Datasets:
metadata
license: cc0-1.0
task_categories:
- image-to-text
tags:
- chemistry
- molecular-structure
- smiles
- ocr
- computer-vision
- webdataset
- lightonocr
size_categories:
- 1M<n<10M
BMS Molecular Translation - WebDataset Shards
This dataset contains pre-processed WebDataset shards of the BMS Molecular Translation dataset, optimized for fast data loading during model training.
Dataset Summary
- Total Size: 3.8 GB
- Training shards: 236 files (3.7 GB) - 2.36M molecular structure images with SMILES
- Validation shards: 5 files (0.1 GB) - 48K samples for model validation
- Test shards: 3 files (0.0 GB) - 24K held-out samples for final evaluation
Format
Shards are in WebDataset format:
- Sequential tar archives for fast I/O
- 10,000 samples per shard
- Training data pre-shuffled
- Val/test data in original order
- Tar files are preserved (not extracted) - perfect for WebDataset!
Usage
Download the Dataset
# Using HuggingFace Hub
pip install huggingface_hub
# Download entire dataset
python download_shards_from_huggingface.py --username jeffdekerj
# Or use HuggingFace Hub directly
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="jeffdekerj/bms-images-shards",
repo_type="dataset",
local_dir=".data/webdataset_shards"
)
Load with WebDataset
from webdataset_loader import BMSWebDataset
from transformers import AutoProcessor
processor = AutoProcessor.from_pretrained("lightonai/LightOnOCR-1B-1025")
train_dataset = BMSWebDataset(
shard_dir=".data/webdataset_shards/train/",
processor=processor,
user_prompt="Return the SMILES string for this molecule.",
shuffle_buffer=1000,
)
Train Your Model
python finetune_lightocr.py \
--train_shards .data/webdataset_shards/train/ \
--val_shards .data/webdataset_shards/val/ \
--per_device_train_batch_size 4 \
--num_train_epochs 3 \
--fp16
Benefits
- 2-5x faster data loading vs individual files
- Better I/O performance for network filesystems
- Lower overhead with sequential reads
- Built-in shuffling without memory overhead
- Tar files preserved - no auto-extraction like Kaggle
Source Repository
GitHub: https://github.com/JeffDeKerj/lightocr
Complete documentation available in the repository:
docs/WEBDATASET_GUIDE.md- Complete usage guidedocs/HUGGINGFACE_GUIDE.md- HuggingFace-specific guidedocs/FINETUNE_GUIDE.md- Fine-tuning guideREADME.md- Project overview
Original Dataset
Based on the BMS Molecular Translation competition dataset: https://www.kaggle.com/c/bms-molecular-translation
Citation
If you use this dataset, please cite both:
- The original BMS Molecular Translation competition
- The LightOnOCR model (if applicable to your work)
License
CC0: Public Domain. Free to use for any purpose.