filefolder_name
stringlengths
4
88
file_name
stringlengths
1
77
input
stringlengths
84
5.03k
output
stringlengths
136
5.55k
source
stringclasses
3 values
instruct
stringclasses
1 value
suman1406_Q1
Q1
int grade; int calculateGrade(int mark) { if (mark >= 1 && mark <= 100) { grade = 1; return grade; } else if (mark >= 101 && mark <= 200) { grade = 2; return grade; } else if (mark >= 201 && mark <= 300) { grade = 3; return grade; } else if (mark >= 301 && mark <= 400) { grade = 4; return grade; } return 0; }
int grade; /*@ requires mark >= 0; ensures \result == 0 || \result == 1 || \result == 2 || \result == 3 || \result == 4; behavior one: assumes mark >= 1 && mark <= 100; ensures \result == 1; assigns grade; behavior two: assumes mark >= 101 && mark <= 200; ensures \result == 2; assigns grade; behavior three: assumes mark >= 201 && mark <= 300; ensures \result == 3; assigns grade; behavior four: assumes mark >= 301 && mark <= 400; ensures \result == 4; assigns grade; behavior else: assumes mark <= 0 || mark > 400; ensures \result == 0; assigns grade; complete behaviors; disjoint behaviors; */ int calculateGrade(int mark) { if (mark >= 1 && mark <= 100) { grade = 1; return grade; } else if (mark >= 101 && mark <= 200) { grade = 2; return grade; } else if (mark >= 201 && mark <= 300) { grade = 3; return grade; } else if (mark >= 301 && mark <= 400) { grade = 4; return grade; } return 0; } int main(){ int mark = 150; int result = calculateGrade(mark); //@ assert result == 2; return 0; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_41
41
int unknown(); /*@ requires n > 0; */ void foo(int n) { int c = 0; while (unknown()) { if ( unknown() ) { if (c > n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if (c != n) { //@ assert c <= n; } }
int unknown(); /*@ requires n > 0; */ void foo(int n) { int c = 0; /*@ loop invariant n - c; loop invariant c <= n; loop invariant c <= n + 1; loop invariant 0 <= c; loop assigns c; */ while (unknown()) { if ( unknown() ) { if (c > n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if (c != n) { //@ assert c <= n; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
evdenis_proved_sign
sign
int spec_sign(int x) { return (x > 0) - (x < 0); } #ifdef OUT_OF_TASK #include <stdio.h> int main(void) { int res = spec_sign(-10); //@ assert res == -1; return 0; } #endif
/*@ assigns \nothing; ensures \result == 0 || \result == 1 || \result == -1; behavior positive: assumes x > 0; ensures \result == 1; behavior zero: assumes x == 0; ensures \result == 0; behavior negative: assumes x < 0; ensures \result == -1; complete behaviors; disjoint behaviors; */ int spec_sign(int x) { return (x > 0) - (x < 0); } #ifdef OUT_OF_TASK #include <stdio.h> int main(void) { int res = spec_sign(-10); //@ assert res == -1; return 0; } #endif
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
X509-parser_check_ia5_string
check_ia5_string
#include <stdint.h> #include <unistd.h> #include <string.h> typedef uint8_t u8; typedef uint16_t u16; typedef uint32_t u32; typedef uint64_t u64; #define X509_FILE_NUM 1 #define X509_FILE_LINE_NUM_ERR ((X509_FILE_NUM * 100000)) static int check_ia5_string(const u8 *buf, u32 len) { int ret; u32 i; if ((buf == NULL) || (len == 0)) { ret = -X509_FILE_LINE_NUM_ERR; goto out; } for (i = 0; i < len; i++) { if (buf[i] > 0x7f) { ret = -X509_FILE_LINE_NUM_ERR; goto out; } } ret = 0; out: return ret; } int main() { u8 buf[5]; u32 len = 5; int ret = check_ia5_string(&buf[0], len); //@ assert ret == -X509_FILE_LINE_NUM_ERR ==> \exists integer i; 0 <= i < len && buf[i] > 0x7f; //@ assert ret == 0 ==> \forall integer i; 0 <= i < len ==> (buf[i] <= 0x7f); return ret; }
#include <stdint.h> #include <unistd.h> #include <string.h> typedef uint8_t u8; typedef uint16_t u16; typedef uint32_t u32; typedef uint64_t u64; #define X509_FILE_NUM 1 #define X509_FILE_LINE_NUM_ERR ((X509_FILE_NUM * 100000)) /*@ requires buf != NULL && len > 0; requires ((len > 0) && (buf != \null)) ==> \valid_read(buf + (0 .. (len - 1))); ensures \result < 0 || \result == 0; ensures (len == 0) ==> \result < 0; ensures (buf == \null) ==> \result < 0; ensures \result == 0 ==> \forall integer i; 0 <= i < len ==> (buf[i] <= 0x7f); ensures \result == -X509_FILE_LINE_NUM_ERR ==> \exists integer i; 0 <= i < len && buf[i] > 0x7f; ensures \exists integer i; 0 <= i < len && buf[i] > 0x7f ==> \result == -X509_FILE_LINE_NUM_ERR; assigns \nothing; */ static int check_ia5_string(const u8 *buf, u32 len) { int ret; u32 i; if ((buf == NULL) || (len == 0)) { ret = -X509_FILE_LINE_NUM_ERR; goto out; } /*@ loop invariant \forall integer x ; 0 <= x < i ==> (buf[x] <= 0x7f); loop invariant ret ==0 ==> \forall integer x ; 0 <= x < i ==> (buf[x] <= 0x7f); loop assigns i; loop variant (len - i); */ for (i = 0; i < len; i++) { if (buf[i] > 0x7f) { ret = -X509_FILE_LINE_NUM_ERR; goto out; } } ret = 0; out: return ret; } int main() { u8 buf[5]; u32 len = 5; int ret = check_ia5_string(&buf[0], len); //@ assert ret == -X509_FILE_LINE_NUM_ERR ==> \exists integer i; 0 <= i < len && buf[i] > 0x7f; //@ assert ret == 0 ==> \forall integer i; 0 <= i < len ==> (buf[i] <= 0x7f); return ret; }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_118
118
/*@ requires size >= 1; */ void foo(int size) { int i = 1; int sn = 0; while (i <= size) { i = i + 1; sn = sn + 1; } if(sn != size) { //@ assert sn == 0; } }
/*@ requires size >= 1; */ void foo(int size) { int i = 1; int sn = 0; /*@ loop invariant sn == i-1; loop invariant sn == i - 1; loop invariant i <= size+1; loop invariant i <= size + 1; loop invariant 1 <= i; loop assigns sn; loop assigns i; */ while (i <= size) { i = i + 1; sn = sn + 1; } if(sn != size) { //@ assert sn == 0; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
general_wp_problem_max_of_2
max_of_2
#include <limits.h> int max ( int x, int y ) { if ( x >=y ) return x ; return y ; } void foo() { int s = max(34,45); //@ assert s==45; int t = max(-43,34); //@ assert t==34; }
#include <limits.h> /*@ requires INT_MIN<x && INT_MIN<y; ensures \result>=x && \result>=y; ensures \result==x || \result==y; */ int max ( int x, int y ) { if ( x >=y ) return x ; return y ; } void foo() { int s = max(34,45); //@ assert s==45; int t = max(-43,34); //@ assert t==34; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
X509-parser_parse_null
parse_null
#include <stdint.h> #include <unistd.h> #include <string.h> typedef uint8_t u8; typedef uint16_t u16; typedef uint32_t u32; typedef uint64_t u64; #define X509_FILE_NUM 0 #define X509_FILE_LINE_NUM_ERR ((X509_FILE_NUM * 100000) + __LINE__) /*@ predicate bmatch(u8 *b1, u8 *b2, u32 n) = \forall integer i; 0 <= i < n ==> b1[i] == b2[i]; predicate bdiffer(u8 *b1, u8 *b2, u32 n) = ! bmatch(b1, b2, n); */ /*@ requires \valid_read(b1 + (0 .. n-1)); requires \valid_read(b2 + (0 .. n-1)); requires n >= 0; ensures \result == 0 <==> bmatch(b1, b2, n); ensures \result == 1 <==> bdiffer(b1, b2, n); assigns \nothing; */ int bufs_differ(const u8 *b1, const u8 *b2, u32 n) { int ret = 0; u32 i = 0; /*@ loop invariant 0 <= i <= n; loop invariant bmatch(b1, b2, i); loop assigns i; loop variant n - i; */ for (i = 0; i < n; i++) { if(b1[i] != b2[i]) { ret = 1; break; } } return ret; } static const u8 null_encoded_val[] = { 0x05, 0x00 }; int parse_null(const u8 *buf, u32 len, u32 *parsed) { int ret; if ((len == 0) || (buf == NULL) || (parsed == NULL)) { ret = -X509_FILE_LINE_NUM_ERR; goto out; } if (len != sizeof(null_encoded_val)) { ret = -X509_FILE_LINE_NUM_ERR; goto out; } ret = bufs_differ(buf, null_encoded_val, sizeof(null_encoded_val)); if (ret) { ret = -X509_FILE_LINE_NUM_ERR; goto out; } ret = 0; *parsed = sizeof(null_encoded_val); out: return ret; } int main() { const u8 b[] = { 0x05, 0x00 }; u32 parsed; int ret = parse_null(b, sizeof(null_encoded_val), &parsed); //@ assert parsed == sizeof(null_encoded_val); //@ assert ret == 0; return 0; }
#include <stdint.h> #include <unistd.h> #include <string.h> typedef uint8_t u8; typedef uint16_t u16; typedef uint32_t u32; typedef uint64_t u64; #define X509_FILE_NUM 0 #define X509_FILE_LINE_NUM_ERR ((X509_FILE_NUM * 100000) + __LINE__) /*@ predicate bmatch(u8 *b1, u8 *b2, u32 n) = \forall integer i; 0 <= i < n ==> b1[i] == b2[i]; predicate bdiffer(u8 *b1, u8 *b2, u32 n) = ! bmatch(b1, b2, n); */ /*@ requires \valid_read(b1 + (0 .. n-1)); requires \valid_read(b2 + (0 .. n-1)); requires n >= 0; ensures \result == 0 <==> bmatch(b1, b2, n); ensures \result == 1 <==> bdiffer(b1, b2, n); assigns \nothing; */ int bufs_differ(const u8 *b1, const u8 *b2, u32 n) { int ret = 0; u32 i = 0; /*@ loop invariant 0 <= i <= n; loop invariant bmatch(b1, b2, i); loop assigns i; loop variant n - i; */ for (i = 0; i < n; i++) { if(b1[i] != b2[i]) { ret = 1; break; } } return ret; } static const u8 null_encoded_val[] = { 0x05, 0x00 }; /*@ requires ((len > 0) && (buf != \null)) ==> \valid_read(buf + (0 .. (len - 1))); requires (parsed != NULL) ==> \valid(parsed); requires \separated(parsed, buf+(..)); ensures \result < 0 || \result == 0; ensures (len == sizeof(null_encoded_val) && len != 0 && buf != NULL && parsed != NULL) ==> (\result == 0 <==> bmatch(buf, &null_encoded_val[0], len)); ensures (\result == 0) ==> *parsed == 2; ensures (buf == \null) ==> \result < 0; assigns *parsed; */ int parse_null(const u8 *buf, u32 len, u32 *parsed) { int ret; if ((len == 0) || (buf == NULL) || (parsed == NULL)) { ret = -X509_FILE_LINE_NUM_ERR; goto out; } if (len != sizeof(null_encoded_val)) { ret = -X509_FILE_LINE_NUM_ERR; goto out; } ret = bufs_differ(buf, null_encoded_val, sizeof(null_encoded_val)); if (ret) { ret = -X509_FILE_LINE_NUM_ERR; goto out; } ret = 0; *parsed = sizeof(null_encoded_val); out: return ret; } int main() { const u8 b[] = { 0x05, 0x00 }; u32 parsed; int ret = parse_null(b, sizeof(null_encoded_val), &parsed); //@ assert parsed == sizeof(null_encoded_val); //@ assert ret == 0; return 0; }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_81
81
/*@ requires x >= 0; requires y >= 0; requires x >= y; */ void foo(int x, int y) { int i = 0; while (unknown()) { if ( (i < y) ) { (i = (i + 1)); } } if (i < y) { //@ assert 0 <= i; } }
/*@ requires x >= 0; requires y >= 0; requires x >= y; */ void foo(int x, int y) { int i = 0; /*@ loop invariant i <= y; loop invariant 0 <= i; loop assigns y,i; */ while (unknown()) { if ( (i < y) ) { (i = (i + 1)); } } if (i < y) { //@ assert 0 <= i; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
corinnt_sort-3
sort-3
void order_3(int* a, int* b, int* c){ if(*a > *b){ int tmp = *b ; *b = *a ; *a = tmp ; } if(*a > *c){ int tmp = *c ; *c = *a ; *a = tmp ; } if(*b > *c){ int tmp = *b ; *b = *c ; *c = tmp ; } } void test(){ int a1 = 5, b1 = 3, c1 = 4 ; order_3(&a1, &b1, &c1); //@ assert a1 == 3 && b1 == 4 && c1 == 5 ; int a2 = 2, b2 = 2, c2 = 2 ; order_3(&a2, &b2, &c2) ; //@ assert a2 == 2 && b2 == 2 && c2 == 2 ; int a3 = 4, b3 = 3, c3 = 4 ; order_3(&a3, &b3, &c3) ; //@ assert a3 == 3 && b3 == 4 && c3 == 4 ; int a4 = 4, b4 = 5, c4 = 4 ; order_3(&a4, &b4, &c4) ; //@ assert a4 == 4 && b4 == 4 && c4 == 5 ; }
/*@ requires \valid(a) && \valid(b) && \valid(c); requires \separated(a, b, c); assigns *a, *b, *c; ensures sorted: *a <= *b <= *c ; ensures has_all_values: { *a, *b, *c } == \old({ *a, *b, *c }) ; ensures \old(*a == *b == *c) ==> *a == *b == *c ; ensures \old(*a == *b < *c || *a == *c < *b || *b == *c < *a) ==> *a == *b ; ensures \old(*a == *b > *c || *a == *c > *b || *b == *c > *a) ==> *b == *c ; */ void order_3(int* a, int* b, int* c){ if(*a > *b){ int tmp = *b ; *b = *a ; *a = tmp ; } if(*a > *c){ int tmp = *c ; *c = *a ; *a = tmp ; } if(*b > *c){ int tmp = *b ; *b = *c ; *c = tmp ; } } void test(){ int a1 = 5, b1 = 3, c1 = 4 ; order_3(&a1, &b1, &c1); //@ assert a1 == 3 && b1 == 4 && c1 == 5 ; int a2 = 2, b2 = 2, c2 = 2 ; order_3(&a2, &b2, &c2) ; //@ assert a2 == 2 && b2 == 2 && c2 == 2 ; int a3 = 4, b3 = 3, c3 = 4 ; order_3(&a3, &b3, &c3) ; //@ assert a3 == 3 && b3 == 4 && c3 == 4 ; int a4 = 4, b4 = 5, c4 = 4 ; order_3(&a4, &b4, &c4) ; //@ assert a4 == 4 && b4 == 4 && c4 == 5 ; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
general_wp_problem_swap
swap
void swap(int* a, int* b){ int tmp = *a; *a = *b; *b = tmp; } int main(){ int a = 42; int b = 37; swap(&a, &b); //@ assert a == 37 && b == 42; return 0; }
/*@ requires \valid(a) && \valid(b); assigns *a, *b; ensures *a == \old(*b); ensures *b == \old(*a); */ void swap(int* a, int* b){ int tmp = *a; *a = *b; *b = tmp; } int main(){ int a = 42; int b = 37; swap(&a, &b); //@ assert a == 37 && b == 42; return 0; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
count
count
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic UnchangedLemmas { lemma Unchanged_Shrink{K,L}: \forall value_type *a, integer m, n, p, q; m <= p <= q <= n ==> Unchanged{K,L}(a, m, n) ==> Unchanged{K,L}(a, p, q); lemma Unchanged_Extend{K,L}: \forall value_type *a, integer n; Unchanged{K,L}(a, n) ==> \at(a[n],K) == \at(a[n],L) ==> Unchanged{K,L}(a, n+1); lemma Unchanged_Symmetric{K,L}: \forall value_type *a, integer m, n; Unchanged{K,L}(a, m, n) ==> Unchanged{L,K}(a, m, n); lemma Unchanged_Transitive{K,L,M}: \forall value_type *a, integer m, n; Unchanged{K,L}(a, m, n) ==> Unchanged{L,M}(a, m, n) ==> Unchanged{K,M}(a, m, n); } */ /*@ axiomatic Count { logic integer Count(value_type* a, integer m, integer n, value_type v) = n <= m ? 0 : Count(a, m, n-1, v) + (a[n-1] == v ? 1 : 0); logic integer Count(value_type* a, integer n, value_type v) = Count(a, 0, n, v); lemma Count_Empty: \forall value_type *a, v, integer m, n; n <= m ==> Count(a, m, n, v) == 0; lemma Count_Hit: \forall value_type *a, v, integer n, m; m < n ==> a[n-1] == v ==> Count(a, m, n, v) == Count(a, m, n-1, v) + 1; lemma Count_Miss: \forall value_type *a, v, integer n, m; m < n ==> a[n-1] != v ==> Count(a, m, n, v) == Count(a, m, n-1, v); lemma Count_One: \forall value_type *a, v, integer m, n; m <= n ==> Count(a, m, n+1, v) == Count(a, m, n, v) + Count(a, n, n+1, v); lemma Count_Single{K,L}: \forall value_type *a, *b, v, integer m, n; \at(a[m],K) == \at(b[n],L) ==> Count{K}(a, m, m+1, v) == Count{L}(b, n, n+1, v); lemma Count_Single_Bounds: \forall value_type *a, v, integer n; 0 <= Count(a, n, n+1, v) <= 1; lemma Count_Single_Shift: \forall value_type *a, v, integer n; 0 <= n ==> Count(a+n, 0, 1, v) == Count(a, n, n+1, v); } */ size_type count(const value_type* a, size_type n, value_type v) { size_type counted = 0u; for (size_type i = 0u; i < n; ++i) { if (a[i] == v) { counted++; } } //@ assert Count(a, n, v) == counted; return counted; }
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic UnchangedLemmas { lemma Unchanged_Shrink{K,L}: \forall value_type *a, integer m, n, p, q; m <= p <= q <= n ==> Unchanged{K,L}(a, m, n) ==> Unchanged{K,L}(a, p, q); lemma Unchanged_Extend{K,L}: \forall value_type *a, integer n; Unchanged{K,L}(a, n) ==> \at(a[n],K) == \at(a[n],L) ==> Unchanged{K,L}(a, n+1); lemma Unchanged_Symmetric{K,L}: \forall value_type *a, integer m, n; Unchanged{K,L}(a, m, n) ==> Unchanged{L,K}(a, m, n); lemma Unchanged_Transitive{K,L,M}: \forall value_type *a, integer m, n; Unchanged{K,L}(a, m, n) ==> Unchanged{L,M}(a, m, n) ==> Unchanged{K,M}(a, m, n); } */ /*@ axiomatic Count { logic integer Count(value_type* a, integer m, integer n, value_type v) = n <= m ? 0 : Count(a, m, n-1, v) + (a[n-1] == v ? 1 : 0); logic integer Count(value_type* a, integer n, value_type v) = Count(a, 0, n, v); lemma Count_Empty: \forall value_type *a, v, integer m, n; n <= m ==> Count(a, m, n, v) == 0; lemma Count_Hit: \forall value_type *a, v, integer n, m; m < n ==> a[n-1] == v ==> Count(a, m, n, v) == Count(a, m, n-1, v) + 1; lemma Count_Miss: \forall value_type *a, v, integer n, m; m < n ==> a[n-1] != v ==> Count(a, m, n, v) == Count(a, m, n-1, v); lemma Count_One: \forall value_type *a, v, integer m, n; m <= n ==> Count(a, m, n+1, v) == Count(a, m, n, v) + Count(a, n, n+1, v); lemma Count_Single{K,L}: \forall value_type *a, *b, v, integer m, n; \at(a[m],K) == \at(b[n],L) ==> Count{K}(a, m, m+1, v) == Count{L}(b, n, n+1, v); lemma Count_Single_Bounds: \forall value_type *a, v, integer n; 0 <= Count(a, n, n+1, v) <= 1; lemma Count_Single_Shift: \forall value_type *a, v, integer n; 0 <= n ==> Count(a+n, 0, 1, v) == Count(a, n, n+1, v); } */ /*@ requires valid: \valid_read(a + (0..n-1)); assigns \nothing; ensures bound: 0 <= \result <= n; ensures count: \result == Count(a, n, v); */ size_type count(const value_type* a, size_type n, value_type v) { size_type counted = 0u; /*@ loop invariant bound: 0 <= i <= n; loop invariant bound: 0 <= counted <= i; loop invariant count: counted == Count(a, i, v); loop assigns i, counted; loop variant n-i; */ for (size_type i = 0u; i < n; ++i) { if (a[i] == v) { counted++; } } //@ assert Count(a, n, v) == counted; return counted; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_87
87
void foo(int x, int y) { int lock = 1; while ((x != y)) { if (unknown()) { lock = 1; x = y; } else { lock = 0; x = y; y = y + 1; } } //@ assert lock == 1; }
/*@ requires x == y; */ void foo(int x, int y) { int lock = 1; /*@ loop invariant x == y; loop invariant lock == 1; loop invariant lock == 1 || lock == 0; loop invariant lock == 0 || lock == 1; loop assigns y; loop assigns x; loop assigns lock; */ while ((x != y)) { if (unknown()) { lock = 1; x = y; } else { lock = 0; x = y; y = y + 1; } } //@ assert lock == 1; }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_55
55
/*@ requires n > 0; */ void foo(int n) { int c = 0; while (unknown()) { if (unknown()) { if (c > n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if (c < 0) { if (c > n) { //@ assert c == n; } } }
/*@ requires n > 0; */ void foo(int n) { int c = 0; /*@ loop invariant n - c; loop invariant c >= 0 && c <= n; loop invariant c > n ==> c == n; loop invariant c > n ==> c == n + 1; loop invariant c <= n; loop invariant \forall integer k; 1 <= k <= c ==> (\exists integer i; 1 <= i <= n && i == c); loop invariant 0 <= c; loop assigns n,c; */ while (unknown()) { if (unknown()) { if (c > n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if (c < 0) { if (c > n) { //@ assert c == n; } } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
arrays_and_loops_5
5
int fun(int x, int y , int *r) { *r = x; int d = 0; while (*r >= y) { *r = *r - y; d = d + 1; } return d; } int main() { int a = 3; int num = fun(1, 2, &a); //@ assert a == 1; //@ assert num == 0; return 0; }
/*@ requires x ==1 && y==2; ensures *r < y; ensures \result == 0 <==> x < y; ensures x == \result*y + *r; ensures \result ==0 ==> x == *r; */ int fun(int x, int y , int *r) { *r = x; int d = 0; /*@ loop invariant d >= 0; loop invariant *r <= x; loop invariant *r < y ==> d == 0; loop invariant *r == x - y*d; loop assigns *r, d; */ while (*r >= y) { *r = *r - y; d = d + 1; } return d; } int main() { int a = 3; int num = fun(1, 2, &a); //@ assert a == 1; //@ assert num == 0; return 0; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
21176_BL.EN.U4CSE21176_4a
BL.EN.U4CSE21176_4a
#include<limits.h> int check(int n){ if(n%3==0) return 1; else return 0; } int main(){ int a=9; int r=check(a); //@assert a==9; }
#include<limits.h> /*@ requires INT_MIN<=n; requires INT_MAX>n; ensures (n%3==0 ==> \result==1) && (n%3!=0 ==> \result==0); */ int check(int n){ if(n%3==0) return 1; else return 0; } int main(){ int a=9; int r=check(a); //@assert a==9; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_130
130
void foo(int x2, int x3) { int d1 = 1; int d2 = 1; int d3 = 1; int x1 = 1; while(x1 > 0) { if(x2 > 0) { if(x3 > 0) { x1 = x1 - d1; x2 = x2 - d2; x3 = x3 - d3; } } } //@ assert x2 >= 0; }
void foo(int x2, int x3) { int d1 = 1; int d2 = 1; int d3 = 1; int x1 = 1; /*@ loop invariant x1 > 0 || (x2 >= 0 && x3 >= 0); loop invariant x1 > 0 ==> (x2 > 0 ==> x3 > 0 ==> x1 - d1 >= 0 && x2 - d2 >= 0 && x3 - d3 >= 0); loop invariant x1 > 0 ==> (x2 > 0 ==> x3 > 0 ==> x1 - d1 < x1 && x2 - d2 < x2 && x3 - d3 < x3); loop invariant d3 == 1; loop invariant d2 == 1; loop invariant d1 == 1; loop invariant 0 <= x1; loop invariant (x2 > 0 && x3 > 0) || (x2 <= 0 || x3 <= 0); loop assigns x1,x2,x3,d1,d2,d3; */ while(x1 > 0) { if(x2 > 0) { if(x3 > 0) { x1 = x1 - d1; x2 = x2 - d2; x3 = x3 - d3; } } } //@ assert x2 >= 0; }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
remove_copy
remove_copy
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic SomeNone { predicate SomeEqual{A}(value_type* a, integer m, integer n, value_type v) = \exists integer i; m <= i < n && a[i] == v; predicate SomeEqual{A}(value_type* a, integer n, value_type v) = SomeEqual(a, 0, n, v); predicate NoneEqual(value_type* a, integer m, integer n, value_type v) = \forall integer i; m <= i < n ==> a[i] != v; predicate NoneEqual(value_type* a, integer n, value_type v) = NoneEqual(a, 0, n, v); lemma NotSomeEqual_NoneEqual: \forall value_type *a, v, integer m, n; !SomeEqual(a, m, n, v) ==> NoneEqual(a, m, n, v); lemma NoneEqual_NotSomeEqual: \forall value_type *a, v, integer m, n; NoneEqual(a, m, n, v) ==> !SomeEqual(a, m, n, v); } */ size_type remove_copy(const value_type *a, size_type n, value_type *b, value_type v) { size_type k = 0u; for (size_type i = 0u; i < n; ++i) { if (a[i] != v) { b[k++] = a[i]; } } //@ assert NoneEqual(b, k, v); return k; }
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic SomeNone { predicate SomeEqual{A}(value_type* a, integer m, integer n, value_type v) = \exists integer i; m <= i < n && a[i] == v; predicate SomeEqual{A}(value_type* a, integer n, value_type v) = SomeEqual(a, 0, n, v); predicate NoneEqual(value_type* a, integer m, integer n, value_type v) = \forall integer i; m <= i < n ==> a[i] != v; predicate NoneEqual(value_type* a, integer n, value_type v) = NoneEqual(a, 0, n, v); lemma NotSomeEqual_NoneEqual: \forall value_type *a, v, integer m, n; !SomeEqual(a, m, n, v) ==> NoneEqual(a, m, n, v); lemma NoneEqual_NotSomeEqual: \forall value_type *a, v, integer m, n; NoneEqual(a, m, n, v) ==> !SomeEqual(a, m, n, v); } */ /*@ requires valid: \valid_read(a + (0..n-1)); requires valid: \valid(b + (0..n-1)); requires sep: \separated(a + (0..n-1), b + (0..n-1)); assigns b[0..n-1]; ensures bound: 0 <= \result <= n; ensures discard: NoneEqual(b, \result, v); ensures unchanged: Unchanged{Old,Here}(a, n); ensures unchanged: Unchanged{Old,Here}(b, \result, n); */ size_type remove_copy(const value_type *a, size_type n, value_type *b, value_type v) { size_type k = 0u; /*@ loop invariant bound: 0 <= k <= i <= n; loop invariant discard: NoneEqual(b, k, v); loop invariant unchanged: Unchanged{Pre,Here}(b, k, n); loop assigns k, i, b[0..n-1]; loop variant n-i; */ for (size_type i = 0u; i < n; ++i) { if (a[i] != v) { b[k++] = a[i]; } } //@ assert NoneEqual(b, k, v); return k; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_113
113
/*@ requires 1 <= n; */ void foo(int n) { int i = 1; int sn = 0; while (i <= n) { i = i + 1; sn = sn + 1; } if (sn != 0) { //@ assert sn == n; } }
/*@ requires 1 <= n; */ void foo(int n) { int i = 1; int sn = 0; /*@ loop invariant sn == i-1; loop invariant sn == i - 1; loop invariant i <= n+1; loop invariant i <= n + 1; loop invariant 1 <= i; loop assigns sn; loop assigns i; */ while (i <= n) { i = i + 1; sn = sn + 1; } if (sn != 0) { //@ assert sn == n; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_38
38
/*@ requires n > 0; */ void foo(int n) { int c = 0; while (unknown()) { if(c == n) { c = 1; } else { c = c + 1; } } if(c == n) { //@ assert c >= 0; //@ assert c <= n; } }
/*@ requires n > 0; */ void foo(int n) { int c = 0; /*@ loop invariant c <= n; loop invariant 0 <= c; loop invariant (c == n) ==> (c >= 0 && c <= n); loop assigns c; */ while (unknown()) { if(c == n) { c = 1; } else { c = c + 1; } } if(c == n) { //@ assert c >= 0; //@ assert c <= n; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
arepina_distance_abs
distance_abs
#define SPEC_INT_MIN -2147483648 #define SPEC_INT_MAX 2147483647 unsigned distance_abs(int a, int b) { unsigned ua = a < 0 ? -a : a; unsigned ub = b < 0 ? -b : b; return ua > ub ? ua - ub : ub - ua; } #ifdef OUT_OF_TASK #include <stdio.h> int main(void) { int a = distance_abs(3, 30); int b = distance_abs(-5, -20); int c = distance_abs(7, -10); int d = distance_abs(-2, 15); //@ assert a == 27; //@ assert b == 15; //@ assert c == 17; //@ assert d == 17; return 0; } #endif
#define SPEC_INT_MIN -2147483648 #define SPEC_INT_MAX 2147483647 /*@ requires \true; requires a > SPEC_INT_MIN; requires b > SPEC_INT_MIN; assigns \nothing; ensures \result == \abs(\abs(a) - \abs(b)); */ unsigned distance_abs(int a, int b) { unsigned ua = a < 0 ? -a : a; unsigned ub = b < 0 ? -b : b; return ua > ub ? ua - ub : ub - ua; } #ifdef OUT_OF_TASK #include <stdio.h> int main(void) { int a = distance_abs(3, 30); int b = distance_abs(-5, -20); int c = distance_abs(7, -10); int d = distance_abs(-2, 15); //@ assert a == 27; //@ assert b == 15; //@ assert c == 17; //@ assert d == 17; return 0; } #endif
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
suman1406_Q5
Q5
#include <limits.h> int equ(int a[], int b[], int n) { for (int i = 0; i < n; i++) { if (a[i] != b[i]) { return 0; } } return 1; } int main(){ int a[10]={1,2,3,4,5,6,7,8,9,10}; int b[10]={1,2,3,4,5,6,7,8,9,10}; int c[10]={1,2,3,4,5,6,7,8,9,11}; int res=equ(a,b,10); int res1=equ(a,c,10); //@ assert res==1; //@ assert res1==0; }
#include <limits.h> /*@ requires n>0 && n<INT_MAX; requires \valid_read(a+(0..n-1)); requires \valid_read(b+(0..n-1)); assigns \nothing; behavior same: assumes \forall integer j;0<=j<n ==> a[j]==b[j]; ensures \result==1; behavior notones: assumes \exists integer j;0<=j<n && a[j]!=b[j]; ensures \result==0; complete behaviors; disjoint behaviors; */ int equ(int a[], int b[], int n) { /*@ loop invariant 0<=i<=n; loop invariant \forall integer j;0<=j<i ==> a[j]==b[j]; loop assigns i; loop variant n-i; */ for (int i = 0; i < n; i++) { if (a[i] != b[i]) { return 0; } } return 1; } int main(){ int a[10]={1,2,3,4,5,6,7,8,9,10}; int b[10]={1,2,3,4,5,6,7,8,9,10}; int c[10]={1,2,3,4,5,6,7,8,9,11}; int res=equ(a,b,10); int res1=equ(a,c,10); //@ assert res==1; //@ assert res1==0; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_91
91
int main(){ int x = 0; int y = 0; while(y >= 0){ y = y + x; } //@ assert y >= 0; }
int main(){ int x = 0; int y = 0; /*@ loop invariant 0 <= y; loop invariant 0 <= x; loop assigns y; loop assigns x; */ while(y >= 0){ y = y + x; } //@ assert y >= 0; }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
X509-parser_time_components_to_comparable_u64
time_components_to_comparable_u64
#include <stdint.h> #include <unistd.h> #include <string.h> typedef uint8_t u8; typedef uint16_t u16; typedef uint32_t u32; typedef uint64_t u64; u64 time_components_to_comparable_u64(u16 na_year, u8 na_month, u8 na_day, u8 na_hour, u8 na_min, u8 na_sec) { u64 res, tmp; res = ((u64)na_sec); /*@ assert res < (1ULL << 6); */ tmp = ((u64)na_min) * (1ULL << 8); /*@ assert tmp < (1ULL << 14); */ res += tmp; /*@ assert res < (1ULL << 15); */ tmp = (((u64)na_hour) * (1ULL << 16)); /*@ assert tmp < (1ULL << 21); */ res += tmp; /*@ assert res < (1ULL << 22); */ tmp = ((u64)na_day) * (1ULL << 24); /*@ assert tmp < (1ULL << 29); */ res += tmp; /*@ assert res < (1ULL << 30); */ tmp = ((u64)na_month) * (1ULL << 32); /*@ assert tmp < (1ULL << 36); */ res += tmp; /*@ assert res < (1ULL << 37); */ tmp = ((u64)na_year) * (1ULL << 40); /*@ assert tmp < (1ULL << 54); */ res += tmp; /*@ assert res < (1ULL << 55); */ return res; } int main(void) { u16 na_year = 2023; u8 na_month = 12; u8 na_day = 20; u8 na_hour = 12; u8 na_min = 00; u8 na_sec = 00; u64 res; res = time_components_to_comparable_u64(na_year, na_month, na_day, na_hour, na_min, na_sec); //@ assert res < (1ULL << 55); return 0; }
#include <stdint.h> #include <unistd.h> #include <string.h> typedef uint8_t u8; typedef uint16_t u16; typedef uint32_t u32; typedef uint64_t u64; /*@ requires na_year <= 9999; requires na_month <= 12; requires na_day <= 31; requires na_hour <= 23; requires na_min <= 59; requires na_sec <= 59; ensures \result < (1ULL << 55); assigns \nothing; */ u64 time_components_to_comparable_u64(u16 na_year, u8 na_month, u8 na_day, u8 na_hour, u8 na_min, u8 na_sec) { u64 res, tmp; res = ((u64)na_sec); /*@ assert res < (1ULL << 6); */ tmp = ((u64)na_min) * (1ULL << 8); /*@ assert tmp < (1ULL << 14); */ res += tmp; /*@ assert res < (1ULL << 15); */ tmp = (((u64)na_hour) * (1ULL << 16)); /*@ assert tmp < (1ULL << 21); */ res += tmp; /*@ assert res < (1ULL << 22); */ tmp = ((u64)na_day) * (1ULL << 24); /*@ assert tmp < (1ULL << 29); */ res += tmp; /*@ assert res < (1ULL << 30); */ tmp = ((u64)na_month) * (1ULL << 32); /*@ assert tmp < (1ULL << 36); */ res += tmp; /*@ assert res < (1ULL << 37); */ tmp = ((u64)na_year) * (1ULL << 40); /*@ assert tmp < (1ULL << 54); */ res += tmp; /*@ assert res < (1ULL << 55); */ return res; } int main(void) { u16 na_year = 2023; u8 na_month = 12; u8 na_day = 20; u8 na_hour = 12; u8 na_min = 00; u8 na_sec = 00; u64 res; res = time_components_to_comparable_u64(na_year, na_month, na_day, na_hour, na_min, na_sec); //@ assert res < (1ULL << 55); return 0; }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_110
110
/*@ requires 1 <= n; */ void foo(int n) { int i = 1; int sn = 0; while (i <= n) { i = i + 1; sn = sn + 1; } if (sn != n) { //@ assert sn == 0; } }
/*@ requires 1 <= n; */ void foo(int n) { int i = 1; int sn = 0; /*@ loop invariant sn == i-1; loop invariant sn == i - 1; loop invariant sn <= n; loop invariant sn <= i-1; loop invariant i <= n+1; loop invariant i <= n + 1; loop invariant 1 <= i; loop invariant 0 <= sn; loop assigns sn; loop assigns i; */ while (i <= n) { i = i + 1; sn = sn + 1; } if (sn != n) { //@ assert sn == 0; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
find
find
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX size_type find(const value_type* a, size_type n, value_type v) { for (size_type i = 0u; i < n; i++) { if (a[i] == v) { //@ assert \exists integer k; 0 <= k < n && a[k] == v; return i; } } //@ assert \forall integer k; 0 <= k < n ==> a[k] != v; return n; }
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ requires \valid_read(a + (0..n-1)); assigns \nothing; ensures 0 <= \result <= n; behavior some: assumes \exists integer i; 0 <= i < n && a[i] == v; assigns \nothing; ensures 0 <= \result < n; ensures a[\result] == v; ensures \forall integer i; 0 <= i < \result ==> a[i] != v; behavior none: assumes \forall integer i; 0 <= i < n ==> a[i] != v; assigns \nothing; ensures \result == n; complete behaviors; disjoint behaviors; */ size_type find(const value_type* a, size_type n, value_type v) { /*@ loop invariant 0 <= i <= n; loop invariant \forall integer k; 0 <= k < i ==> a[k] != v; loop assigns i; loop variant n-i; */ for (size_type i = 0u; i < n; i++) { if (a[i] == v) { //@ assert \exists integer k; 0 <= k < n && a[k] == v; return i; } } //@ assert \forall integer k; 0 <= k < n ==> a[k] != v; return n; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_89
89
/*@ requires x == y; */ void foo(int x, int y) { int lock = 1; while (x != y) { if (unknown()) { lock = 1; x = y; } else { lock = 0; x = y; y = y + 1; } } //@ assert lock == 1; }
/*@ requires x == y; */ void foo(int x, int y) { int lock = 1; /*@ loop invariant x == y; loop invariant lock == 1; loop invariant lock == 1 || lock == 0; loop invariant lock == 0 || lock == 1; loop invariant lock != 1 ==> x == y; loop invariant (lock == 1) || (lock == 0); loop assigns x,y,lock; */ while (x != y) { if (unknown()) { lock = 1; x = y; } else { lock = 0; x = y; y = y + 1; } } //@ assert lock == 1; }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_65
65
int main() { int x = 1; int y = 0; while (x <= 100) { y = 100 - x; x = x +1; } //@ assert y >= 0; }
int main() { int x = 1; int y = 0; /*@ loop invariant y <= 100; loop invariant 0 <= y; loop invariant -99 <= y; loop invariant x <= 101; loop invariant 1 <= x; loop invariant 0 <= x; loop assigns y,x; */ while (x <= 100) { y = 100 - x; x = x +1; } //@ assert y >= 0; }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
corinnt_days
days
int day_of(int month){ int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } ; return days[month-1] ; } int main(){ int days2 = day_of(2); //@ assert days2 == 28; int days7 = day_of(7); //@ assert days7 == 31; }
/*@ requires input_range: 1 <= month <= 12; assigns \nothing; ensures result_options: \result \in {28, 30, 31}; behavior day_28: assumes month == 2; ensures \result == 28; behavior day_30: assumes month \in { 4, 6, 9, 11 } ; ensures \result == 30; behavior days_31: assumes month \in {1, 3, 5, 7, 8, 10, 12}; ensures \result == 31; complete behaviors; disjoint behaviors; */ int day_of(int month){ int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } ; return days[month-1] ; } int main(){ int days2 = day_of(2); //@ assert days2 == 28; int days7 = day_of(7); //@ assert days7 == 31; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
mismatch
mismatch
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ size_type mismatch(const value_type* a, size_type n, const value_type* b) { for (size_type i = 0u; i < n; i++) { if (a[i] != b[i]) { //@ assert !Equal{Here,Here}(a, n, b); return i; } } //@ assert Equal{Here,Here}(a, n, b); return n; }
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ /*@ requires valid: \valid_read(a + (0..n-1)); requires valid: \valid_read(b + (0..n-1)); assigns \nothing; ensures result: 0 <= \result <= n; behavior all_equal: assumes Equal{Here,Here}(a, n, b); assigns \nothing; ensures result: \result == n; behavior some_not_equal: assumes !Equal{Here,Here}(a, n, b); assigns \nothing; ensures bound: 0 <= \result < n; ensures result: a[\result] != b[\result]; ensures first: Equal{Here,Here}(a, \result, b); complete behaviors; disjoint behaviors; */ size_type mismatch(const value_type* a, size_type n, const value_type* b) { /*@ loop invariant bound: 0 <= i <= n; loop invariant equal: Equal{Here,Here}(a, i, b); loop assigns i; loop variant n-i; */ for (size_type i = 0u; i < n; i++) { if (a[i] != b[i]) { //@ assert !Equal{Here,Here}(a, n, b); return i; } } //@ assert Equal{Here,Here}(a, n, b); return n; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
evdenis_small-examples_lshift
lshift
#define INT_MAX 2147483647 unsigned lshift(unsigned a) { return a << 1; } int main() { unsigned a = 5; unsigned result = lshift(a); //@ assert result == 10; return 0; }
#define INT_MAX 2147483647 /*@ requires (a * 2) <= INT_MAX; assigns \nothing; ensures \result == a * 2; */ unsigned lshift(unsigned a) { return a << 1; } int main() { unsigned a = 5; unsigned result = lshift(a); //@ assert result == 10; return 0; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
arrays_and_loops_4
4
#include<limits.h> int test(int x) { int a = x; int y = 0; while(a != 0) { y = y + 1; a = a - 1; } return y; } int main() { int num = test(3); //@ assert num == 3; return 0; }
#include<limits.h> /*@ requires x > 0 && x < INT_MAX; ensures \result == x; assigns \nothing; */ int test(int x) { int a = x; int y = 0; /*@ loop invariant y + a == x; loop invariant a > -1 && a <= x; loop assigns a, y; */ while(a != 0) { y = y + 1; a = a - 1; } return y; } int main() { int num = test(3); //@ assert num == 3; return 0; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_102
102
/*@ requires n >= 0; */ void foo(int n) { int x = 0; while (x < n) { x = x + 1; } if(n >= 0) { //@ assert x == n; } }
/*@ requires n >= 0; */ void foo(int n) { int x = 0; /*@ loop invariant x <= n; loop invariant 0 <= x; loop assigns x; loop assigns n; */ while (x < n) { x = x + 1; } if(n >= 0) { //@ assert x == n; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
corinnt_order_inc_max
order_inc_max
/*@ requires \valid(a) && \valid(b); assigns *a, *b ; behavior reorder: assumes *a < *b ; ensures *a == \old(*b) && *b == \old(*a) ; behavior do_not_change: assumes *a >= *b ; ensures *a == \old(*a) && *b == \old(*b) ; complete behaviors ; disjoint behaviors ; */ void max_ptr(int* a, int* b){ if(*a < *b){ int tmp = *b ; *b = *a ; *a = tmp ; } //@ assert *a >= *b ; } /*@ requires \valid(a) && \valid(b); assigns *a, *b ; behavior reorder: assumes *a > *b ; ensures *a == \old(*b) && *b == \old(*a) ; behavior do_not_change: assumes *a <= *b ; ensures *a == \old(*a) && *b == \old(*b) ; complete behaviors ; disjoint behaviors ; */ void min_ptr(int* a, int* b){ max_ptr(b, a); //@ assert *a <= *b ; } void order_3_inc_max_min(int* a, int* b, int* c) { max_ptr(c, b) ; max_ptr(c, a) ; max_ptr(b, a) ; //@ assert *a <= *b && *b <= *c ; }
/*@ requires \valid(a) && \valid(b); assigns *a, *b ; behavior reorder: assumes *a < *b ; ensures *a == \old(*b) && *b == \old(*a) ; behavior do_not_change: assumes *a >= *b ; ensures *a == \old(*a) && *b == \old(*b) ; complete behaviors ; disjoint behaviors ; */ void max_ptr(int* a, int* b){ if(*a < *b){ int tmp = *b ; *b = *a ; *a = tmp ; } //@ assert *a >= *b ; } /*@ requires \valid(a) && \valid(b); assigns *a, *b ; behavior reorder: assumes *a > *b ; ensures *a == \old(*b) && *b == \old(*a) ; behavior do_not_change: assumes *a <= *b ; ensures *a == \old(*a) && *b == \old(*b) ; complete behaviors ; disjoint behaviors ; */ void min_ptr(int* a, int* b){ max_ptr(b, a); //@ assert *a <= *b ; } /*@ requires \valid(a) && \valid(b) && \valid(c) ; requires \separated(a, b, c); assigns *a, *b, *c ; ensures { \old(*a), \old(*b), \old(*c) } == { *a, *b, *c }; behavior all_equal: assumes *a == *b == *c ; ensures *a == *b == *c; behavior all_uequal: assumes *a != *b && *a != *c && *b != *c ; ensures *a != *b && *a != *c && *b != *c ; behavior two_eq_lt: assumes *a == *b < *c || *a == *c < *b || *b == *c < *a; ensures *a == *b; behavior two_eq_gt: assumes *a == *b > *c || *a == *c > *b || *b == *c > *a; ensures *b == *c; complete behaviors ; disjoint behaviors ; */ void order_3_inc_max(int* a, int* b, int* c) { max_ptr(c, b) ; max_ptr(c, a) ; max_ptr(b, a) ; //@ assert *a <= *b && *b <= *c ; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_56
56
/*@ requires n > 0; */ void foo(int n) { int c = 0; while (unknown()) { if (unknown()) { if (c > n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if (c == n) { //@ assert n <= -1; } }
/*@ requires n > 0; */ void foo(int n) { int c = 0; /*@ loop invariant n - c; loop invariant c <= n; loop invariant c <= n+1; loop invariant 0 <= c; loop assigns n,c; */ while (unknown()) { if (unknown()) { if (c > n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if (c == n) { //@ assert n <= -1; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_99
99
/*@ requires n >= 0; */ void foo(int n) { int x = n; int y = 0; while (x > 0) { y = y + 1; x = x - 1; } //@ assert n == x + y; }
/*@ requires n >= 0; */ void foo(int n) { int x = n; int y = 0; /*@ loop invariant y == n - x; loop invariant y <= n; loop invariant x <= n; loop invariant x + y == n; loop invariant n == x + y; loop invariant 0 <= y; loop invariant 0 <= x; loop assigns y; loop assigns x; */ while (x > 0) { y = y + 1; x = x - 1; } //@ assert n == x + y; }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
adjacent_difference
adjacent_difference
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic Difference { logic integer Difference{L}(value_type* a, integer n) = n <= 0 ? a[0] : a[n] - a[n-1]; lemma Difference_Zero{L}: \forall value_type *a; Difference(a, 0) == a[0]; lemma Difference_Next{L}: \forall value_type *a, integer n; 0 < n ==> Difference(a, n) == a[n] - a[n-1]; lemma Difference_Unchanged{K,L}: \forall value_type *a, integer n; 0 <= n ==> Unchanged{K,L}(a, n+1) ==> Difference{K}(a, n) == Difference{L}(a, n); } */ /*@ axiomatic AdjacentDifference { predicate AdjacentDifference{L}(value_type* a, integer n, value_type* b) = \forall integer i; 0 <= i < n ==> b[i] == Difference(a, i); predicate AdjacentDifferenceBounds(value_type* a, integer n) = \forall integer i; 1 <= i < n ==> VALUE_TYPE_MIN <= Difference(a, i) <= VALUE_TYPE_MAX; lemma AdjacentDifference_Step{K,L}: \forall value_type *a, *b, integer n; AdjacentDifference{K}(a, n, b) ==> Unchanged{K,L}(b, n) ==> Unchanged{K,L}(a, n+1) ==> \at(b[n],L) == Difference{L}(a, n) ==> AdjacentDifference{L}(a, n+1, b); lemma AdjacentDifference_Section{K}: \forall value_type *a, *b, integer m, n; 0 <= m <= n ==> AdjacentDifference{K}(a, n, b) ==> AdjacentDifference{K}(a, m, b); } */ size_type adjacent_difference(const value_type* a, size_type n, value_type* b) { if (0u < n) { b[0u] = a[0u]; for (size_type i = 1u; i < n; ++i) { //@ assert bound: VALUE_TYPE_MIN <= Difference(a, i) <= VALUE_TYPE_MAX; b[i] = a[i] - a[i - 1u]; //@ assert difference: AdjacentDifference(a, i+1, b); } } return n; }
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic Difference { logic integer Difference{L}(value_type* a, integer n) = n <= 0 ? a[0] : a[n] - a[n-1]; lemma Difference_Zero{L}: \forall value_type *a; Difference(a, 0) == a[0]; lemma Difference_Next{L}: \forall value_type *a, integer n; 0 < n ==> Difference(a, n) == a[n] - a[n-1]; lemma Difference_Unchanged{K,L}: \forall value_type *a, integer n; 0 <= n ==> Unchanged{K,L}(a, n+1) ==> Difference{K}(a, n) == Difference{L}(a, n); } */ /*@ axiomatic AdjacentDifference { predicate AdjacentDifference{L}(value_type* a, integer n, value_type* b) = \forall integer i; 0 <= i < n ==> b[i] == Difference(a, i); predicate AdjacentDifferenceBounds(value_type* a, integer n) = \forall integer i; 1 <= i < n ==> VALUE_TYPE_MIN <= Difference(a, i) <= VALUE_TYPE_MAX; lemma AdjacentDifference_Step{K,L}: \forall value_type *a, *b, integer n; AdjacentDifference{K}(a, n, b) ==> Unchanged{K,L}(b, n) ==> Unchanged{K,L}(a, n+1) ==> \at(b[n],L) == Difference{L}(a, n) ==> AdjacentDifference{L}(a, n+1, b); lemma AdjacentDifference_Section{K}: \forall value_type *a, *b, integer m, n; 0 <= m <= n ==> AdjacentDifference{K}(a, n, b) ==> AdjacentDifference{K}(a, m, b); } */ /*@ requires valid: \valid_read(a + (0..n-1)); requires valid: \valid(b + (0..n-1)); requires sep: \separated(a + (0..n-1), b + (0..n-1)); requires bounds: AdjacentDifferenceBounds(a, n); assigns b[0..n-1]; ensures result: \result == n; ensures difference: AdjacentDifference(a, n, b); ensures unchanged: Unchanged{Old,Here}(a, n); */ size_type adjacent_difference(const value_type* a, size_type n, value_type* b) { if (0u < n) { b[0u] = a[0u]; /*@ loop invariant index: 1 <= i <= n; loop invariant unchanged: Unchanged{Pre,Here}(a, n); loop invariant difference: AdjacentDifference(a, i, b); loop assigns i, b[1..n-1]; loop variant n - i; */ for (size_type i = 1u; i < n; ++i) { //@ assert bound: VALUE_TYPE_MIN <= Difference(a, i) <= VALUE_TYPE_MAX; b[i] = a[i] - a[i - 1u]; //@ assert difference: AdjacentDifference(a, i+1, b); } } return n; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_45
45
int unknown(); /*@ requires n > 0; */ void foo(int n) { int c = 0; while (unknown()) { if (unknown()) { if (c != n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if(c != n) { //@ assert c >= 0; } }
int unknown(); /*@ requires n > 0; */ void foo(int n) { int c = 0; /*@ loop invariant c == n ==> c == n; loop invariant 0 <= c; loop assigns n,c; */ while (unknown()) { if (unknown()) { if (c != n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if(c != n) { //@ assert c >= 0; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
frama-c-wp-tutorial-en_18
18
#include <stddef.h> #include <limits.h> int* search(int* array, size_t length, int element){ for(size_t i = 0; i < length; i++){ if(array[i] == element) return &array[i]; } return NULL; } int main(){ int array[] = {1,2,3,4,5}; int *p = search(array,5,6); //@ assert p == NULL; }
#include <stddef.h> #include <limits.h> /*@ requires \valid_read(array+(0..length-1)); assigns \nothing; behavior in: assumes \exists size_t off;0<=off<length&&array[off]==element; ensures array<=\result<array+length&&*\result==element; behavior notin: assumes \forall size_t off;0<=off<length==>array[off]!=element; ensures \result==NULL; disjoint behaviors; complete behaviors; */ int* search(int* array, size_t length, int element) { /*@ loop invariant 0<=i<=length; loop invariant \forall size_t j;0<=j<i==>array[j]!=element; loop assigns i; loop variant length-i; */ for(size_t i = 0; i < length; i++) if(array[i]==element) return &array[i]; return NULL; } int main(){ int array[] = {1,2,3,4,5}; int *p = search(array,5,6); //@ assert p == NULL; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
21176_BL.EN.U4CSE21176_1
BL.EN.U4CSE21176_1
#include<limits.h> int max(int a,int b){ return a>b?a:b; } int main(){ int x=4; int y=5; int r=max(x,y); //@assert x==4 && y==5; }
#include<limits.h> /*@ requires INT_MIN<=a<INT_MAX; requires INT_MIN<=b<INT_MAX; ensures \result==a && \result>b || \result==b && \result>a || \result==a && \result==b; */ int max(int a,int b){ return a>b?a:b; } int main(){ int x=4; int y=5; int r=max(x,y); //@assert x==4 && y==5; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
general_wp_problem_triangle_sides
triangle_sides
#include <stdio.h> int validts(int a, int b, int c) { int valid = 0; if ((a+b>c) && (a+c>b) && (b+c>a) && 1) { valid = 1; } else { valid = 0; } return valid; } void test() { int valid = validts(2,3,4); //@ assert valid == 1; }
#include <stdio.h> /*@ requires a>0 && b>0 && c>0; ensures \result == 1 <==> (a+b>c) && (a+c>b) && (b+c>a); ensures \result == 0 <==> !(a+b>c) || !(a+c>b) || !(b+c>a); */ int validts(int a, int b, int c) { int valid = 0; if ((a+b>c) && (a+c>b) && (b+c>a) && 1) { valid = 1; } else { valid = 0; } return valid; } void test() { int valid = validts(2,3,4); //@ assert valid == 1; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
frama-c-wp-tutorial-en_9
9
void max_ptr(int* a, int* b){ if(*a < *b){ int tmp = *b; *b = *a; *a = tmp; } } int main(){ int x = 10, y = 20; max_ptr(&x, &y); //@ assert x == 20 && y == 10; return 0; }
/*@ requires \valid(a) && \valid(b); assigns *a, *b; ensures \old(*a) < \old(*b) ==> *a == \old(*b) && *b == \old(*a); ensures \old(*a) >= \old(*b) ==> *a == \old(*a) && *b == \old(*b); */ void max_ptr(int* a, int* b){ if(*a < *b){ int tmp = *b; *b = *a; *a = tmp; } } int main(){ int x = 10, y = 20; max_ptr(&x, &y); //@ assert x == 20 && y == 10; return 0; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_71
71
/*@ requires y >= 127; */ void foo(int y) { int c = 0; int z = 36 * y; while (unknown()) { if (c < 36) { z = z + 1; c = c + 1; } } if (c < 36) { //@ assert z >= 0; } }
/*@ requires y >= 127; */ void foo(int y) { int c = 0; int z = 36 * y; /*@ loop invariant z == 36*y + c; loop invariant z == 36 * y + c; loop invariant c <= 36; loop invariant 36 * y <= z; loop invariant 0 <= c; loop assigns z; loop assigns c; */ while (unknown()) { if (c < 36) { z = z + 1; c = c + 1; } } if (c < 36) { //@ assert z >= 0; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_107
107
/*@ requires a <= m; */ void foo(int a, int m) { int j = 0; int k = 0; while ( k < 1) { if(m < a) { m = a; } k = k + 1; } //@ assert a <= m; }
/*@ requires a <= m; */ void foo(int a, int m) { int j = 0; int k = 0; /*@ loop invariant k <= 1; loop invariant a <= m; loop invariant 0 <= k; loop assigns m; loop assigns k; */ while ( k < 1) { if(m < a) { m = a; } k = k + 1; } //@ assert a <= m; }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
axiom_size_of_pop
axiom_size_of_pop
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX struct Stack { value_type* obj; size_type capacity; size_type size; }; typedef struct Stack Stack; /*@ axiomatic StackInvariant { logic integer StackCapacity{L}(Stack* s) = s->capacity; logic integer StackSize{L}(Stack* s) = s->size; logic value_type* StackStorage{L}(Stack* s) = s->obj; logic integer StackTop{L}(Stack* s) = s->obj[s->size-1]; predicate StackEmpty{L}(Stack* s) = StackSize(s) == 0; predicate StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s); predicate StackInvariant{L}(Stack* s) = 0 < StackCapacity(s) && 0 <= StackSize(s) <= StackCapacity(s) && \valid(StackStorage(s) + (0..StackCapacity(s)-1)) && \separated(s, StackStorage(s) + (0..StackCapacity(s)-1)); } */ /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic StackUtility { predicate StackSeparated(Stack* s, Stack* t) = \separated(s, s->obj + (0..s->capacity-1), t, t->obj + (0..t->capacity-1)); predicate StackUnchanged{K,L}(Stack* s) = StackSize{K}(s) == StackSize{L}(s) && StackStorage{K}(s) == StackStorage{L}(s) && StackCapacity{K}(s) == StackCapacity{L}(s) && Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s)); } */ /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ /*@ axiomatic StackEquality { predicate StackEqual{S,T}(Stack* s, Stack* t) = StackSize{S}(s) == StackSize{T}(t) && Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t)); lemma StackEqual_Reflexive{S} : \forall Stack* s; StackEqual{S,S}(s, s); lemma StackEqual_Symmetric{S,T} : \forall Stack *s, *t; StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s); lemma StackEqual_Transitive{S,T,U}: \forall Stack *s, *t, *u; StackEqual{S,T}(s, t) ==> StackEqual{T,U}(t, u) ==> StackEqual{S,U}(s, u); } */ /*@ requires valid: \valid(s) && StackInvariant(s); assigns s->size; ensures valid: \valid(s) && StackInvariant(s); behavior empty: assumes StackEmpty(s); assigns \nothing; ensures empty: StackEmpty(s); ensures unchanged: StackUnchanged{Old,Here}(s); behavior not_empty: assumes !StackEmpty(s); assigns s->size; ensures size: StackSize(s) == StackSize{Old}(s) - 1; ensures full: !StackFull(s); ensures storage: StackStorage(s) == StackStorage{Old}(s); ensures capacity: StackCapacity(s) == StackCapacity{Old}(s); ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize(s)); complete behaviors; disjoint behaviors; */ void stack_pop(Stack* s); /*@ requires valid: \valid(s) && StackInvariant(s); assigns \nothing; ensures size: \result == StackSize(s); */ size_type stack_size(const Stack* s); size_type axiom_size_of_pop(Stack* s) { stack_pop(s); //@ assert StackSize(s) == StackSize{Pre}(s) - 1; return stack_size(s); }
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX struct Stack { value_type* obj; size_type capacity; size_type size; }; typedef struct Stack Stack; /*@ axiomatic StackInvariant { logic integer StackCapacity{L}(Stack* s) = s->capacity; logic integer StackSize{L}(Stack* s) = s->size; logic value_type* StackStorage{L}(Stack* s) = s->obj; logic integer StackTop{L}(Stack* s) = s->obj[s->size-1]; predicate StackEmpty{L}(Stack* s) = StackSize(s) == 0; predicate StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s); predicate StackInvariant{L}(Stack* s) = 0 < StackCapacity(s) && 0 <= StackSize(s) <= StackCapacity(s) && \valid(StackStorage(s) + (0..StackCapacity(s)-1)) && \separated(s, StackStorage(s) + (0..StackCapacity(s)-1)); } */ /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic StackUtility { predicate StackSeparated(Stack* s, Stack* t) = \separated(s, s->obj + (0..s->capacity-1), t, t->obj + (0..t->capacity-1)); predicate StackUnchanged{K,L}(Stack* s) = StackSize{K}(s) == StackSize{L}(s) && StackStorage{K}(s) == StackStorage{L}(s) && StackCapacity{K}(s) == StackCapacity{L}(s) && Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s)); } */ /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ /*@ axiomatic StackEquality { predicate StackEqual{S,T}(Stack* s, Stack* t) = StackSize{S}(s) == StackSize{T}(t) && Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t)); lemma StackEqual_Reflexive{S} : \forall Stack* s; StackEqual{S,S}(s, s); lemma StackEqual_Symmetric{S,T} : \forall Stack *s, *t; StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s); lemma StackEqual_Transitive{S,T,U}: \forall Stack *s, *t, *u; StackEqual{S,T}(s, t) ==> StackEqual{T,U}(t, u) ==> StackEqual{S,U}(s, u); } */ /*@ requires valid: \valid(s) && StackInvariant(s); assigns s->size; ensures valid: \valid(s) && StackInvariant(s); behavior empty: assumes StackEmpty(s); assigns \nothing; ensures empty: StackEmpty(s); ensures unchanged: StackUnchanged{Old,Here}(s); behavior not_empty: assumes !StackEmpty(s); assigns s->size; ensures size: StackSize(s) == StackSize{Old}(s) - 1; ensures full: !StackFull(s); ensures storage: StackStorage(s) == StackStorage{Old}(s); ensures capacity: StackCapacity(s) == StackCapacity{Old}(s); ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize(s)); complete behaviors; disjoint behaviors; */ void stack_pop(Stack* s); /*@ requires valid: \valid(s) && StackInvariant(s); assigns \nothing; ensures size: \result == StackSize(s); */ size_type stack_size(const Stack* s); /*@ requires valid: \valid(s) && StackInvariant(s); requires empty: !StackEmpty(s); assigns s->size; ensures size: \result == StackSize{Old}(s) - 1; */ size_type axiom_size_of_pop(Stack* s) { stack_pop(s); //@ assert StackSize(s) == StackSize{Pre}(s) - 1; return stack_size(s); }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_30
30
/*@ requires (x == 100); */ void foo(int x) { while (x > 0) { x = x - 1; } //@ assert x == 0; }
/*@ requires (x == 100); */ void foo(int x) { // loop body /*@ loop invariant x <= 100; loop invariant 0 <= x; loop assigns x; */ while (x > 0) { x = x - 1; } // post-condition //@ assert x == 0; }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_127
127
void foo(int x, int y) { int i = x; int j = y; while (x != 0) { x = x - 1; y = y - 1; } if (y != 0) { //@ assert i != j; } }
void foo(int x, int y) { int i = x; int j = y; /*@ loop invariant y <= j; loop invariant x <= i; loop invariant j - y == i - x; loop invariant i - x == j - y; loop assigns x,y,i,j; */ while (x != 0) { x = x - 1; y = y - 1; } if (y != 0) { //@ assert i != j; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
evdenis_proved_reverse_in_place
reverse_in_place
/*@ requires \valid(&a[i]); requires \valid(&a[j]); assigns a[i], a[j]; ensures a[i] == \old(a[j]); ensures a[j] == \old(a[i]); */ void swap(int a[], int i, int j); void reverse_in_place(int a[], int size) { int i; for(i = 0; i < (size / 2); ++i) { swap(a, i, size - i - 1); } } #ifdef OUT_OF_TASK #include <stdio.h> int main(void) { int a[] = {1,2,3,4,5,6,7,8,9,10}; int size = sizeof(a) / sizeof(a[0]); //@ assert a[0] == 1; reverse_in_place(a, size); //@ assert a[0] == 10; } #endif
/*@ requires \valid(&a[i]); requires \valid(&a[j]); assigns a[i], a[j]; ensures a[i] == \old(a[j]); ensures a[j] == \old(a[i]); */ void swap(int a[], int i, int j); /*@ predicate reverse{L1,L2}(int* a, integer size, integer i, integer j) = \forall integer k; i <= k < j ==> \at(a[k], L1) == \at(a[size - k - 1], L2); predicate reverse{L1,L2}(int* a, integer size) = reverse{L1,L2}(a, size, 0, size); */ /*@ requires size >= 0; requires \valid(a+(0..size-1)); assigns a[0..size-1]; ensures reverse{Pre,Here}(a, size); ensures \forall integer i; 0 <= i < size ==> \exists integer j; 0 <= j < size && \old(a[\at(i,Here)]) == a[j]; */ void reverse_in_place(int a[], int size) { int i; /*@ loop invariant 0 <= i <= size / 2; loop invariant reverse{Pre,Here}(a, size, 0, i); loop invariant \forall integer j; i <= j < size - i ==> a[j] == \at(a[\at(j,Here)],Pre); loop invariant reverse{Pre,Here}(a, size, size - i, size); loop assigns i, a[0..size-1]; loop variant size / 2 - i; */ for(i = 0; i < (size / 2); ++i) { swap(a, i, size - i - 1); } } #ifdef OUT_OF_TASK #include <stdio.h> int main(void) { int a[] = {1,2,3,4,5,6,7,8,9,10}; int size = sizeof(a) / sizeof(a[0]); //@ assert a[0] == 1; reverse_in_place(a, size); //@ assert a[0] == 10; } #endif
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
stack_push_wd
stack_push_wd
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX struct Stack { value_type* obj; size_type capacity; size_type size; }; typedef struct Stack Stack; /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ /*@ axiomatic StackInvariant { logic integer StackCapacity{L}(Stack* s) = s->capacity; logic integer StackSize{L}(Stack* s) = s->size; logic value_type* StackStorage{L}(Stack* s) = s->obj; logic integer StackTop{L}(Stack* s) = s->obj[s->size-1]; predicate StackEmpty{L}(Stack* s) = StackSize(s) == 0; predicate StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s); predicate StackInvariant{L}(Stack* s) = 0 < StackCapacity(s) && 0 <= StackSize(s) <= StackCapacity(s) && \valid(StackStorage(s) + (0..StackCapacity(s)-1)) && \separated(s, StackStorage(s) + (0..StackCapacity(s)-1)); } */ /*@ axiomatic StackUtility { predicate StackSeparated(Stack* s, Stack* t) = \separated(s, s->obj + (0..s->capacity-1), t, t->obj + (0..t->capacity-1)); predicate StackUnchanged{K,L}(Stack* s) = StackSize{K}(s) == StackSize{L}(s) && StackStorage{K}(s) == StackStorage{L}(s) && StackCapacity{K}(s) == StackCapacity{L}(s) && Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s)); } */ /*@ axiomatic StackEquality { predicate StackEqual{S,T}(Stack* s, Stack* t) = StackSize{S}(s) == StackSize{T}(t) && Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t)); lemma StackEqual_Reflexive{S} : \forall Stack* s; StackEqual{S,S}(s, s); lemma StackEqual_Symmetric{S,T} : \forall Stack *s, *t; StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s); lemma StackEqual_Transitive{S,T,U}: \forall Stack *s, *t, *u; StackEqual{S,T}(s, t) ==> StackEqual{T,U}(t, u) ==> StackEqual{S,U}(s, u); } */ /*@ axiomatic StackLemmas { lemma StackPush_Equal{K,L}: \forall Stack *s, *t; StackEqual{K,K}(s,t) ==> StackSize{L}(s) == StackSize{K}(s) + 1 ==> StackSize{L}(s) == StackSize{L}(t) ==> StackTop{L}(s) == StackTop{L}(t) ==> Equal{L,L}(StackStorage{L}(s), StackSize{K}(s), StackStorage{L}(t)) ==> StackEqual{L,L}(s,t); } */ /*@ requires valid: \valid(s) && StackInvariant(s); assigns s->size, s->obj[s->size]; behavior full: assumes StackFull(s); assigns \nothing; ensures valid: \valid(s) && StackInvariant(s); ensures full: StackFull(s); ensures unchanged: StackUnchanged{Old,Here}(s); behavior not_full: assumes !StackFull(s); assigns s->size; assigns s->obj[s->size]; ensures valid: \valid(s) && StackInvariant(s); ensures size: StackSize(s) == StackSize{Old}(s) + 1; ensures top: StackTop(s) == v; ensures storage: StackStorage(s) == StackStorage{Old}(s); ensures capacity: StackCapacity(s) == StackCapacity{Old}(s); ensures not_empty: !StackEmpty(s); ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize{Old}(s)); complete behaviors; disjoint behaviors; */ void stack_push(Stack* s, value_type v); void stack_push_wd(Stack* s, Stack* t, value_type v) { stack_push(s, v); stack_push(t, v); //@ assert top: StackTop(s) == v; //@ assert top: StackTop(t) == v; //@ assert equal: Equal{Here,Here}(StackStorage(s), StackSize{Pre}(s), StackStorage(t)); }
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX struct Stack { value_type* obj; size_type capacity; size_type size; }; typedef struct Stack Stack; /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ /*@ axiomatic StackInvariant { logic integer StackCapacity{L}(Stack* s) = s->capacity; logic integer StackSize{L}(Stack* s) = s->size; logic value_type* StackStorage{L}(Stack* s) = s->obj; logic integer StackTop{L}(Stack* s) = s->obj[s->size-1]; predicate StackEmpty{L}(Stack* s) = StackSize(s) == 0; predicate StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s); predicate StackInvariant{L}(Stack* s) = 0 < StackCapacity(s) && 0 <= StackSize(s) <= StackCapacity(s) && \valid(StackStorage(s) + (0..StackCapacity(s)-1)) && \separated(s, StackStorage(s) + (0..StackCapacity(s)-1)); } */ /*@ axiomatic StackUtility { predicate StackSeparated(Stack* s, Stack* t) = \separated(s, s->obj + (0..s->capacity-1), t, t->obj + (0..t->capacity-1)); predicate StackUnchanged{K,L}(Stack* s) = StackSize{K}(s) == StackSize{L}(s) && StackStorage{K}(s) == StackStorage{L}(s) && StackCapacity{K}(s) == StackCapacity{L}(s) && Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s)); } */ /*@ axiomatic StackEquality { predicate StackEqual{S,T}(Stack* s, Stack* t) = StackSize{S}(s) == StackSize{T}(t) && Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t)); lemma StackEqual_Reflexive{S} : \forall Stack* s; StackEqual{S,S}(s, s); lemma StackEqual_Symmetric{S,T} : \forall Stack *s, *t; StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s); lemma StackEqual_Transitive{S,T,U}: \forall Stack *s, *t, *u; StackEqual{S,T}(s, t) ==> StackEqual{T,U}(t, u) ==> StackEqual{S,U}(s, u); } */ /*@ axiomatic StackLemmas { lemma StackPush_Equal{K,L}: \forall Stack *s, *t; StackEqual{K,K}(s,t) ==> StackSize{L}(s) == StackSize{K}(s) + 1 ==> StackSize{L}(s) == StackSize{L}(t) ==> StackTop{L}(s) == StackTop{L}(t) ==> Equal{L,L}(StackStorage{L}(s), StackSize{K}(s), StackStorage{L}(t)) ==> StackEqual{L,L}(s,t); } */ /*@ requires valid: \valid(s) && StackInvariant(s); assigns s->size, s->obj[s->size]; behavior full: assumes StackFull(s); assigns \nothing; ensures valid: \valid(s) && StackInvariant(s); ensures full: StackFull(s); ensures unchanged: StackUnchanged{Old,Here}(s); behavior not_full: assumes !StackFull(s); assigns s->size; assigns s->obj[s->size]; ensures valid: \valid(s) && StackInvariant(s); ensures size: StackSize(s) == StackSize{Old}(s) + 1; ensures top: StackTop(s) == v; ensures storage: StackStorage(s) == StackStorage{Old}(s); ensures capacity: StackCapacity(s) == StackCapacity{Old}(s); ensures not_empty: !StackEmpty(s); ensures unchanged: Unchanged{Old,Here}(StackStorage(s), StackSize{Old}(s)); complete behaviors; disjoint behaviors; */ void stack_push(Stack* s, value_type v); /*@ requires valid: \valid(s) && StackInvariant(s); requires valid: \valid(t) && StackInvariant(t); requires equal: StackEqual{Here,Here}(s, t); requires not_full: !StackFull(s) && !StackFull(t); requires sep: StackSeparated(s, t); assigns s->size, s->obj[s->size]; assigns t->size, t->obj[t->size]; ensures valid: StackInvariant(s) && StackInvariant(t); ensures equal: StackEqual{Here,Here}(s, t); */ void stack_push_wd(Stack* s, Stack* t, value_type v) { stack_push(s, v); stack_push(t, v); //@ assert top: StackTop(s) == v; //@ assert top: StackTop(t) == v; //@ assert equal: Equal{Here,Here}(StackStorage(s), StackSize{Pre}(s), StackStorage(t)); }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
arepina_average
average
int average(int a, int b) { int average = 0; int greater; int smaller; if (a > b) { greater = a; smaller = b; } else { greater = b; smaller = a; } if (a >= 0 && b >= 0) { average = smaller + (greater - smaller) / 2; } else if (a < 0 && b < 0) { average = greater + (smaller - greater) / 2; } else if ((a >= 0 && b <= 0) || (a <= 0 && b >= 0)) { average = (a + b) / 2; } return average; } #ifdef OUT_OF_TASK #include <stdio.h> int main(void) { int a = average(3,30); int b = average(-5,-20); int c = average(7,-10); int d = average(-2,15); //@ assert a == 16; //@ assert b == -13; //@ assert c == -3; //@ assert d == 8; return 0; } #endif
/*@ assigns \nothing; ensures \result == (a+b)/2; */ int average(int a, int b) { int average = 0; int greater; int smaller; if (a > b) { greater = a; smaller = b; } else { greater = b; smaller = a; } if (a >= 0 && b >= 0) { average = smaller + (greater - smaller) / 2; } else if (a < 0 && b < 0) { average = greater + (smaller - greater) / 2; } else if ((a >= 0 && b <= 0) || (a <= 0 && b >= 0)) { average = (a + b) / 2; } return average; } #ifdef OUT_OF_TASK #include <stdio.h> int main(void) { int a = average(3,30); int b = average(-5,-20); int c = average(7,-10); int d = average(-2,15); //@ assert a == 16; //@ assert b == -13; //@ assert c == -3; //@ assert d == 8; return 0; } #endif
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
21176_LogicFunction2
LogicFunction2
#include<limits.h> /*@ logic integer ax_b(integer a,integer x,integer b) = a*x+b; */ /*@ assigns \nothing; ensures \result==ax_b(a,x,4); */ int func(int a,int x){ return a*x+4; } void check(int a,int x,int y){ int fmin,fmax; if(x>y){ fmin=func(a,x); fmax=func(a,y); } else{ fmin=func(a,y); fmax=func(a,x); } //@assert fmin<=fmax; } int main(){ int w=3; int r=4; int s=7; int t=func(w,r); check(w,r,s); }
#include<limits.h> /*@ logic integer ax_b(integer a,integer x,integer b) = a*x+b; */ /*@ assigns \nothing; ensures \result==ax_b(a,x,4); */ int func(int a,int x){ return a*x+4; } /*@ requires INT_MIN<=a*x<INT_MAX; requires INT_MIN<=a*y<INT_MAX; requires a>0; requires INT_MIN<=ax_b(a,x,4)<=INT_MAX; requires INT_MIN<=ax_b(a,y,4)<=INT_MAX; assigns \nothing; */ void check(int a,int x,int y){ int fmin,fmax; if(x < y){} else{ int temp = x; x = y; y = temp; } fmin=func(a,x); fmax=func(a,y); //@assert fmin== ax_b(a, (x < y ? x : y), 4); } int main(){ int w=3; int r=4; int s=7; int t=func(w,r); check(w,r,s); }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
frama-c-wp-tutorial-en_3
3
#include<limits.h> int plus_5(int* a) { return *a + 5; } int main(){ int a = 10; int b = plus_5(&a); //@ assert b == 15; }
#include<limits.h> /*@ requires \valid_read(a); requires *a <= INT_MAX - 5; assigns \nothing; ensures \result == *a + 5; */ int plus_5(int* a) { return *a + 5; } int main(){ int a = 10; int b = plus_5(&a); //@ assert b == 15; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
corinnt_assigns
assigns
void foo(){ int h = 42 ; int x = 0 ; int e = 0 ; PreLoop: while(e < 10){ ++ e ; x += e * 2 ; } //@ assert h == 42 ; }
void foo(){ int h = 42 ; int x = 0 ; int e = 0 ; PreLoop: /*@ loop invariant h == \at(h, PreLoop) ; loop assigns e, x ; loop variant 10 - e; */ while(e < 10){ ++ e ; x += e * 2 ; } //@ assert h == 42 ; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_96
96
void foo(int x) { int i = 0; int j = 0; int y = 0; while (i <= x) { i = i + 1; j = j + y; } if (i != j) { //@ assert y != 1; } }
void foo(int x) { int i = 0; int j = 0; int y = 0; /*@ loop invariant y == 0; loop invariant j == y*i; loop invariant j == y*(i-1); loop invariant j == i*y; loop invariant j == (i-1)*y; loop invariant j <= y*(i-1); loop invariant 0 <= j; loop invariant 0 <= i; loop assigns y,i,j; */ while (i <= x) { i = i + 1; j = j + y; } if (i != j) { //@ assert y != 1; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_40
40
int unknown(); /*@ requires n > 0; */ void foo(int n) { int c = 0; while (unknown()) { if (unknown()) { if (c > n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if ( (c != n) ) { //@ assert (c >= 0) ; } }
int unknown(); /*@ requires n > 0; */ void foo(int n) { int c = 0; /*@ loop invariant n-c; loop invariant n - c; loop invariant c <= n; loop invariant c <= n || c == 1; loop invariant 0 <= c; loop invariant (c <= n && c >= 0) || (c == n+1); loop assigns c; */ while (unknown()) { if (unknown()) { if (c > n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if ( (c != n) ) { //@ assert (c >= 0) ; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
stack_empty_wd
stack_empty_wd
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX struct Stack { value_type* obj; size_type capacity; size_type size; }; typedef struct Stack Stack; /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ /*@ axiomatic StackInvariant { logic integer StackCapacity{L}(Stack* s) = s->capacity; logic integer StackSize{L}(Stack* s) = s->size; logic value_type* StackStorage{L}(Stack* s) = s->obj; logic integer StackTop{L}(Stack* s) = s->obj[s->size-1]; predicate StackEmpty{L}(Stack* s) = StackSize(s) == 0; predicate StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s); predicate StackInvariant{L}(Stack* s) = 0 < StackCapacity(s) && 0 <= StackSize(s) <= StackCapacity(s) && \valid(StackStorage(s) + (0..StackCapacity(s)-1)) && \separated(s, StackStorage(s) + (0..StackCapacity(s)-1)); } */ /*@ axiomatic StackUtility { predicate StackSeparated(Stack* s, Stack* t) = \separated(s, s->obj + (0..s->capacity-1), t, t->obj + (0..t->capacity-1)); predicate StackUnchanged{K,L}(Stack* s) = StackSize{K}(s) == StackSize{L}(s) && StackStorage{K}(s) == StackStorage{L}(s) && StackCapacity{K}(s) == StackCapacity{L}(s) && Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s)); } */ /*@ axiomatic StackEquality { predicate StackEqual{S,T}(Stack* s, Stack* t) = StackSize{S}(s) == StackSize{T}(t) && Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t)); lemma StackEqual_Reflexive{S} : \forall Stack* s; StackEqual{S,S}(s, s); lemma StackEqual_Symmetric{S,T} : \forall Stack *s, *t; StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s); lemma StackEqual_Transitive{S,T,U}: \forall Stack *s, *t, *u; StackEqual{S,T}(s, t) ==> StackEqual{T,U}(t, u) ==> StackEqual{S,U}(s, u); } */ /*@ requires valid: \valid(s) && StackInvariant(s); assigns \nothing; ensures empty: \result == 1 <==> StackEmpty(s); ensures not_empty: \result == 0 <==> !StackEmpty(s); */ bool stack_empty(const Stack* s); bool stack_empty_wd(const Stack* s, const Stack* t) { return stack_empty(s) == stack_empty(t); }
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX struct Stack { value_type* obj; size_type capacity; size_type size; }; typedef struct Stack Stack; /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ /*@ axiomatic StackInvariant { logic integer StackCapacity{L}(Stack* s) = s->capacity; logic integer StackSize{L}(Stack* s) = s->size; logic value_type* StackStorage{L}(Stack* s) = s->obj; logic integer StackTop{L}(Stack* s) = s->obj[s->size-1]; predicate StackEmpty{L}(Stack* s) = StackSize(s) == 0; predicate StackFull{L}(Stack* s) = StackSize(s) == StackCapacity(s); predicate StackInvariant{L}(Stack* s) = 0 < StackCapacity(s) && 0 <= StackSize(s) <= StackCapacity(s) && \valid(StackStorage(s) + (0..StackCapacity(s)-1)) && \separated(s, StackStorage(s) + (0..StackCapacity(s)-1)); } */ /*@ axiomatic StackUtility { predicate StackSeparated(Stack* s, Stack* t) = \separated(s, s->obj + (0..s->capacity-1), t, t->obj + (0..t->capacity-1)); predicate StackUnchanged{K,L}(Stack* s) = StackSize{K}(s) == StackSize{L}(s) && StackStorage{K}(s) == StackStorage{L}(s) && StackCapacity{K}(s) == StackCapacity{L}(s) && Unchanged{K,L}(StackStorage{K}(s), StackSize{K}(s)); } */ /*@ axiomatic StackEquality { predicate StackEqual{S,T}(Stack* s, Stack* t) = StackSize{S}(s) == StackSize{T}(t) && Equal{S,T}(StackStorage{S}(s), StackSize{S}(s), StackStorage{T}(t)); lemma StackEqual_Reflexive{S} : \forall Stack* s; StackEqual{S,S}(s, s); lemma StackEqual_Symmetric{S,T} : \forall Stack *s, *t; StackEqual{S,T}(s, t) ==> StackEqual{T,S}(t, s); lemma StackEqual_Transitive{S,T,U}: \forall Stack *s, *t, *u; StackEqual{S,T}(s, t) ==> StackEqual{T,U}(t, u) ==> StackEqual{S,U}(s, u); } */ /*@ requires valid: \valid(s) && StackInvariant(s); assigns \nothing; ensures empty: \result == 1 <==> StackEmpty(s); ensures not_empty: \result == 0 <==> !StackEmpty(s); */ bool stack_empty(const Stack* s); /*@ requires valid: \valid(s) && StackInvariant(s); requires valid: \valid(t) && StackInvariant(t); requires equal: StackEqual{Here,Here}(s, t); assigns \nothing; ensures StackEmpty(s) && StackEmpty(t) ==> \result == true; ensures (!StackEmpty(s) && StackEmpty(t)) || (StackEmpty(s) && !StackEmpty(t)) || (!StackEmpty(s) && !StackEmpty(t)) ==> \result == false; */ bool stack_empty_wd(const Stack* s, const Stack* t) { return stack_empty(s) && stack_empty(t); } int main(){ value_type a[5] = {1, 2, 3, 4, 5}; value_type b[5] = {1, 2, 3, 4, 5}; Stack s1, s2; s1.capacity = 5; s1.size = 5; s1.obj = a; s2.capacity = 5; s2.size = 5; s2.obj = b; bool result = stack_empty_wd(&s1, &s2); //@ assert result == false; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_54
54
/*@ requires n > 0; */ void foo(int n) { int c = 0; while (unknown()) { if (unknown()) { if (c > n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if (c != n) { //@ assert c <= n; } }
/*@ requires n > 0; */ void foo(int n) { int c = 0; /*@ loop invariant n-c; loop invariant n - c; loop invariant c <= n; loop invariant 0 <= c; loop assigns c; */ while (unknown()) { if (unknown()) { if (c > n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if (c != n) { //@ assert c <= n; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
evdenis_small-examples_divide
divide
int divide(int a, int b) { return a / b; } int main(){ int a = 10; int b = 2; int c = divide(a, b); //@ assert c == 5; }
/*@ requires b != 0; requires b != -1; assigns \nothing; ensures \result == a / b; */ int divide(int a, int b) { return a / b; } int main(){ int a = 10; int b = 2; int c = divide(a, b); //@ assert c == 5; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
swap_ranges
swap_ranges
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ /*@ requires \valid(a) && \valid(b); assigns *a, *b; ensures *a == \old(*b) && *b == \old(*a); */ void swap(int* a, int* b); void swap_ranges(value_type* a, size_type n, value_type* b) { for (size_type i = 0u; i < n; ++i) { swap(a + i, b + i); } } int main(){ value_type a[] = {1, 2, 3, 4, 5}; value_type b[] = {6, 7, 8, 9, 10}; int n = 5; swap_ranges(a, n, b); //@ assert a[0] == 6 && b[0] == 1; //@ assert a[1] == 7 && b[1] == 2; //@ assert a[2] == 8 && b[2] == 3; //@ assert a[3] == 9 && b[3] == 4; //@ assert a[4] == 10 && b[4] == 5; }
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } */ /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ /*@ requires \valid(a) && \valid(b); assigns *a, *b; ensures *a == \old(*b) && *b == \old(*a); */ void swap(int* a, int* b); /*@ requires valid: \valid(a + (0..n-1)); requires valid: \valid(b + (0..n-1)); requires sep: \separated(a+(0..n-1), b+(0..n-1)); assigns a[0..n-1]; assigns b[0..n-1]; ensures equal: Equal{Old,Here}(a, n, b); ensures equal: Equal{Old,Here}(b, n, a); */ void swap_ranges(value_type* a, size_type n, value_type* b) { /*@ loop invariant bound: 0 <= i <= n; loop invariant equal: Equal{Pre,Here}(a, i, b); loop invariant equal: Equal{Pre,Here}(b, i, a); loop invariant unchanged: Unchanged{Pre,Here}(a, i, n); loop invariant unchanged: Unchanged{Pre,Here}(b, i, n); loop assigns i, a[0..n-1], b[0..n-1]; loop variant n-i; */ for (size_type i = 0u; i < n; ++i) { swap(a + i, b + i); } } int main(){ value_type a[] = {1, 2, 3, 4, 5}; value_type b[] = {6, 7, 8, 9, 10}; int n = 5; swap_ranges(a, n, b); //@ assert a[0] == 6 && b[0] == 1; //@ assert a[1] == 7 && b[1] == 2; //@ assert a[2] == 8 && b[2] == 3; //@ assert a[3] == 9 && b[3] == 4; //@ assert a[4] == 10 && b[4] == 5; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
arepina_reverse
reverse
void reverse(int a[], int res[], int size) { int i; for(i = size - 1; i >= 0; --i) { res[i] = a[size - i - 1]; } } #ifdef OUT_OF_TASK #include <stdio.h> int main(void) { int a[] = {1,2,3,4,5,6,7,8,9,10}; int size = sizeof(a) / sizeof(a[0]); reverse(a, b, size); //@ assert \forall integer i; 0 <= i < size ==> b[i] == a[size - i - 1]; } #endif
/*@ requires size >= 0; requires \valid(a+(0..size-1)); requires \valid(res+(0..size-1)); assigns res[0..size-1]; ensures \forall integer i; 0 <= i < size ==> res[i] == a[size - i - 1]; */ void reverse(int a[], int res[], int size) { int i; /*@ loop invariant -1 <= i < size; loop invariant \forall integer j; i < j < size ==> res[j] == a[size - j - 1]; loop assigns i, res[0..size-1]; loop variant i; */ for(i = size - 1; i >= 0; --i) { res[i] = a[size - i - 1]; } } #ifdef OUT_OF_TASK #include <stdio.h> int main(void) { int a[] = {1,2,3,4,5,6,7,8,9,10}; int size = sizeof(a) / sizeof(a[0]); reverse(a, b, size); //@ assert \forall integer i; 0 <= i < size ==> b[i] == a[size - i - 1]; } #endif
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
miscellaneous_array_max_advanced
array_max_advanced
int array_max_advanced(int* arr, int n) { int max = arr[0]; for (int i = 0; i < n; i++) { if (arr[i] > max) { max = arr[i]; } } //@ assert \forall integer j; 0 <= j < n ==> arr[j] <= max; return max; }
/*@ requires n > 0; requires \valid(arr+(0..n-1)); ensures \forall integer i; 0 <= i < n ==> arr[i] <= \result; assigns \nothing; */ int array_max_advanced(int* arr, int n) { int max = arr[0]; /*@ loop invariant 0 <= i <= n; loop invariant \forall integer j; 0 <= j < i ==> arr[j] <= max; loop assigns i, max; loop variant n - i; */ for (int i = 0; i < n; i++) { if (arr[i] > max) { max = arr[i]; } } //@ assert \forall integer j; 0 <= j < n ==> arr[j] <= max; return max; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_80
80
/*@ requires x >= 0; requires y >= 0; requires x >= y; */ void foo(int x, int y) { int i = 0; while (unknown()) { if (i < y) { i = i + 1; } } if (i <= y) { //@ assert i <= x; } }
/*@ requires x >= 0; requires y >= 0; requires x >= y; */ void foo(int x, int y) { int i = 0; /*@ loop invariant y <= x; loop invariant i <= x; loop invariant 0 <= y; loop invariant 0 <= x; loop invariant i <= y; loop invariant i <= y + 1; loop invariant 0 <= i; loop assigns x,y,i; */ while (unknown()) { if (i < y) { i = i + 1; } } if (i <= y) { //@ assert i <= x; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_83
83
int main() { int x = -5000; int y = 0; while ((x < 0)) { x = x + y; y = y + 1; } //@ assert y > 0; }
int main() { int x = -5000; int y = 0; /*@ loop invariant x >= 0 ==> y > 0; loop invariant -5000 <= x; loop invariant -5000 <= x + y; loop invariant 0 <= y; loop assigns y,x; */ while ((x < 0)) { x = x + y; y = y + 1; } //@ assert y > 0; }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_100
100
/*@ requires n >= 0; */ void foo(int n) { int x = n; int y = 0; while (x > 0) { y = y + 1; x = x - 1; } //@ assert y == n; }
/*@ requires n >= 0; */ void foo(int n) { int x = n; int y = 0; /*@ loop invariant y == n - x; loop invariant y <= n; loop invariant y + x == n; loop invariant x <= n; loop invariant 0 <= y; loop invariant 0 <= x; loop assigns y; loop assigns x; */ while (x > 0) { y = y + 1; x = x - 1; } //@ assert y == n; }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
lower_bound
lower_bound
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic WeaklyIncreasing { predicate WeaklyIncreasing{L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n-1 ==> a[i] <= a[i+1]; predicate WeaklyIncreasing{L}(value_type* a, integer n) = WeaklyIncreasing{L}(a, 0, n); } */ /*@ axiomatic Increasing { predicate Increasing{L}(value_type* a, integer m, integer n) = \forall integer i, j; m <= i < j < n ==> a[i] <= a[j]; predicate Increasing{L}(value_type* a, integer n) = Increasing{L}(a, 0, n); } */ /*@ axiomatic ArrayBounds { predicate LowerBound{L}(value_type* a, integer m, integer n, value_type v) = \forall integer i; m <= i < n ==> v <= a[i]; predicate LowerBound{L}(value_type* a, integer n, value_type v) = LowerBound{L}(a, 0, n, v); predicate StrictLowerBound{L}(value_type* a, integer m, integer n, value_type v) = \forall integer i; m <= i < n ==> v < a[i]; predicate StrictLowerBound{L}(value_type* a, integer n, value_type v) = StrictLowerBound{L}(a, 0, n, v); predicate UpperBound{L}(value_type* a, integer m, integer n, value_type v) = \forall integer i; m <= i < n ==> a[i] <= v; predicate UpperBound{L}(value_type* a, integer n, value_type v) = UpperBound{L}(a, 0, n, v); predicate StrictUpperBound{L}(value_type* a, integer m, integer n, value_type v) = \forall integer i; m <= i < n ==> a[i] < v; predicate StrictUpperBound{L}(value_type* a, integer n, value_type v) = StrictUpperBound{L}(a, 0, n, v); } */ size_type lower_bound(const value_type* a, size_type n, value_type v) { size_type left = 0u; size_type right = n; while (left < right) { const size_type middle = left + (right - left) / 2u; if (a[middle] < v) { left = middle + 1u; } else { right = middle; } } //@ assert LowerBound(a, left, n, v); return left; }
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic WeaklyIncreasing { predicate WeaklyIncreasing{L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n-1 ==> a[i] <= a[i+1]; predicate WeaklyIncreasing{L}(value_type* a, integer n) = WeaklyIncreasing{L}(a, 0, n); } */ /*@ axiomatic Increasing { predicate Increasing{L}(value_type* a, integer m, integer n) = \forall integer i, j; m <= i < j < n ==> a[i] <= a[j]; predicate Increasing{L}(value_type* a, integer n) = Increasing{L}(a, 0, n); } */ /*@ axiomatic ArrayBounds { predicate LowerBound{L}(value_type* a, integer m, integer n, value_type v) = \forall integer i; m <= i < n ==> v <= a[i]; predicate LowerBound{L}(value_type* a, integer n, value_type v) = LowerBound{L}(a, 0, n, v); predicate StrictLowerBound{L}(value_type* a, integer m, integer n, value_type v) = \forall integer i; m <= i < n ==> v < a[i]; predicate StrictLowerBound{L}(value_type* a, integer n, value_type v) = StrictLowerBound{L}(a, 0, n, v); predicate UpperBound{L}(value_type* a, integer m, integer n, value_type v) = \forall integer i; m <= i < n ==> a[i] <= v; predicate UpperBound{L}(value_type* a, integer n, value_type v) = UpperBound{L}(a, 0, n, v); predicate StrictUpperBound{L}(value_type* a, integer m, integer n, value_type v) = \forall integer i; m <= i < n ==> a[i] < v; predicate StrictUpperBound{L}(value_type* a, integer n, value_type v) = StrictUpperBound{L}(a, 0, n, v); } */ /*@ requires valid: \valid_read(a + (0..n-1)); requires increasing: Increasing(a, n); assigns \nothing; ensures result: 0 <= \result <= n; ensures left: StrictUpperBound(a, 0, \result, v); ensures right: LowerBound(a, \result, n, v); */ size_type lower_bound(const value_type* a, size_type n, value_type v) { size_type left = 0u; size_type right = n; /*@ loop invariant bound: 0 <= left <= right <= n; loop invariant left: StrictUpperBound(a, 0, left, v); loop invariant right: LowerBound(a, right, n, v); loop assigns left, right; loop variant right - left; */ while (left < right) { const size_type middle = left + (right - left) / 2u; if (a[middle] < v) { left = middle + 1u; } else { right = middle; } } //@ assert LowerBound(a, left, n, v); return left; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_76
76
/*@ requires y >= 127; */ void foo(int y) { int c = 0; int z = 36 * y; while (unknown()) { if (c < 36) { z = z + 1; c = c + 1; } } if (z < 0) { if (z >= 4608) { //@ assert c >= 36; } } }
/*@ requires y >= 127; */ void foo(int y) { int c = 0; int z = 36 * y; /*@ loop invariant z == 36*y + c; loop invariant z == 36 * y + c; loop invariant z == (36 * y) + c; loop invariant z <= 36 * y + 36; loop invariant z < 0 ==> z >= 4608 ==> c >= 36; loop invariant c <= 36; loop invariant 36*y <= z; loop invariant 36 * y <= z; loop invariant 0 <= c; loop assigns z; loop assigns c; */ while (unknown()) { if (c < 36) { z = z + 1; c = c + 1; } } if (z < 0) { if (z >= 4608) { //@ assert c >= 36; } } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
nikunjjain02_Arrays_8
Arrays_8
#include<stdio.h> int* reverse(int a[], int n, int b[]) { int i = 0; while(i<n) { b[i]=a[n-i-1]; i++; } return b; } void main() { int a[] = {21, 24, 23, 24, 25}; int b[10]; int* c = reverse(a, 5, b); //@ assert \forall integer k; 0 <= k < 5 ==> c[k] == a[5-k-1]; }
#include<stdio.h> /*@ requires n>=0&&\valid_read(a+(0..n-1)); assigns b[0..n-1]; ensures \forall integer k;0<=k<n==>a[n-k-1]==\result[k]; */ int* reverse(int a[], int n, int b[]) { int i = 0; /*@ loop invariant 0<=i<=n; loop invariant \forall integer k;0<=k<i==>a[n-k-1]==b[k]; loop assigns b[0..n-1],i; loop variant n-i; */ while(i<n) { b[i]=a[n-i-1]; i++; } return b; } void main() { int a[] = {21, 24, 23, 24, 25}; int b[10]; int* c = reverse(a, 5, b); //@ assert \forall integer k; 0 <= k < 5 ==> c[k] == a[5-k-1]; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_51
51
void main() { int c = 0; while (unknown()) { if (unknown()) { if (c != 4) { c = c + 1; } } else { if (c == 4) { c = 1; } } } if (c != 4){ //@ assert c <= 4; } }
void main() { int c = 0; /*@ loop invariant c <= 4; loop invariant c != 4 ==> c < 4; loop invariant \exists integer k; 0 <= k <= 4 && c == k; loop invariant 0 <= c; loop assigns c; */ while (unknown()) { if (unknown()) { if (c != 4) { c = c + 1; } } else { if (c == 4) { c = 1; } } } if (c != 4){ //@ assert c <= 4; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
accumulate
accumulate
#ifndef TYPEDEFS_H_INCLUDED #define TYPEDEFS_H_INCLUDED #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX #endif #include<limits.h> /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } axiomatic UnchangedLemmas { lemma Unchanged_Shrink{K,L}: \forall value_type *a, integer m, n, p, q; m <= p <= q <= n ==> Unchanged{K,L}(a, m, n) ==> Unchanged{K,L}(a, p, q); lemma Unchanged_Extend{K,L}: \forall value_type *a, integer n; Unchanged{K,L}(a, n) ==> \at(a[n],K) == \at(a[n],L) ==> Unchanged{K,L}(a, n+1); lemma Unchanged_Symmetric{K,L}: \forall value_type *a, integer m, n; Unchanged{K,L}(a, m, n) ==> Unchanged{L,K}(a, m, n); lemma Unchanged_Transitive{K,L,M}: \forall value_type *a, integer m, n; Unchanged{K,L}(a, m, n) ==> Unchanged{L,M}(a, m, n) ==> Unchanged{K,M}(a, m, n); } axiomatic Accumulate { logic integer Accumulate{L}(value_type* a, integer n, integer init) = n <= 0 ? init : Accumulate(a, n-1, init) + a[n-1]; predicate AccumulateBounds{L}(value_type* a, integer n, value_type init) = \forall integer i; 0 <= i <= n ==> VALUE_TYPE_MIN <= Accumulate(a, i, init) <= VALUE_TYPE_MAX; lemma Accumulate_Init: \forall value_type *a, init, integer n; n <= 0 ==> Accumulate(a, n, init) == init; } */ value_type accumulate(const value_type* a, size_type n, value_type init) { for (size_type i = 0u; i < n; ++i) { //@ assert rte_help: init + a[i] == Accumulate(a, i+1, \at(init,Pre)); init = init + a[i]; } return init; }
#ifndef TYPEDEFS_H_INCLUDED #define TYPEDEFS_H_INCLUDED #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX #endif #include<limits.h> /*@ axiomatic Unchanged { predicate Unchanged{K,L}(value_type* a, integer m, integer n) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(a[i],L); predicate Unchanged{K,L}(value_type* a, integer n) = Unchanged{K,L}(a, 0, n); } axiomatic UnchangedLemmas { lemma Unchanged_Shrink{K,L}: \forall value_type *a, integer m, n, p, q; m <= p <= q <= n ==> Unchanged{K,L}(a, m, n) ==> Unchanged{K,L}(a, p, q); lemma Unchanged_Extend{K,L}: \forall value_type *a, integer n; Unchanged{K,L}(a, n) ==> \at(a[n],K) == \at(a[n],L) ==> Unchanged{K,L}(a, n+1); lemma Unchanged_Symmetric{K,L}: \forall value_type *a, integer m, n; Unchanged{K,L}(a, m, n) ==> Unchanged{L,K}(a, m, n); lemma Unchanged_Transitive{K,L,M}: \forall value_type *a, integer m, n; Unchanged{K,L}(a, m, n) ==> Unchanged{L,M}(a, m, n) ==> Unchanged{K,M}(a, m, n); } axiomatic Accumulate { logic integer Accumulate{L}(value_type* a, integer n, integer init) = n <= 0 ? init : Accumulate(a, n-1, init) + a[n-1]; predicate AccumulateBounds{L}(value_type* a, integer n, value_type init) = \forall integer i; 0 <= i <= n ==> VALUE_TYPE_MIN <= Accumulate(a, i, init) <= VALUE_TYPE_MAX; lemma Accumulate_Init: \forall value_type *a, init, integer n; n <= 0 ==> Accumulate(a, n, init) == init; } */ /*@ requires valid: \valid_read(a + (0..n-1)); requires bounds: AccumulateBounds(a, n, init); assigns \nothing; ensures result: \result == Accumulate(a, n, init); */ value_type accumulate(const value_type* a, size_type n, value_type init) { /*@ loop invariant index: 0 <= i <= n; loop invariant partial: init == Accumulate(a, i, \at(init,Pre)); loop assigns i, init; loop variant n-i; */ for (size_type i = 0u; i < n; ++i) { //@ assert rte_help: init + a[i] == Accumulate(a, i+1, \at(init,Pre)); init = init + a[i]; } return init; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
find_end
find_end
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ /*@ axiomatic HasSubRange { predicate HasSubRange{L}(value_type* a, integer m, integer n, value_type* b, integer p) = \exists integer k; (m <= k <= n-p) && Equal{L,L}(a+k, p, b); predicate HasSubRange{L}(value_type* a, integer n, value_type* b, integer p) = HasSubRange{L}(a, 0, n, b, p); lemma HasSubRange_Sizes: \forall value_type *a, *b, integer m, n, p; HasSubRange(a, m, n, b, p) ==> p <= n-m; } */ /*@ requires valid: \valid_read(a + (0..n-1)); requires valid: \valid_read(b + (0..n-1)); assigns \nothing; ensures result: \result <==> Equal{Here,Here}(a, n, b); */ bool equal(const value_type* a, size_type n, const value_type* b); size_type find_end(const value_type* a, size_type n, const value_type* b, size_type p) { size_type r = n; if ((0u < p) && (p <= n)) { for (size_type i = 0u; i <= n - p; ++i) { if (equal(a + i, p, b)) { r = i; } } } //@ assert !HasSubRange(a, r + 1, n, b, p); return r; }
#include <limits.h> #ifndef __cplusplus typedef int bool; #define false ((bool)0) #define true ((bool)1) #endif typedef int value_type; #define VALUE_TYPE_MAX INT_MAX #define VALUE_TYPE_MIN INT_MIN typedef unsigned int size_type; #define SIZE_TYPE_MAX UINT_MAX /*@ axiomatic Equal { predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b) = \forall integer i; m <= i < n ==> \at(a[i],K) == \at(b[i],L); predicate Equal{K,L}(value_type* a, integer n, value_type* b) = Equal{K,L}(a, 0, n, b); predicate Equal{K,L}(value_type* a, integer m, integer n, value_type* b, integer p) = Equal{K,L}(a+m, n-m, b+p); predicate Equal{K,L}(value_type* a, integer m, integer n, integer p) = Equal{K,L}(a, m, n, a, p); } */ /*@ axiomatic HasSubRange { predicate HasSubRange{L}(value_type* a, integer m, integer n, value_type* b, integer p) = \exists integer k; (m <= k <= n-p) && Equal{L,L}(a+k, p, b); predicate HasSubRange{L}(value_type* a, integer n, value_type* b, integer p) = HasSubRange{L}(a, 0, n, b, p); lemma HasSubRange_Sizes: \forall value_type *a, *b, integer m, n, p; HasSubRange(a, m, n, b, p) ==> p <= n-m; } */ /*@ requires valid: \valid_read(a + (0..n-1)); requires valid: \valid_read(b + (0..n-1)); assigns \nothing; ensures result: \result <==> Equal{Here,Here}(a, n, b); */ bool equal(const value_type* a, size_type n, const value_type* b); /*@ requires valid: \valid_read(a + (0..n-1)); requires valid: \valid_read(b + (0..p-1)); assigns \nothing; ensures result: 0 <= \result <= n; behavior has_match: assumes HasSubRange(a, n, b, p); assigns \nothing; ensures bound: 0 <= \result <= n-p; ensures result: Equal{Here,Here}(a + \result, p, b); ensures last: !HasSubRange(a, \result + 1, n, b, p); behavior no_match: assumes !HasSubRange(a, n, b, p); assigns \nothing; ensures result: \result == n; complete behaviors; disjoint behaviors; */ size_type find_end(const value_type* a, size_type n, const value_type* b, size_type p) { size_type r = n; if ((0u < p) && (p <= n)) { /*@ loop invariant bound : r <= n - p || r == n; loop invariant not_found: r == n ==> !HasSubRange(a, p+i-1, b, p); loop invariant found: r < n ==> Equal{Here,Here}(a+r, p, b); loop invariant last: r < n ==> !HasSubRange(a, r+1, i+p-1, b, p); loop assigns i, r; loop variant n - i; */ for (size_type i = 0u; i <= n - p; ++i) { if (equal(a + i, p, b)) { r = i; } } } //@ assert !HasSubRange(a, r + 1, n, b, p); return r; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
pointers_div_rem
div_rem
void div_rem(unsigned x, unsigned y, unsigned* q, unsigned* r) { *q = x / y; *r = x % y; } void main() { unsigned q, r; div_rem(10, 3, &q, &r); //@ assert q == 3; //@ assert r == 1; }
/*@ requires \valid(q) && \valid(r); requires \separated(q, r); requires y != 0; assigns *q, *r; ensures x == *q * y + *r; ensures *r < y; */ void div_rem(unsigned x, unsigned y, unsigned* q, unsigned* r) { *q = x / y; *r = x % y; } void main() { unsigned q, r; div_rem(10, 3, &q, &r); //@ assert q == 3; //@ assert r == 1; }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
evdenis_small-examples_factorial
factorial
/*@ axiomatic Factorial { logic integer factorial(integer i); axiom nil: factorial(0) == 1; axiom step: \forall integer i; i >= 0 ==> factorial(i) == factorial(i - 1) * i; lemma non_negative: \forall integer i; i >= 0 ==> factorial(i) > 0; } */ #define SPEC_ULONG_MAX 18446744073709551615UL unsigned long factorial(unsigned i) { unsigned long f = 1; while (i) { f *= i--; } return f; } int main(){ unsigned long f = factorial(5); //@ assert f == 120; }
/*@ axiomatic Factorial { logic integer factorial(integer i); axiom nil: factorial(0) == 1; axiom step: \forall integer i; i >= 0 ==> factorial(i) == factorial(i - 1) * i; lemma non_negative: \forall integer i; i >= 0 ==> factorial(i) > 0; } */ #define SPEC_ULONG_MAX 18446744073709551615UL /*@ requires factorial(i) <= SPEC_ULONG_MAX; assigns \nothing; ensures \result == factorial(i); */ unsigned long factorial(unsigned i) { unsigned long f = 1; /*@ loop invariant 0 <= i; loop assigns f, i; loop variant i; */ while (i) { f *= i--; } return f; } int main(){ unsigned long f = factorial(5); //@ assert f == 120; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_111
111
/*@ requires 1 <= n; */ void foo(int n) { int i = 1; int sn = 0; while (i <= n) { i = i + 1; sn = sn + 1; } if (sn != 0) { //@ assert sn == n; } }
/*@ requires 1 <= n; */ void foo(int n) { int i = 1; int sn = 0; /*@ loop invariant sn == i-1; loop invariant sn == i - 1; loop invariant i <= n+1; loop invariant 1 <= i; loop assigns sn; loop assigns i; */ while (i <= n) { i = i + 1; sn = sn + 1; } if (sn != 0) { //@ assert sn == n; } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
increment_arr
increment_arr
void increment_array_by(int* arr, int n, int c) { for (int i = 0; i < n; i++) { arr[i] = arr[i] + c; } //@ assert \forall integer k; 0 <= k < n ==> arr[k] == (\at(arr[k], Pre) + c); } int main(){ int arr[10] = {1,2,3,4,5,6,7,8,9,10}; Label_a: increment_array_by(arr, 10, 1); //@ assert \forall integer k; 0 <= k < 10 ==> arr[k] == (\at(arr[k], Label_a) + 1); }
/*@ requires n > 0; requires \valid_read(arr+(0..n-1)); ensures \forall integer k; 0 <= k < n ==> arr[k] == (\at(arr[k], Pre) + c); */ void increment_array_by(int* arr, int n, int c) { /*@ loop invariant 0 <= i <= n; loop invariant \forall integer k; 0 <= k < i ==> arr[k] == \at(arr[k], Pre) + c; loop invariant \forall integer k; i <= k < n ==> arr[k] == \at(arr[k], Pre); loop assigns i, arr[0..n-1]; */ for (int i = 0; i < n; i++) { arr[i] = arr[i] + c; } } int main(){ int arr[10] = {1,2,3,4,5,6,7,8,9,10}; Label_a: increment_array_by(arr, 10, 1); //@ assert \forall integer k; 0 <= k < 10 ==> arr[k] == (\at(arr[k], Label_a) + 1); }
fmbench
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
corinnt_remainder
remainder
void div_rem(unsigned x, unsigned y, unsigned* q, unsigned* r){ *q = x / y ; *r = x % y ; } int main() { unsigned x = 10, y = 3; unsigned q, r; div_rem(x, y, &q, &r); //@ assert q == 3 && r == 1; return 0; }
/*@ requires valid_pointers: \valid(q) && \valid(r); requires \separated(q, r); requires no_divide_by_zero: y != 0; assigns *q, *r; ensures *q == x / y; ensures *r == x % y; */ void div_rem(unsigned x, unsigned y, unsigned* q, unsigned* r){ *q = x / y ; *r = x % y ; } int main() { unsigned x = 10, y = 3; unsigned q, r; div_rem(x, y, &q, &r); //@ assert q == 3 && r == 1; return 0; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
nabinkrsah_Computing the mod with precondition and postcondition
Computing the integer square root with precondition and postcondition
int my_mod(int a, int b){ int c = a * a; int d = c * 3; return d % b; } void main(){ int x1 = 5; int x2 = 10; int y1 = my_mod(x1, 2); int y2 = my_mod(x2, 2); //@ assert y1 != y2; }
/*@ requires b >= 0; ensures \result == (a * a * 3) % b; */ int my_mod(int a, int b){ int c = a * a; int d = c * 3; return d % b; } void main(){ int x1 = 5; int x2 = 10; int y1 = my_mod(x1, 2); int y2 = my_mod(x2, 2); //@ assert y1 != y2; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
Tasmina0609_1
1
int max3(int a,int b,int c) { int max; if((a >= b) && (a >= c)) { max = a; } else if((b >= a) && (b >= c)) { max = b; } else if((c >= a) && (c >= b)) { max = c; } return max; } int main(){ int a = 10; int b = 20; int c = 30; int max = max3(a,b,c); //@ assert max == 30; }
/*@ ensures \result>=a && \result>=b && \result>=c; ensures \result==a || \result==b || \result==c; ensures a>=b && a>=c ==> \result==a; ensures b>=a && b>=c ==> \result==b; ensures c>=a && c>=b ==> \result==c; */ int max3(int a,int b,int c) { int max; if((a >= b) && (a >= c)) { max = a; } else if((b >= a) && (b >= c)) { max = b; } else if((c >= a) && (c >= b)) { max = c; } return max; } int main(){ int a = 10; int b = 20; int c = 30; int max = max3(a,b,c); //@ assert max == 30; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
gpetiot_Frama-C-StaDy_next_subset
next_subset
/*@ predicate is_dset{L}(int *a, integer n) = \forall integer i; 0 <= i < n ==> (a[i] == 0 || a[i] == 1); predicate is_eq{L1,L2}(int *a, integer n) = \forall integer i; 0 <= i < n ==> \at(a[i],L1) == \at(a[i],L2); predicate lt{L1,L2}(int* a, integer i) = \at(a[i],L1) < \at(a[i],L2); */ int nextSubset(int s[], int n) { int i,k; for (k = n-1; k >= 0; k--) { if (s[k] == 0) { break; } } if (k == -1) { return -1; } s[k] = 1; for (i = k+1; i < n; i++) { s[i] = 0; } //@ assert is_dset(s,n); return k; }
/*@ predicate is_dset{L}(int *a, integer n) = \forall integer i; 0 <= i < n ==> (a[i] == 0 || a[i] == 1); predicate is_eq{L1,L2}(int *a, integer n) = \forall integer i; 0 <= i < n ==> \at(a[i],L1) == \at(a[i],L2); predicate lt{L1,L2}(int* a, integer i) = \at(a[i],L1) < \at(a[i],L2); */ /*@ requires n >= 0 && n <= 3 && \valid(s+(0..n-1)); requires is_dset(s,n); assigns s[0..n-1]; ensures is_dset(s,n); ensures -1 <= \result < n; ensures \result == -1 ==> is_eq{Pre,Post}(s,n); ensures \result != -1 ==> is_eq{Pre,Post}(s,\result); ensures \result != -1 ==> lt{Pre,Post}(s,\result); */ int nextSubset(int s[], int n) { int i,k; /*@ loop invariant -1 <= k <= n-1; loop assigns k; loop variant k; */ for (k = n-1; k >= 0; k--) { if (s[k] == 0) { break; } } if (k == -1) { return -1; } s[k] = 1; /*@ loop invariant k+1 <= i <= n; loop invariant is_dset(s,i); loop assigns i,s[k+1..n-1]; loop variant n-i; */ for (i = k+1; i < n; i++) { s[i] = 0; } //@ assert is_dset(s,n); return k; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
arepina_factorial
factorial
/*@ axiomatic Factorial { logic integer factorial(integer i); axiom nil: factorial(0) == 1; axiom step: \forall integer i; i >= 0 ==> factorial(i) == factorial(i - 1) * i; lemma non_negative: \forall integer i; i >= 0 ==> factorial(i) > 0; } */ #define SPEC_ULONG_MAX 18446744073709551615UL unsigned long factorial(unsigned i) { unsigned long f = 1; while (i) { f *= i--; } return f; } #ifdef OUT_OF_TASK #include <stdio.h> int main(void) { int a = factorial(5); int b = factorial(0); //@ assert a == 120; //@ assert b == 1; } #endif
/*@ axiomatic Factorial { logic integer factorial(integer i); axiom nil: factorial(0) == 1; axiom step: \forall integer i; i >= 0 ==> factorial(i) == factorial(i - 1) * i; lemma non_negative: \forall integer i; i >= 0 ==> factorial(i) > 0; } */ #define SPEC_ULONG_MAX 18446744073709551615UL /*@ requires factorial(i) <= SPEC_ULONG_MAX; assigns \nothing; ensures \result == factorial(i); */ unsigned long factorial(unsigned i) { unsigned long f = 1; /*@ loop invariant 0 <= i; loop assigns f, i; loop variant i; */ while (i) { f *= i--; } return f; } #ifdef OUT_OF_TASK #include <stdio.h> int main(void) { int a = factorial(5); int b = factorial(0); //@ assert a == 120; //@ assert b == 1; } #endif
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
gpetiot_Frama-C-StaDy_inv_insuf_ok
inv_insuf_ok
int found; /*@ requires \valid(t+(0..4)); */ void f(int*t, int x) { int i = 0; found = 0; first_loop: for(; i <= 4; i++) { if(t[i] == x) found = 1; } //@ assert found <==> \exists integer i; 0 <= i <= 4 && t[i] == x; }
int found; /*@ requires \valid(t+(0..4)); */ void f(int*t, int x) { int i = 0; found = 0; first_loop: /*@ loop invariant 0 <= i <= 5; loop invariant found <==> (\exists integer k; 0 <= k < i && t[k] == x); loop assigns found, i; */ for(; i <= 4; i++) { if(t[i] == x) found = 1; } //@ assert found <==> \exists integer i; 0 <= i <= 4 && t[i] == x; }
githubRepository
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.
code2_47
47
int unknown(); /*@ requires n > 0; */ void foo(int n) { int c = 0; while (unknown()) { if (unknown()) { if (c != n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if (c < 0) { if (c > n) { //@ assert c == n; } } }
int unknown(); /*@ requires n > 0; */ void foo(int n) { int c = 0; // loop body /*@ loop invariant 0 <= c; loop assigns n,c; */ while (unknown()) { if (unknown()) { if (c != n) { c = c + 1; } } else { if (c == n) { c = 1; } } } if (c < 0) { if (c > n) { //@ assert c == n; } } }
autospec
Please write ACSL specification for the given C code ensuring its correctness. You only need to return the completed ACSL formal specification together with C program without explanation.