SciFIBench / README.md
jonathan-roberts1's picture
Added OpenCompass badge
1f0b9c4 verified
---
task_categories:
- question-answering
tags:
- science
pretty_name: Scientific Figure Interpretation Benchmark
size_categories:
- 1k<n<10k
language:
- en
configs:
- config_name: default
data_files:
- split: CS_Figure2Caption
path: data/CS_Figure2Caption-*
- split: CS_Caption2Figure
path: data/CS_Caption2Figure-*
- split: General_Figure2Caption
path: data/General_Figure2Caption-*
- split: General_Caption2Figure
path: data/General_Caption2Figure-*
dataset_info:
features:
- name: ID
dtype: int64
- name: Question
dtype: string
- name: Options
sequence: string
- name: Answer
dtype: string
- name: Category
dtype: string
- name: Images
sequence: image
splits:
- name: CS_Figure2Caption
num_bytes: 22992276.0
num_examples: 500
- name: CS_Caption2Figure
num_bytes: 122043099.0
num_examples: 500
- name: General_Figure2Caption
num_bytes: 290333873.0
num_examples: 500
- name: General_Caption2Figure
num_bytes: 1475930020.0
num_examples: 500
download_size: 926209658
dataset_size: 1911299268.0
---
# SciFIBench
## Jonathan Roberts, Kai Han, Neil Houlsby, and Samuel Albanie
## NeurIPS 2024
[![OpenCompass](https://opencompass.oss-cn-shanghai.aliyuncs.com/image/compass-hub/badge.svg)](https://hub.opencompass.org.cn/dataset-detail/SciFIBench)
Note: This repo has been updated to add two splits ('General_Figure2Caption' and 'General_Caption2Figure') with an additional 1000 questions. The original version splits are preserved and have been renamed as follows: 'Figure2Caption' -> 'CS_Figure2Caption' and 'Caption2Figure' -> 'CS_Caption2Figure'.
## Dataset Description
- **Homepage:** [SciFIBench](https://scifibench.github.io/)
- **Paper:** [SciFIBench: Benchmarking Large Multimodal Models for Scientific Figure Interpretation](https://arxiv.org/pdf/2405.08807)
- **Repository** [SciFIBench](https://github.com/jonathan-roberts1/SciFIBench)
-
### Dataset Summary
The SciFIBench (Scientific Figure Interpretation Benchmark) contains 2000 multiple-choice scientific figure interpretation questions covering two tasks. Task 1:
Figure -> Caption involves selecting the most appropriate caption given a figure; Task 2: Caption -> Figure involves the opposite -- selecting the most appropriate
figure given a caption. This benchmark was curated from the SciCap and ArxivCap datasets, using adversarial filtering to obtain hard negatives. Human verification has been performed
on each question to ensure high-quality,
answerable questions.
### Example Usage
```python
from datasets import load_dataset
# load dataset
dataset = load_dataset("jonathan-roberts1/SciFIBench") # optional: set cache_dir="PATH/TO/MY/CACHE/DIR"
# there are 4 dataset splits, which can be indexed separately
# cs_figure2caption_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="CS_Figure2Caption")
# cs_caption2figure_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="CS_Caption2Figure")
# general_figure2caption_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="General_Figure2Caption")
# general_caption2figure_dataset = load_dataset("jonathan-roberts1/SciFIBench", split="General_Caption2Figure")
"""
DatasetDict({
CS_Caption2Figure: Dataset({
features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
num_rows: 500
})
CS_Figure2Caption: Dataset({
features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
num_rows: 500
})
General_Caption2Figure: Dataset({
features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
num_rows: 500
})
General_Figure2Caption: Dataset({
features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
num_rows: 500
})
})
"""
# select task and split
cs_figure2caption_dataset = dataset['CS_Figure2Caption']
"""
Dataset({
features: ['ID', 'Question', 'Options', 'Answer', 'Category', 'Images'],
num_rows: 500
})
"""
# query items
cs_figure2caption_dataset[40] # e.g., the 41st element
"""
{'ID': 40,
'Question': 'Which caption best matches the image?',
'Options': ['A) ber vs snr for fft size=2048 using ls , lmmse , lr-lmmse .',
'B) ber vs snr for fft size=1024 using ls , lmmse , lr-lmmse algorithms .',
'C) ber vs snr for fft size=512 using ls , lmmse , lr-lmmse algorithms .',
'D) ber vs snr for fft size=256 using ls , lmmse , lr-lmmse algorithms with a 16 qam modulation .',
'E) ber vs snr for a bpsk modulation .'],
'Answer': 'D',
'Category': 'other cs',
'Images': [<PIL.PngImagePlugin.PngImageFile image mode=RGB size=501x431>]}
"""
```
### Source Data
More information regarding the source data can be found at: https://github.com/tingyaohsu/SciCap and https://mm-arxiv.github.io/.
### Dataset Curators
This dataset was curated by Jonathan Roberts, Kai Han, Neil Houlsby, and Samuel Albanie
### Citation Information
```
@article{roberts2024scifibench,
title={SciFIBench: Benchmarking Large Multimodal Models for Scientific Figure Interpretation},
author={Roberts, Jonathan and Han, Kai and Houlsby, Neil and Albanie, Samuel},
journal={arXiv preprint arXiv:2405.08807},
year={2024}
}
```