q = q - p;
}
return p;
}
int main() {
int p = 48;
int q = 18;
int result = gcd(p, q);
//@ assert result == 6;
return 0;
} | githubRepository | Please write ACSL specification for the given C code ensuring its correctness.
You only need to return the completed ACSL formal specification together with C program without explanation. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.