Datasets:

Modalities:
Image
Apples_HSI / README.md
rassulya's picture
Create README.md (#3)
eddad8d verified

Hyperspectral Imaging for Quality Assessment of Processed Foods: A Case Study on Sugar Content in Apple Jam

Picture1

This repository accompanies our study on non-destructive sugar content estimation in apple jam using VNIR hyperspectral imaging (HSI) and machine learning. It includes a reproducible set of Jupyter notebooks covering preprocessing, dataset construction, and model training/evaluation with classical ML and deep learning.


Dataset

The Apples_HSI dataset is available on Hugging Face: issai/Apples_HSI.

Dataset structure

Apples_HSI/
β”œβ”€β”€ Catalogs/                                    # per-cultivar & sugar-ratio sessions
β”‚   β”œβ”€β”€ apple_jam_{cultivar}_{sugar proportion}_{apple proportion}_{date}/   # e.g., apple_jam_gala_50_50_17_Dec
β”‚   β”‚   β”œβ”€β”€ {sample_id}/                         # numeric sample folders (e.g., 911, 912, …)
β”‚   β”‚   β”‚   β”œβ”€β”€ capture/                         # raw camera outputs + references
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ {sample_id}.raw              # raw hyperspectral cube
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ {sample_id}.hdr              # header/metadata for the raw cube
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ DARKREF_{sample_id}.raw      # dark reference (raw)
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ DARKREF_{sample_id}.hdr
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ WHITEREF_{sample_id}.raw     # white reference (raw)
β”‚   β”‚   β”‚   β”‚   └── WHITEREF_{sample_id}.hdr
β”‚   β”‚   β”‚   β”œβ”€β”€ metadata/
β”‚   β”‚   β”‚   β”‚   └── {sample_id}.xml              # per-sample metadata/annotations
β”‚   β”‚   β”‚   β”œβ”€β”€ results/                         # calibrated reflectance + previews
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ REFLECTANCE_{sample_id}.dat  # ENVI-style reflectance cube
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ REFLECTANCE_{sample_id}.hdr
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ REFLECTANCE_{sample_id}.png  # reflectance preview
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ RGBSCENE_{sample_id}.png     # RGB scene snapshot
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ RGBVIEWFINDER_{sample_id}.png
β”‚   β”‚   β”‚   β”‚   └── RGBBACKGROUND_{sample_id}.png
β”‚   β”‚   β”‚   β”œβ”€β”€ manifest.xml                     # per-sample manifest
β”‚   β”‚   β”‚   β”œβ”€β”€ {sample_id}.png                  # sample preview image
β”‚   β”‚   β”‚   └── .validated                       # empty marker file
β”‚   β”‚   └── …                                    # more samples
β”‚   └── …                                        # more cultivar/ratio/date folders
β”‚
β”œβ”€β”€ .cache/                                      # service files (upload tool)
β”œβ”€β”€ ._.cache
β”œβ”€β”€ ._paths.rtf
β”œβ”€β”€ .gitattributes                               # LFS rules for large files
└── paths.rtf                                    # path list (RTF)

Repository structure

This repository contains:

  • Pre-processing: 1_preprocessing.ipynb (import HSI, calibration, masking (SAM), ROI crop, grid subdivision).
  • Dataset building: 2_dataset preparation.ipynb (train/val/test splits, sugar concentration/apple cultivar splits, average spectral vectors extraction).
  • Model training & evaluation:
    • 3_svm.ipynb β€” SVM, scaling, hyperparameter search.
    • 4_xgboost.ipynb β€” XGBoost, tuning & early stopping.
    • 5_resnet.ipynb β€” 1D ResNet training loops, checkpoints, metrics.

Preprocessing β†’ Dataset β†’ Models (How to Run)

1) Preprocessing

Inputs to set (near the bottom of the notebook)

input_root = "path/to/input"     # root that contains the dataset folders (e.g., Apples_HSI/Catalogs)
output_root = "path/to/output"   # where the NPZ files will be written
paths_txt = "path/to/paths.txt"  # text file with relative paths to .hdr files (one per line)
  • Run all cells. The notebook:

    • reads REFLECTANCE_*.hdr with spectral.open_image
    • builds a SAM mask (ref pixel (255, 247), threshold 0.19)
    • crops ROI and saves cropped_{ID}.npz under output_root/...
  • Each NPZ contains: cube (cropped HΓ—WΓ—Bands), offset (y_min, x_min), metadata (JSON).

2) Dataset building

Run all cells. The notebook:

  • loads each NPZ (np.load(path)["cube"])
  • extracts mean spectra per patch for grid sizes 1, ..., 5
  • creates tables with columns band_0..band_(B-1), apple_content, apple_type
  • writes splits per grid:
    • apple-based: {g}x{g}_train_apple.csv, {g}x{g}_val_apple.csv, {g}x{g}_test_apple.csv
    • rule-based: {g}x{g}_train_rule.csv, {g}x{g}_val_rule.csv, {g}x{g}_test_rule.csv

3) Model training

Classical ML β€” 3_svm.ipynb Run all cells. The notebook:

  • loads pre-split CSVs (e.g., {g}x{g}_train_apple.csv, {g}x{g}_test_apple.csv)
  • scales inputs and targets with MinMaxScaler
  • fits SVR with hyperparameters: C=110, epsilon=0.2, gamma="scale"
  • reports RMSE / MAE / RΒ² on Train/Test (targets inverse-transformed)

Classical ML β€” 4_xgboost.ipynb Run all cells. The notebook:

  • loads Train/Val/Test CSVs and scales inputs with MinMaxScaler
  • builds DMatrix and trains with: objective = "reg:squarederror", eval_metric = "rmse", max_depth = 2, eta = 0.15, subsample = 0.8, colsample_bytree = 1.0, lambda = 2.0, alpha = 0.1, seed = 42 num_boost_round = 400, early_stopping_rounds = 40
  • evaluates and prints RMSE / MAE / RΒ² (Train/Test)

Deep model β€” 5_resnet.ipynb Run all cells. The notebook:

  • builds a ResNet1D and DataLoaders (batch_size=16)
  • trains with Adam (lr=1e-3, weight_decay=1e-4), epochs=150, MAE loss
  • uses target MinMaxScaler (inverse-transforms predictions for metrics)
  • early-stopping on Val MAE; saves best checkpoint to best_resnet1d_model.pth
  • reports RMSE / MAE / RΒ² on the Test set

If you use the dataset/source code/pre-trained models in your research, please cite our work:

Lissovoy, D., Zakeryanova, A., Orazbayev, R., Rakhimzhanova, T., Lewis, M., Varol, H. A., & Chan, M.-Y. (2025). Hyperspectral Imaging for Quality Assessment of Processed Foods: A Case Study on Sugar Content in Apple Jam. Foods, 14(21), 3585. https://doi.org/10.3390/foods14213585