Dataset Viewer
python_code
stringlengths 0
992k
| repo_name
stringlengths 8
46
| file_path
stringlengths 5
162
|
---|---|---|
VERSION = "0.27.9"
| APACAI-API-main | apacai/version.py |
import apacai
class ApacAIError(Exception):
def __init__(
self,
message=None,
http_body=None,
http_status=None,
json_body=None,
headers=None,
code=None,
):
super(ApacAIError, self).__init__(message)
if http_body and hasattr(http_body, "decode"):
try:
http_body = http_body.decode("utf-8")
except BaseException:
http_body = (
"<Could not decode body as utf-8. "
"Please contact us through our help center at help.apacai.com.>"
)
self._message = message
self.http_body = http_body
self.http_status = http_status
self.json_body = json_body
self.headers = headers or {}
self.code = code
self.request_id = self.headers.get("request-id", None)
self.error = self.construct_error_object()
self.organization = self.headers.get("apacai-organization", None)
def __str__(self):
msg = self._message or "<empty message>"
if self.request_id is not None:
return "Request {0}: {1}".format(self.request_id, msg)
else:
return msg
# Returns the underlying `Exception` (base class) message, which is usually
# the raw message returned by APACAI's API. This was previously available
# in python2 via `error.message`. Unlike `str(error)`, it omits "Request
# req_..." from the beginning of the string.
@property
def user_message(self):
return self._message
def __repr__(self):
return "%s(message=%r, http_status=%r, request_id=%r)" % (
self.__class__.__name__,
self._message,
self.http_status,
self.request_id,
)
def construct_error_object(self):
if (
self.json_body is None
or not isinstance(self.json_body, dict)
or "error" not in self.json_body
or not isinstance(self.json_body["error"], dict)
):
return None
return apacai.api_resources.error_object.ErrorObject.construct_from(
self.json_body["error"]
)
class APIError(ApacAIError):
pass
class TryAgain(ApacAIError):
pass
class Timeout(ApacAIError):
pass
class APIConnectionError(ApacAIError):
def __init__(
self,
message,
http_body=None,
http_status=None,
json_body=None,
headers=None,
code=None,
should_retry=False,
):
super(APIConnectionError, self).__init__(
message, http_body, http_status, json_body, headers, code
)
self.should_retry = should_retry
class InvalidRequestError(ApacAIError):
def __init__(
self,
message,
param,
code=None,
http_body=None,
http_status=None,
json_body=None,
headers=None,
):
super(InvalidRequestError, self).__init__(
message, http_body, http_status, json_body, headers, code
)
self.param = param
def __repr__(self):
return "%s(message=%r, param=%r, code=%r, http_status=%r, " "request_id=%r)" % (
self.__class__.__name__,
self._message,
self.param,
self.code,
self.http_status,
self.request_id,
)
def __reduce__(self):
return type(self), (
self._message,
self.param,
self.code,
self.http_body,
self.http_status,
self.json_body,
self.headers,
)
class AuthenticationError(ApacAIError):
pass
class PermissionError(ApacAIError):
pass
class RateLimitError(ApacAIError):
pass
class ServiceUnavailableError(ApacAIError):
pass
class InvalidAPIType(ApacAIError):
pass
class SignatureVerificationError(ApacAIError):
def __init__(self, message, sig_header, http_body=None):
super(SignatureVerificationError, self).__init__(message, http_body)
self.sig_header = sig_header
def __reduce__(self):
return type(self), (
self._message,
self.sig_header,
self.http_body,
)
| APACAI-API-main | apacai/error.py |
import logging
import os
import re
import sys
from enum import Enum
from typing import Optional
import apacai
APACAI_LOG = os.environ.get("APACAI_LOG")
logger = logging.getLogger("apacai")
__all__ = [
"log_info",
"log_debug",
"log_warn",
"logfmt",
]
api_key_to_header = (
lambda api, key: {"Authorization": f"Bearer {key}"}
if api in (ApiType.OPEN_AI, ApiType.AZURE_AD)
else {"api-key": f"{key}"}
)
class ApiType(Enum):
AZURE = 1
OPEN_AI = 2
AZURE_AD = 3
@staticmethod
def from_str(label):
if label.lower() == "azure":
return ApiType.AZURE
elif label.lower() in ("azure_ad", "azuread"):
return ApiType.AZURE_AD
elif label.lower() in ("open_ai", "apacai"):
return ApiType.OPEN_AI
else:
raise apacai.error.InvalidAPIType(
"The API type provided in invalid. Please select one of the supported API types: 'azure', 'azure_ad', 'open_ai'"
)
def _console_log_level():
if apacai.log in ["debug", "info"]:
return apacai.log
elif APACAI_LOG in ["debug", "info"]:
return APACAI_LOG
else:
return None
def log_debug(message, **params):
msg = logfmt(dict(message=message, **params))
if _console_log_level() == "debug":
print(msg, file=sys.stderr)
logger.debug(msg)
def log_info(message, **params):
msg = logfmt(dict(message=message, **params))
if _console_log_level() in ["debug", "info"]:
print(msg, file=sys.stderr)
logger.info(msg)
def log_warn(message, **params):
msg = logfmt(dict(message=message, **params))
print(msg, file=sys.stderr)
logger.warn(msg)
def logfmt(props):
def fmt(key, val):
# Handle case where val is a bytes or bytesarray
if hasattr(val, "decode"):
val = val.decode("utf-8")
# Check if val is already a string to avoid re-encoding into ascii.
if not isinstance(val, str):
val = str(val)
if re.search(r"\s", val):
val = repr(val)
# key should already be a string
if re.search(r"\s", key):
key = repr(key)
return "{key}={val}".format(key=key, val=val)
return " ".join([fmt(key, val) for key, val in sorted(props.items())])
def get_object_classes():
# This is here to avoid a circular dependency
from apacai.object_classes import OBJECT_CLASSES
return OBJECT_CLASSES
def convert_to_apacai_object(
resp,
api_key=None,
api_version=None,
organization=None,
engine=None,
plain_old_data=False,
):
# If we get a ApacAIResponse, we'll want to return a ApacAIObject.
response_ms: Optional[int] = None
if isinstance(resp, apacai.apacai_response.ApacAIResponse):
organization = resp.organization
response_ms = resp.response_ms
resp = resp.data
if plain_old_data:
return resp
elif isinstance(resp, list):
return [
convert_to_apacai_object(
i, api_key, api_version, organization, engine=engine
)
for i in resp
]
elif isinstance(resp, dict) and not isinstance(
resp, apacai.apacai_object.ApacAIObject
):
resp = resp.copy()
klass_name = resp.get("object")
if isinstance(klass_name, str):
klass = get_object_classes().get(
klass_name, apacai.apacai_object.ApacAIObject
)
else:
klass = apacai.apacai_object.ApacAIObject
return klass.construct_from(
resp,
api_key=api_key,
api_version=api_version,
organization=organization,
response_ms=response_ms,
engine=engine,
)
else:
return resp
def convert_to_dict(obj):
"""Converts a ApacAIObject back to a regular dict.
Nested ApacAIObjects are also converted back to regular dicts.
:param obj: The ApacAIObject to convert.
:returns: The ApacAIObject as a dict.
"""
if isinstance(obj, list):
return [convert_to_dict(i) for i in obj]
# This works by virtue of the fact that ApacAIObjects _are_ dicts. The dict
# comprehension returns a regular dict and recursively applies the
# conversion to each value.
elif isinstance(obj, dict):
return {k: convert_to_dict(v) for k, v in obj.items()}
else:
return obj
def merge_dicts(x, y):
z = x.copy()
z.update(y)
return z
def default_api_key() -> str:
if apacai.api_key_path:
with open(apacai.api_key_path, "rt") as k:
api_key = k.read().strip()
if not api_key.startswith("sk-"):
raise ValueError(f"Malformed API key in {apacai.api_key_path}.")
return api_key
elif apacai.api_key is not None:
return apacai.api_key
else:
raise apacai.error.AuthenticationError(
"No API key provided. You can set your API key in code using 'apacai.api_key = <API-KEY>', or you can set the environment variable APACAI_API_KEY=<API-KEY>). If your API key is stored in a file, you can point the apacai module at it with 'apacai.api_key_path = <PATH>'. You can generate API keys in the APACAI web interface. See https://platform.apacai.com/account/api-keys for details."
)
| APACAI-API-main | apacai/util.py |
try:
import wandb
WANDB_AVAILABLE = True
except:
WANDB_AVAILABLE = False
if WANDB_AVAILABLE:
import datetime
import io
import json
import re
from pathlib import Path
from apacai import File, FineTune
from apacai.datalib.numpy_helper import numpy as np
from apacai.datalib.pandas_helper import pandas as pd
class WandbLogger:
"""
Log fine-tunes to [Weights & Biases](https://wandb.me/apacai-docs)
"""
if not WANDB_AVAILABLE:
print("Logging requires wandb to be installed. Run `pip install wandb`.")
else:
_wandb_api = None
_logged_in = False
@classmethod
def sync(
cls,
id=None,
n_fine_tunes=None,
project="GPT-3",
entity=None,
force=False,
**kwargs_wandb_init,
):
"""
Sync fine-tunes to Weights & Biases.
:param id: The id of the fine-tune (optional)
:param n_fine_tunes: Number of most recent fine-tunes to log when an id is not provided. By default, every fine-tune is synced.
:param project: Name of the project where you're sending runs. By default, it is "GPT-3".
:param entity: Username or team name where you're sending runs. By default, your default entity is used, which is usually your username.
:param force: Forces logging and overwrite existing wandb run of the same fine-tune.
"""
if not WANDB_AVAILABLE:
return
if id:
fine_tune = FineTune.retrieve(id=id)
fine_tune.pop("events", None)
fine_tunes = [fine_tune]
else:
# get list of fine_tune to log
fine_tunes = FineTune.list()
if not fine_tunes or fine_tunes.get("data") is None:
print("No fine-tune has been retrieved")
return
fine_tunes = fine_tunes["data"][
-n_fine_tunes if n_fine_tunes is not None else None :
]
# log starting from oldest fine_tune
show_individual_warnings = (
False if id is None and n_fine_tunes is None else True
)
fine_tune_logged = [
cls._log_fine_tune(
fine_tune,
project,
entity,
force,
show_individual_warnings,
**kwargs_wandb_init,
)
for fine_tune in fine_tunes
]
if not show_individual_warnings and not any(fine_tune_logged):
print("No new successful fine-tunes were found")
return "🎉 wandb sync completed successfully"
@classmethod
def _log_fine_tune(
cls,
fine_tune,
project,
entity,
force,
show_individual_warnings,
**kwargs_wandb_init,
):
fine_tune_id = fine_tune.get("id")
status = fine_tune.get("status")
# check run completed successfully
if status != "succeeded":
if show_individual_warnings:
print(
f'Fine-tune {fine_tune_id} has the status "{status}" and will not be logged'
)
return
# check results are present
try:
results_id = fine_tune["result_files"][0]["id"]
results = File.download(id=results_id).decode("utf-8")
except:
if show_individual_warnings:
print(f"Fine-tune {fine_tune_id} has no results and will not be logged")
return
# check run has not been logged already
run_path = f"{project}/{fine_tune_id}"
if entity is not None:
run_path = f"{entity}/{run_path}"
wandb_run = cls._get_wandb_run(run_path)
if wandb_run:
wandb_status = wandb_run.summary.get("status")
if show_individual_warnings:
if wandb_status == "succeeded":
print(
f"Fine-tune {fine_tune_id} has already been logged successfully at {wandb_run.url}"
)
if not force:
print(
'Use "--force" in the CLI or "force=True" in python if you want to overwrite previous run'
)
else:
print(
f"A run for fine-tune {fine_tune_id} was previously created but didn't end successfully"
)
if wandb_status != "succeeded" or force:
print(
f"A new wandb run will be created for fine-tune {fine_tune_id} and previous run will be overwritten"
)
if wandb_status == "succeeded" and not force:
return
# start a wandb run
wandb.init(
job_type="fine-tune",
config=cls._get_config(fine_tune),
project=project,
entity=entity,
name=fine_tune_id,
id=fine_tune_id,
**kwargs_wandb_init,
)
# log results
df_results = pd.read_csv(io.StringIO(results))
for _, row in df_results.iterrows():
metrics = {k: v for k, v in row.items() if not np.isnan(v)}
step = metrics.pop("step")
if step is not None:
step = int(step)
wandb.log(metrics, step=step)
fine_tuned_model = fine_tune.get("fine_tuned_model")
if fine_tuned_model is not None:
wandb.summary["fine_tuned_model"] = fine_tuned_model
# training/validation files and fine-tune details
cls._log_artifacts(fine_tune, project, entity)
# mark run as complete
wandb.summary["status"] = "succeeded"
wandb.finish()
return True
@classmethod
def _ensure_logged_in(cls):
if not cls._logged_in:
if wandb.login():
cls._logged_in = True
else:
raise Exception("You need to log in to wandb")
@classmethod
def _get_wandb_run(cls, run_path):
cls._ensure_logged_in()
try:
if cls._wandb_api is None:
cls._wandb_api = wandb.Api()
return cls._wandb_api.run(run_path)
except Exception:
return None
@classmethod
def _get_wandb_artifact(cls, artifact_path):
cls._ensure_logged_in()
try:
if cls._wandb_api is None:
cls._wandb_api = wandb.Api()
return cls._wandb_api.artifact(artifact_path)
except Exception:
return None
@classmethod
def _get_config(cls, fine_tune):
config = dict(fine_tune)
for key in ("training_files", "validation_files", "result_files"):
if config.get(key) and len(config[key]):
config[key] = config[key][0]
if config.get("created_at"):
config["created_at"] = datetime.datetime.fromtimestamp(config["created_at"])
return config
@classmethod
def _log_artifacts(cls, fine_tune, project, entity):
# training/validation files
training_file = (
fine_tune["training_files"][0]
if fine_tune.get("training_files") and len(fine_tune["training_files"])
else None
)
validation_file = (
fine_tune["validation_files"][0]
if fine_tune.get("validation_files") and len(fine_tune["validation_files"])
else None
)
for file, prefix, artifact_type in (
(training_file, "train", "training_files"),
(validation_file, "valid", "validation_files"),
):
if file is not None:
cls._log_artifact_inputs(file, prefix, artifact_type, project, entity)
# fine-tune details
fine_tune_id = fine_tune.get("id")
artifact = wandb.Artifact(
"fine_tune_details",
type="fine_tune_details",
metadata=fine_tune,
)
with artifact.new_file(
"fine_tune_details.json", mode="w", encoding="utf-8"
) as f:
json.dump(fine_tune, f, indent=2)
wandb.run.log_artifact(
artifact,
aliases=["latest", fine_tune_id],
)
@classmethod
def _log_artifact_inputs(cls, file, prefix, artifact_type, project, entity):
file_id = file["id"]
filename = Path(file["filename"]).name
stem = Path(file["filename"]).stem
# get input artifact
artifact_name = f"{prefix}-{filename}"
# sanitize name to valid wandb artifact name
artifact_name = re.sub(r"[^a-zA-Z0-9_\-.]", "_", artifact_name)
artifact_alias = file_id
artifact_path = f"{project}/{artifact_name}:{artifact_alias}"
if entity is not None:
artifact_path = f"{entity}/{artifact_path}"
artifact = cls._get_wandb_artifact(artifact_path)
# create artifact if file not already logged previously
if artifact is None:
# get file content
try:
file_content = File.download(id=file_id).decode("utf-8")
except:
print(
f"File {file_id} could not be retrieved. Make sure you are allowed to download training/validation files"
)
return
artifact = wandb.Artifact(artifact_name, type=artifact_type, metadata=file)
with artifact.new_file(filename, mode="w", encoding="utf-8") as f:
f.write(file_content)
# create a Table
try:
table, n_items = cls._make_table(file_content)
artifact.add(table, stem)
wandb.config.update({f"n_{prefix}": n_items})
artifact.metadata["items"] = n_items
except:
print(f"File {file_id} could not be read as a valid JSON file")
else:
# log number of items
wandb.config.update({f"n_{prefix}": artifact.metadata.get("items")})
wandb.run.use_artifact(artifact, aliases=["latest", artifact_alias])
@classmethod
def _make_table(cls, file_content):
df = pd.read_json(io.StringIO(file_content), orient="records", lines=True)
return wandb.Table(dataframe=df), len(df)
| APACAI-API-main | apacai/wandb_logger.py |
import os
import sys
from typing import Any, Callable, NamedTuple, Optional
from apacai.datalib.pandas_helper import assert_has_pandas
from apacai.datalib.pandas_helper import pandas as pd
class Remediation(NamedTuple):
name: str
immediate_msg: Optional[str] = None
necessary_msg: Optional[str] = None
necessary_fn: Optional[Callable[[Any], Any]] = None
optional_msg: Optional[str] = None
optional_fn: Optional[Callable[[Any], Any]] = None
error_msg: Optional[str] = None
def num_examples_validator(df):
"""
This validator will only print out the number of examples and recommend to the user to increase the number of examples if less than 100.
"""
MIN_EXAMPLES = 100
optional_suggestion = (
""
if len(df) >= MIN_EXAMPLES
else ". In general, we recommend having at least a few hundred examples. We've found that performance tends to linearly increase for every doubling of the number of examples"
)
immediate_msg = (
f"\n- Your file contains {len(df)} prompt-completion pairs{optional_suggestion}"
)
return Remediation(name="num_examples", immediate_msg=immediate_msg)
def necessary_column_validator(df, necessary_column):
"""
This validator will ensure that the necessary column is present in the dataframe.
"""
def lower_case_column(df, column):
cols = [c for c in df.columns if str(c).lower() == column]
df.rename(columns={cols[0]: column.lower()}, inplace=True)
return df
immediate_msg = None
necessary_fn = None
necessary_msg = None
error_msg = None
if necessary_column not in df.columns:
if necessary_column in [str(c).lower() for c in df.columns]:
def lower_case_column_creator(df):
return lower_case_column(df, necessary_column)
necessary_fn = lower_case_column_creator
immediate_msg = (
f"\n- The `{necessary_column}` column/key should be lowercase"
)
necessary_msg = f"Lower case column name to `{necessary_column}`"
else:
error_msg = f"`{necessary_column}` column/key is missing. Please make sure you name your columns/keys appropriately, then retry"
return Remediation(
name="necessary_column",
immediate_msg=immediate_msg,
necessary_msg=necessary_msg,
necessary_fn=necessary_fn,
error_msg=error_msg,
)
def additional_column_validator(df, fields=["prompt", "completion"]):
"""
This validator will remove additional columns from the dataframe.
"""
additional_columns = []
necessary_msg = None
immediate_msg = None
necessary_fn = None
if len(df.columns) > 2:
additional_columns = [c for c in df.columns if c not in fields]
warn_message = ""
for ac in additional_columns:
dups = [c for c in additional_columns if ac in c]
if len(dups) > 0:
warn_message += f"\n WARNING: Some of the additional columns/keys contain `{ac}` in their name. These will be ignored, and the column/key `{ac}` will be used instead. This could also result from a duplicate column/key in the provided file."
immediate_msg = f"\n- The input file should contain exactly two columns/keys per row. Additional columns/keys present are: {additional_columns}{warn_message}"
necessary_msg = f"Remove additional columns/keys: {additional_columns}"
def necessary_fn(x):
return x[fields]
return Remediation(
name="additional_column",
immediate_msg=immediate_msg,
necessary_msg=necessary_msg,
necessary_fn=necessary_fn,
)
def non_empty_field_validator(df, field="completion"):
"""
This validator will ensure that no completion is empty.
"""
necessary_msg = None
necessary_fn = None
immediate_msg = None
if df[field].apply(lambda x: x == "").any() or df[field].isnull().any():
empty_rows = (df[field] == "") | (df[field].isnull())
empty_indexes = df.reset_index().index[empty_rows].tolist()
immediate_msg = f"\n- `{field}` column/key should not contain empty strings. These are rows: {empty_indexes}"
def necessary_fn(x):
return x[x[field] != ""].dropna(subset=[field])
necessary_msg = f"Remove {len(empty_indexes)} rows with empty {field}s"
return Remediation(
name=f"empty_{field}",
immediate_msg=immediate_msg,
necessary_msg=necessary_msg,
necessary_fn=necessary_fn,
)
def duplicated_rows_validator(df, fields=["prompt", "completion"]):
"""
This validator will suggest to the user to remove duplicate rows if they exist.
"""
duplicated_rows = df.duplicated(subset=fields)
duplicated_indexes = df.reset_index().index[duplicated_rows].tolist()
immediate_msg = None
optional_msg = None
optional_fn = None
if len(duplicated_indexes) > 0:
immediate_msg = f"\n- There are {len(duplicated_indexes)} duplicated {'-'.join(fields)} sets. These are rows: {duplicated_indexes}"
optional_msg = f"Remove {len(duplicated_indexes)} duplicate rows"
def optional_fn(x):
return x.drop_duplicates(subset=fields)
return Remediation(
name="duplicated_rows",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def long_examples_validator(df):
"""
This validator will suggest to the user to remove examples that are too long.
"""
immediate_msg = None
optional_msg = None
optional_fn = None
ft_type = infer_task_type(df)
if ft_type != "open-ended generation":
def get_long_indexes(d):
long_examples = d.apply(
lambda x: len(x.prompt) + len(x.completion) > 10000, axis=1
)
return d.reset_index().index[long_examples].tolist()
long_indexes = get_long_indexes(df)
if len(long_indexes) > 0:
immediate_msg = f"\n- There are {len(long_indexes)} examples that are very long. These are rows: {long_indexes}\nFor conditional generation, and for classification the examples shouldn't be longer than 2048 tokens."
optional_msg = f"Remove {len(long_indexes)} long examples"
def optional_fn(x):
long_indexes_to_drop = get_long_indexes(x)
if long_indexes != long_indexes_to_drop:
sys.stdout.write(
f"The indices of the long examples has changed as a result of a previously applied recommendation.\nThe {len(long_indexes_to_drop)} long examples to be dropped are now at the following indices: {long_indexes_to_drop}\n"
)
return x.drop(long_indexes_to_drop)
return Remediation(
name="long_examples",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def common_prompt_suffix_validator(df):
"""
This validator will suggest to add a common suffix to the prompt if one doesn't already exist in case of classification or conditional generation.
"""
error_msg = None
immediate_msg = None
optional_msg = None
optional_fn = None
# Find a suffix which is not contained within the prompt otherwise
suggested_suffix = "\n\n### =>\n\n"
suffix_options = [
" ->",
"\n\n###\n\n",
"\n\n===\n\n",
"\n\n---\n\n",
"\n\n===>\n\n",
"\n\n--->\n\n",
]
for suffix_option in suffix_options:
if suffix_option == " ->":
if df.prompt.str.contains("\n").any():
continue
if df.prompt.str.contains(suffix_option, regex=False).any():
continue
suggested_suffix = suffix_option
break
display_suggested_suffix = suggested_suffix.replace("\n", "\\n")
ft_type = infer_task_type(df)
if ft_type == "open-ended generation":
return Remediation(name="common_suffix")
def add_suffix(x, suffix):
x["prompt"] += suffix
return x
common_suffix = get_common_xfix(df.prompt, xfix="suffix")
if (df.prompt == common_suffix).all():
error_msg = f"All prompts are identical: `{common_suffix}`\nConsider leaving the prompts blank if you want to do open-ended generation, otherwise ensure prompts are different"
return Remediation(name="common_suffix", error_msg=error_msg)
if common_suffix != "":
common_suffix_new_line_handled = common_suffix.replace("\n", "\\n")
immediate_msg = (
f"\n- All prompts end with suffix `{common_suffix_new_line_handled}`"
)
if len(common_suffix) > 10:
immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`"
if (
df.prompt.str[: -len(common_suffix)]
.str.contains(common_suffix, regex=False)
.any()
):
immediate_msg += f"\n WARNING: Some of your prompts contain the suffix `{common_suffix}` more than once. We strongly suggest that you review your prompts and add a unique suffix"
else:
immediate_msg = "\n- Your data does not contain a common separator at the end of your prompts. Having a separator string appended to the end of the prompt makes it clearer to the fine-tuned model where the completion should begin. See https://platform.apacai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples. If you intend to do open-ended generation, then you should leave the prompts empty"
if common_suffix == "":
optional_msg = (
f"Add a suffix separator `{display_suggested_suffix}` to all prompts"
)
def optional_fn(x):
return add_suffix(x, suggested_suffix)
return Remediation(
name="common_completion_suffix",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
error_msg=error_msg,
)
def common_prompt_prefix_validator(df):
"""
This validator will suggest to remove a common prefix from the prompt if a long one exist.
"""
MAX_PREFIX_LEN = 12
immediate_msg = None
optional_msg = None
optional_fn = None
common_prefix = get_common_xfix(df.prompt, xfix="prefix")
if common_prefix == "":
return Remediation(name="common_prefix")
def remove_common_prefix(x, prefix):
x["prompt"] = x["prompt"].str[len(prefix) :]
return x
if (df.prompt == common_prefix).all():
# already handled by common_suffix_validator
return Remediation(name="common_prefix")
if common_prefix != "":
immediate_msg = f"\n- All prompts start with prefix `{common_prefix}`"
if MAX_PREFIX_LEN < len(common_prefix):
immediate_msg += ". Fine-tuning doesn't require the instruction specifying the task, or a few-shot example scenario. Most of the time you should only add the input data into the prompt, and the desired output into the completion"
optional_msg = f"Remove prefix `{common_prefix}` from all prompts"
def optional_fn(x):
return remove_common_prefix(x, common_prefix)
return Remediation(
name="common_prompt_prefix",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def common_completion_prefix_validator(df):
"""
This validator will suggest to remove a common prefix from the completion if a long one exist.
"""
MAX_PREFIX_LEN = 5
common_prefix = get_common_xfix(df.completion, xfix="prefix")
ws_prefix = len(common_prefix) > 0 and common_prefix[0] == " "
if len(common_prefix) < MAX_PREFIX_LEN:
return Remediation(name="common_prefix")
def remove_common_prefix(x, prefix, ws_prefix):
x["completion"] = x["completion"].str[len(prefix) :]
if ws_prefix:
# keep the single whitespace as prefix
x["completion"] = " " + x["completion"]
return x
if (df.completion == common_prefix).all():
# already handled by common_suffix_validator
return Remediation(name="common_prefix")
immediate_msg = f"\n- All completions start with prefix `{common_prefix}`. Most of the time you should only add the output data into the completion, without any prefix"
optional_msg = f"Remove prefix `{common_prefix}` from all completions"
def optional_fn(x):
return remove_common_prefix(x, common_prefix, ws_prefix)
return Remediation(
name="common_completion_prefix",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def common_completion_suffix_validator(df):
"""
This validator will suggest to add a common suffix to the completion if one doesn't already exist in case of classification or conditional generation.
"""
error_msg = None
immediate_msg = None
optional_msg = None
optional_fn = None
ft_type = infer_task_type(df)
if ft_type == "open-ended generation" or ft_type == "classification":
return Remediation(name="common_suffix")
common_suffix = get_common_xfix(df.completion, xfix="suffix")
if (df.completion == common_suffix).all():
error_msg = f"All completions are identical: `{common_suffix}`\nEnsure completions are different, otherwise the model will just repeat `{common_suffix}`"
return Remediation(name="common_suffix", error_msg=error_msg)
# Find a suffix which is not contained within the completion otherwise
suggested_suffix = " [END]"
suffix_options = [
"\n",
".",
" END",
"***",
"+++",
"&&&",
"$$$",
"@@@",
"%%%",
]
for suffix_option in suffix_options:
if df.completion.str.contains(suffix_option, regex=False).any():
continue
suggested_suffix = suffix_option
break
display_suggested_suffix = suggested_suffix.replace("\n", "\\n")
def add_suffix(x, suffix):
x["completion"] += suffix
return x
if common_suffix != "":
common_suffix_new_line_handled = common_suffix.replace("\n", "\\n")
immediate_msg = (
f"\n- All completions end with suffix `{common_suffix_new_line_handled}`"
)
if len(common_suffix) > 10:
immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`"
if (
df.completion.str[: -len(common_suffix)]
.str.contains(common_suffix, regex=False)
.any()
):
immediate_msg += f"\n WARNING: Some of your completions contain the suffix `{common_suffix}` more than once. We suggest that you review your completions and add a unique ending"
else:
immediate_msg = "\n- Your data does not contain a common ending at the end of your completions. Having a common ending string appended to the end of the completion makes it clearer to the fine-tuned model where the completion should end. See https://platform.apacai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples."
if common_suffix == "":
optional_msg = (
f"Add a suffix ending `{display_suggested_suffix}` to all completions"
)
def optional_fn(x):
return add_suffix(x, suggested_suffix)
return Remediation(
name="common_completion_suffix",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
error_msg=error_msg,
)
def completions_space_start_validator(df):
"""
This validator will suggest to add a space at the start of the completion if it doesn't already exist. This helps with tokenization.
"""
def add_space_start(x):
x["completion"] = x["completion"].apply(
lambda x: ("" if x[0] == " " else " ") + x
)
return x
optional_msg = None
optional_fn = None
immediate_msg = None
if df.completion.str[:1].nunique() != 1 or df.completion.values[0][0] != " ":
immediate_msg = "\n- The completion should start with a whitespace character (` `). This tends to produce better results due to the tokenization we use. See https://platform.apacai.com/docs/guides/fine-tuning/preparing-your-dataset for more details"
optional_msg = "Add a whitespace character to the beginning of the completion"
optional_fn = add_space_start
return Remediation(
name="completion_space_start",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def lower_case_validator(df, column):
"""
This validator will suggest to lowercase the column values, if more than a third of letters are uppercase.
"""
def lower_case(x):
x[column] = x[column].str.lower()
return x
count_upper = (
df[column]
.apply(lambda x: sum(1 for c in x if c.isalpha() and c.isupper()))
.sum()
)
count_lower = (
df[column]
.apply(lambda x: sum(1 for c in x if c.isalpha() and c.islower()))
.sum()
)
if count_upper * 2 > count_lower:
return Remediation(
name="lower_case",
immediate_msg=f"\n- More than a third of your `{column}` column/key is uppercase. Uppercase {column}s tends to perform worse than a mixture of case encountered in normal language. We recommend to lower case the data if that makes sense in your domain. See https://platform.apacai.com/docs/guides/fine-tuning/preparing-your-dataset for more details",
optional_msg=f"Lowercase all your data in column/key `{column}`",
optional_fn=lower_case,
)
def read_any_format(fname, fields=["prompt", "completion"]):
"""
This function will read a file saved in .csv, .json, .txt, .xlsx or .tsv format using pandas.
- for .xlsx it will read the first sheet
- for .txt it will assume completions and split on newline
"""
assert_has_pandas()
remediation = None
necessary_msg = None
immediate_msg = None
error_msg = None
df = None
if os.path.isfile(fname):
try:
if fname.lower().endswith(".csv") or fname.lower().endswith(".tsv"):
file_extension_str, separator = (
("CSV", ",") if fname.lower().endswith(".csv") else ("TSV", "\t")
)
immediate_msg = f"\n- Based on your file extension, your file is formatted as a {file_extension_str} file"
necessary_msg = (
f"Your format `{file_extension_str}` will be converted to `JSONL`"
)
df = pd.read_csv(fname, sep=separator, dtype=str).fillna("")
elif fname.lower().endswith(".xlsx"):
immediate_msg = "\n- Based on your file extension, your file is formatted as an Excel file"
necessary_msg = "Your format `XLSX` will be converted to `JSONL`"
xls = pd.ExcelFile(fname)
sheets = xls.sheet_names
if len(sheets) > 1:
immediate_msg += "\n- Your Excel file contains more than one sheet. Please either save as csv or ensure all data is present in the first sheet. WARNING: Reading only the first sheet..."
df = pd.read_excel(fname, dtype=str).fillna("")
elif fname.lower().endswith(".txt"):
immediate_msg = (
"\n- Based on your file extension, you provided a text file"
)
necessary_msg = "Your format `TXT` will be converted to `JSONL`"
with open(fname, "r") as f:
content = f.read()
df = pd.DataFrame(
[["", line] for line in content.split("\n")],
columns=fields,
dtype=str,
).fillna("")
elif fname.lower().endswith(".jsonl"):
df = pd.read_json(fname, lines=True, dtype=str).fillna("")
if len(df) == 1:
# this is NOT what we expect for a .jsonl file
immediate_msg = "\n- Your JSONL file appears to be in a JSON format. Your file will be converted to JSONL format"
necessary_msg = "Your format `JSON` will be converted to `JSONL`"
df = pd.read_json(fname, dtype=str).fillna("")
else:
pass # this is what we expect for a .jsonl file
elif fname.lower().endswith(".json"):
try:
# to handle case where .json file is actually a .jsonl file
df = pd.read_json(fname, lines=True, dtype=str).fillna("")
if len(df) == 1:
# this code path corresponds to a .json file that has one line
df = pd.read_json(fname, dtype=str).fillna("")
else:
# this is NOT what we expect for a .json file
immediate_msg = "\n- Your JSON file appears to be in a JSONL format. Your file will be converted to JSONL format"
necessary_msg = (
"Your format `JSON` will be converted to `JSONL`"
)
except ValueError:
# this code path corresponds to a .json file that has multiple lines (i.e. it is indented)
df = pd.read_json(fname, dtype=str).fillna("")
else:
error_msg = "Your file must have one of the following extensions: .CSV, .TSV, .XLSX, .TXT, .JSON or .JSONL"
if "." in fname:
error_msg += f" Your file `{fname}` ends with the extension `.{fname.split('.')[-1]}` which is not supported."
else:
error_msg += f" Your file `{fname}` is missing a file extension."
except (ValueError, TypeError):
file_extension_str = fname.split(".")[-1].upper()
error_msg = f"Your file `{fname}` does not appear to be in valid {file_extension_str} format. Please ensure your file is formatted as a valid {file_extension_str} file."
else:
error_msg = f"File {fname} does not exist."
remediation = Remediation(
name="read_any_format",
necessary_msg=necessary_msg,
immediate_msg=immediate_msg,
error_msg=error_msg,
)
return df, remediation
def format_inferrer_validator(df):
"""
This validator will infer the likely fine-tuning format of the data, and display it to the user if it is classification.
It will also suggest to use ada and explain train/validation split benefits.
"""
ft_type = infer_task_type(df)
immediate_msg = None
if ft_type == "classification":
immediate_msg = f"\n- Based on your data it seems like you're trying to fine-tune a model for {ft_type}\n- For classification, we recommend you try one of the faster and cheaper models, such as `ada`\n- For classification, you can estimate the expected model performance by keeping a held out dataset, which is not used for training"
return Remediation(name="num_examples", immediate_msg=immediate_msg)
def apply_necessary_remediation(df, remediation):
"""
This function will apply a necessary remediation to a dataframe, or print an error message if one exists.
"""
if remediation.error_msg is not None:
sys.stderr.write(
f"\n\nERROR in {remediation.name} validator: {remediation.error_msg}\n\nAborting..."
)
sys.exit(1)
if remediation.immediate_msg is not None:
sys.stdout.write(remediation.immediate_msg)
if remediation.necessary_fn is not None:
df = remediation.necessary_fn(df)
return df
def accept_suggestion(input_text, auto_accept):
sys.stdout.write(input_text)
if auto_accept:
sys.stdout.write("Y\n")
return True
return input().lower() != "n"
def apply_optional_remediation(df, remediation, auto_accept):
"""
This function will apply an optional remediation to a dataframe, based on the user input.
"""
optional_applied = False
input_text = f"- [Recommended] {remediation.optional_msg} [Y/n]: "
if remediation.optional_msg is not None:
if accept_suggestion(input_text, auto_accept):
df = remediation.optional_fn(df)
optional_applied = True
if remediation.necessary_msg is not None:
sys.stdout.write(f"- [Necessary] {remediation.necessary_msg}\n")
return df, optional_applied
def estimate_fine_tuning_time(df):
"""
Estimate the time it'll take to fine-tune the dataset
"""
ft_format = infer_task_type(df)
expected_time = 1.0
if ft_format == "classification":
num_examples = len(df)
expected_time = num_examples * 1.44
else:
size = df.memory_usage(index=True).sum()
expected_time = size * 0.0515
def format_time(time):
if time < 60:
return f"{round(time, 2)} seconds"
elif time < 3600:
return f"{round(time / 60, 2)} minutes"
elif time < 86400:
return f"{round(time / 3600, 2)} hours"
else:
return f"{round(time / 86400, 2)} days"
time_string = format_time(expected_time + 140)
sys.stdout.write(
f"Once your model starts training, it'll approximately take {time_string} to train a `curie` model, and less for `ada` and `babbage`. Queue will approximately take half an hour per job ahead of you.\n"
)
def get_outfnames(fname, split):
suffixes = ["_train", "_valid"] if split else [""]
i = 0
while True:
index_suffix = f" ({i})" if i > 0 else ""
candidate_fnames = [
os.path.splitext(fname)[0] + "_prepared" + suffix + index_suffix + ".jsonl"
for suffix in suffixes
]
if not any(os.path.isfile(f) for f in candidate_fnames):
return candidate_fnames
i += 1
def get_classification_hyperparams(df):
n_classes = df.completion.nunique()
pos_class = None
if n_classes == 2:
pos_class = df.completion.value_counts().index[0]
return n_classes, pos_class
def write_out_file(df, fname, any_remediations, auto_accept):
"""
This function will write out a dataframe to a file, if the user would like to proceed, and also offer a fine-tuning command with the newly created file.
For classification it will optionally ask the user if they would like to split the data into train/valid files, and modify the suggested command to include the valid set.
"""
ft_format = infer_task_type(df)
common_prompt_suffix = get_common_xfix(df.prompt, xfix="suffix")
common_completion_suffix = get_common_xfix(df.completion, xfix="suffix")
split = False
input_text = "- [Recommended] Would you like to split into training and validation set? [Y/n]: "
if ft_format == "classification":
if accept_suggestion(input_text, auto_accept):
split = True
additional_params = ""
common_prompt_suffix_new_line_handled = common_prompt_suffix.replace("\n", "\\n")
common_completion_suffix_new_line_handled = common_completion_suffix.replace(
"\n", "\\n"
)
optional_ending_string = (
f' Make sure to include `stop=["{common_completion_suffix_new_line_handled}"]` so that the generated texts ends at the expected place.'
if len(common_completion_suffix_new_line_handled) > 0
else ""
)
input_text = "\n\nYour data will be written to a new JSONL file. Proceed [Y/n]: "
if not any_remediations and not split:
sys.stdout.write(
f'\nYou can use your file for fine-tuning:\n> apacai api fine_tunes.create -t "{fname}"{additional_params}\n\nAfter you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt.{optional_ending_string}\n'
)
estimate_fine_tuning_time(df)
elif accept_suggestion(input_text, auto_accept):
fnames = get_outfnames(fname, split)
if split:
assert len(fnames) == 2 and "train" in fnames[0] and "valid" in fnames[1]
MAX_VALID_EXAMPLES = 1000
n_train = max(len(df) - MAX_VALID_EXAMPLES, int(len(df) * 0.8))
df_train = df.sample(n=n_train, random_state=42)
df_valid = df.drop(df_train.index)
df_train[["prompt", "completion"]].to_json(
fnames[0], lines=True, orient="records", force_ascii=False
)
df_valid[["prompt", "completion"]].to_json(
fnames[1], lines=True, orient="records", force_ascii=False
)
n_classes, pos_class = get_classification_hyperparams(df)
additional_params += " --compute_classification_metrics"
if n_classes == 2:
additional_params += f' --classification_positive_class "{pos_class}"'
else:
additional_params += f" --classification_n_classes {n_classes}"
else:
assert len(fnames) == 1
df[["prompt", "completion"]].to_json(
fnames[0], lines=True, orient="records", force_ascii=False
)
# Add -v VALID_FILE if we split the file into train / valid
files_string = ("s" if split else "") + " to `" + ("` and `".join(fnames))
valid_string = f' -v "{fnames[1]}"' if split else ""
separator_reminder = (
""
if len(common_prompt_suffix_new_line_handled) == 0
else f"After you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt."
)
sys.stdout.write(
f'\nWrote modified file{files_string}`\nFeel free to take a look!\n\nNow use that file when fine-tuning:\n> apacai api fine_tunes.create -t "{fnames[0]}"{valid_string}{additional_params}\n\n{separator_reminder}{optional_ending_string}\n'
)
estimate_fine_tuning_time(df)
else:
sys.stdout.write("Aborting... did not write the file\n")
def infer_task_type(df):
"""
Infer the likely fine-tuning task type from the data
"""
CLASSIFICATION_THRESHOLD = 3 # min_average instances of each class
if sum(df.prompt.str.len()) == 0:
return "open-ended generation"
if len(df.completion.unique()) < len(df) / CLASSIFICATION_THRESHOLD:
return "classification"
return "conditional generation"
def get_common_xfix(series, xfix="suffix"):
"""
Finds the longest common suffix or prefix of all the values in a series
"""
common_xfix = ""
while True:
common_xfixes = (
series.str[-(len(common_xfix) + 1) :]
if xfix == "suffix"
else series.str[: len(common_xfix) + 1]
) # first few or last few characters
if (
common_xfixes.nunique() != 1
): # we found the character at which we don't have a unique xfix anymore
break
elif (
common_xfix == common_xfixes.values[0]
): # the entire first row is a prefix of every other row
break
else: # the first or last few characters are still common across all rows - let's try to add one more
common_xfix = common_xfixes.values[0]
return common_xfix
def get_validators():
return [
num_examples_validator,
lambda x: necessary_column_validator(x, "prompt"),
lambda x: necessary_column_validator(x, "completion"),
additional_column_validator,
non_empty_field_validator,
format_inferrer_validator,
duplicated_rows_validator,
long_examples_validator,
lambda x: lower_case_validator(x, "prompt"),
lambda x: lower_case_validator(x, "completion"),
common_prompt_suffix_validator,
common_prompt_prefix_validator,
common_completion_prefix_validator,
common_completion_suffix_validator,
completions_space_start_validator,
]
def apply_validators(
df,
fname,
remediation,
validators,
auto_accept,
write_out_file_func,
):
optional_remediations = []
if remediation is not None:
optional_remediations.append(remediation)
for validator in validators:
remediation = validator(df)
if remediation is not None:
optional_remediations.append(remediation)
df = apply_necessary_remediation(df, remediation)
any_optional_or_necessary_remediations = any(
[
remediation
for remediation in optional_remediations
if remediation.optional_msg is not None
or remediation.necessary_msg is not None
]
)
any_necessary_applied = any(
[
remediation
for remediation in optional_remediations
if remediation.necessary_msg is not None
]
)
any_optional_applied = False
if any_optional_or_necessary_remediations:
sys.stdout.write(
"\n\nBased on the analysis we will perform the following actions:\n"
)
for remediation in optional_remediations:
df, optional_applied = apply_optional_remediation(
df, remediation, auto_accept
)
any_optional_applied = any_optional_applied or optional_applied
else:
sys.stdout.write("\n\nNo remediations found.\n")
any_optional_or_necessary_applied = any_optional_applied or any_necessary_applied
write_out_file_func(df, fname, any_optional_or_necessary_applied, auto_accept)
| APACAI-API-main | apacai/validators.py |
import io
class CancelledError(Exception):
def __init__(self, msg):
self.msg = msg
Exception.__init__(self, msg)
def __str__(self):
return self.msg
__repr__ = __str__
class BufferReader(io.BytesIO):
def __init__(self, buf=b"", desc=None):
self._len = len(buf)
io.BytesIO.__init__(self, buf)
self._progress = 0
self._callback = progress(len(buf), desc=desc)
def __len__(self):
return self._len
def read(self, n=-1):
chunk = io.BytesIO.read(self, n)
self._progress += len(chunk)
if self._callback:
try:
self._callback(self._progress)
except Exception as e: # catches exception from the callback
raise CancelledError("The upload was cancelled: {}".format(e))
return chunk
def progress(total, desc):
import tqdm # type: ignore
meter = tqdm.tqdm(total=total, unit_scale=True, desc=desc)
def incr(progress):
meter.n = progress
if progress == total:
meter.close()
else:
meter.refresh()
return incr
def MB(i):
return int(i // 1024**2)
| APACAI-API-main | apacai/upload_progress.py |
#!/usr/bin/env python
import argparse
import logging
import sys
import apacai
from apacai import version
from apacai.cli import api_register, display_error, tools_register, wandb_register
logger = logging.getLogger()
formatter = logging.Formatter("[%(asctime)s] %(message)s")
handler = logging.StreamHandler(sys.stderr)
handler.setFormatter(formatter)
logger.addHandler(handler)
def main():
parser = argparse.ArgumentParser(description=None)
parser.add_argument(
"-V",
"--version",
action="version",
version="%(prog)s " + version.VERSION,
)
parser.add_argument(
"-v",
"--verbose",
action="count",
dest="verbosity",
default=0,
help="Set verbosity.",
)
parser.add_argument("-b", "--api-base", help="What API base url to use.")
parser.add_argument("-k", "--api-key", help="What API key to use.")
parser.add_argument("-p", "--proxy", nargs='+', help="What proxy to use.")
parser.add_argument(
"-o",
"--organization",
help="Which organization to run as (will use your default organization if not specified)",
)
def help(args):
parser.print_help()
parser.set_defaults(func=help)
subparsers = parser.add_subparsers()
sub_api = subparsers.add_parser("api", help="Direct API calls")
sub_tools = subparsers.add_parser("tools", help="Client side tools for convenience")
sub_wandb = subparsers.add_parser("wandb", help="Logging with Weights & Biases")
api_register(sub_api)
tools_register(sub_tools)
wandb_register(sub_wandb)
args = parser.parse_args()
if args.verbosity == 1:
logger.setLevel(logging.INFO)
elif args.verbosity >= 2:
logger.setLevel(logging.DEBUG)
apacai.debug = True
if args.api_key is not None:
apacai.api_key = args.api_key
if args.api_base is not None:
apacai.api_base = args.api_base
if args.organization is not None:
apacai.organization = args.organization
if args.proxy is not None:
apacai.proxy = {}
for proxy in args.proxy:
if proxy.startswith('https'):
apacai.proxy['https'] = proxy
elif proxy.startswith('http'):
apacai.proxy['http'] = proxy
try:
args.func(args)
except apacai.error.ApacAIError as e:
display_error(e)
return 1
except KeyboardInterrupt:
sys.stderr.write("\n")
return 1
return 0
if __name__ == "__main__":
sys.exit(main())
| APACAI-API-main | apacai/_apacai_scripts.py |
from apacai import api_resources
from apacai.api_resources.experimental.completion_config import CompletionConfig
OBJECT_CLASSES = {
"engine": api_resources.Engine,
"experimental.completion_config": CompletionConfig,
"file": api_resources.File,
"fine-tune": api_resources.FineTune,
"model": api_resources.Model,
"deployment": api_resources.Deployment,
}
| APACAI-API-main | apacai/object_classes.py |
# APACAI Python bindings.
#
# Originally forked from the MIT-licensed Stripe Python bindings.
import os
import sys
from typing import TYPE_CHECKING, Optional, Union, Callable
from contextvars import ContextVar
if "pkg_resources" not in sys.modules:
# workaround for the following:
# https://github.com/benoitc/gunicorn/pull/2539
sys.modules["pkg_resources"] = object() # type: ignore[assignment]
import aiohttp
del sys.modules["pkg_resources"]
from apacai.api_resources import (
Audio,
ChatCompletion,
Completion,
Customer,
Deployment,
Edit,
Embedding,
Engine,
ErrorObject,
File,
FineTune,
Image,
Model,
Moderation,
)
from apacai.error import APIError, InvalidRequestError, ApacAIError
from apacai.version import VERSION
if TYPE_CHECKING:
import requests
from aiohttp import ClientSession
api_key = os.environ.get("APACAI_API_KEY")
# Path of a file with an API key, whose contents can change. Supercedes
# `api_key` if set. The main use case is volume-mounted Kubernetes secrets,
# which are updated automatically.
api_key_path: Optional[str] = os.environ.get("APACAI_API_KEY_PATH")
organization = os.environ.get("APACAI_ORGANIZATION")
api_base = os.environ.get("APACAI_API_BASE", "https://api.apacai.com/v1")
api_type = os.environ.get("APACAI_API_TYPE", "open_ai")
api_version = os.environ.get(
"APACAI_API_VERSION",
("2023-05-15" if api_type in ("azure", "azure_ad", "azuread") else None),
)
verify_ssl_certs = True # No effect. Certificates are always verified.
proxy = None
app_info = None
enable_telemetry = False # Ignored; the telemetry feature was removed.
ca_bundle_path = None # No longer used, feature was removed
debug = False
log = None # Set to either 'debug' or 'info', controls console logging
requestssession: Optional[
Union["requests.Session", Callable[[], "requests.Session"]]
] = None # Provide a requests.Session or Session factory.
aiosession: ContextVar[Optional["ClientSession"]] = ContextVar(
"aiohttp-session", default=None
) # Acts as a global aiohttp ClientSession that reuses connections.
# This is user-supplied; otherwise, a session is remade for each request.
__version__ = VERSION
__all__ = [
"APIError",
"Audio",
"ChatCompletion",
"Completion",
"Customer",
"Edit",
"Image",
"Deployment",
"Embedding",
"Engine",
"ErrorObject",
"File",
"FineTune",
"InvalidRequestError",
"Model",
"Moderation",
"ApacAIError",
"api_base",
"api_key",
"api_type",
"api_key_path",
"api_version",
"app_info",
"ca_bundle_path",
"debug",
"enable_telemetry",
"log",
"organization",
"proxy",
"verify_ssl_certs",
]
| APACAI-API-main | apacai/__init__.py |
import asyncio
import json
import time
import platform
import sys
import threading
import time
import warnings
from contextlib import asynccontextmanager
from json import JSONDecodeError
from typing import (
AsyncGenerator,
AsyncIterator,
Callable,
Dict,
Iterator,
Optional,
Tuple,
Union,
overload,
)
from urllib.parse import urlencode, urlsplit, urlunsplit
import aiohttp
import requests
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
import apacai
from apacai import error, util, version
from apacai.apacai_response import ApacAIResponse
from apacai.util import ApiType
TIMEOUT_SECS = 600
MAX_SESSION_LIFETIME_SECS = 180
MAX_CONNECTION_RETRIES = 2
# Has one attribute per thread, 'session'.
_thread_context = threading.local()
def _build_api_url(url, query):
scheme, netloc, path, base_query, fragment = urlsplit(url)
if base_query:
query = "%s&%s" % (base_query, query)
return urlunsplit((scheme, netloc, path, query, fragment))
def _requests_proxies_arg(proxy) -> Optional[Dict[str, str]]:
"""Returns a value suitable for the 'proxies' argument to 'requests.request."""
if proxy is None:
return None
elif isinstance(proxy, str):
return {"http": proxy, "https": proxy}
elif isinstance(proxy, dict):
return proxy.copy()
else:
raise ValueError(
"'apacai.proxy' must be specified as either a string URL or a dict with string URL under the https and/or http keys."
)
def _aiohttp_proxies_arg(proxy) -> Optional[str]:
"""Returns a value suitable for the 'proxies' argument to 'aiohttp.ClientSession.request."""
if proxy is None:
return None
elif isinstance(proxy, str):
return proxy
elif isinstance(proxy, dict):
return proxy["https"] if "https" in proxy else proxy["http"]
else:
raise ValueError(
"'apacai.proxy' must be specified as either a string URL or a dict with string URL under the https and/or http keys."
)
def _make_session() -> requests.Session:
if apacai.requestssession:
if isinstance(apacai.requestssession, requests.Session):
return apacai.requestssession
return apacai.requestssession()
if not apacai.verify_ssl_certs:
warnings.warn("verify_ssl_certs is ignored; apacai always verifies.")
s = requests.Session()
proxies = _requests_proxies_arg(apacai.proxy)
if proxies:
s.proxies = proxies
s.mount(
"https://",
requests.adapters.HTTPAdapter(max_retries=MAX_CONNECTION_RETRIES),
)
return s
def parse_stream_helper(line: bytes) -> Optional[str]:
if line:
if line.strip() == b"data: [DONE]":
# return here will cause GeneratorExit exception in urllib3
# and it will close http connection with TCP Reset
return None
if line.startswith(b"data: "):
line = line[len(b"data: "):]
return line.decode("utf-8")
else:
return None
return None
def parse_stream(rbody: Iterator[bytes]) -> Iterator[str]:
for line in rbody:
_line = parse_stream_helper(line)
if _line is not None:
yield _line
async def parse_stream_async(rbody: aiohttp.StreamReader):
async for line in rbody:
_line = parse_stream_helper(line)
if _line is not None:
yield _line
class APIRequestor:
def __init__(
self,
key=None,
api_base=None,
api_type=None,
api_version=None,
organization=None,
):
self.api_base = api_base or apacai.api_base
self.api_key = key or util.default_api_key()
self.api_type = (
ApiType.from_str(api_type)
if api_type
else ApiType.from_str(apacai.api_type)
)
self.api_version = api_version or apacai.api_version
self.organization = organization or apacai.organization
@classmethod
def format_app_info(cls, info):
str = info["name"]
if info["version"]:
str += "/%s" % (info["version"],)
if info["url"]:
str += " (%s)" % (info["url"],)
return str
def _check_polling_response(self, response: ApacAIResponse, predicate: Callable[[ApacAIResponse], bool]):
if not predicate(response):
return
error_data = response.data['error']
message = error_data.get('message', 'Operation failed')
code = error_data.get('code')
raise error.ApacAIError(message=message, code=code)
def _poll(
self,
method,
url,
until,
failed,
params = None,
headers = None,
interval = None,
delay = None
) -> Tuple[Iterator[ApacAIResponse], bool, str]:
if delay:
time.sleep(delay)
response, b, api_key = self.request(method, url, params, headers)
self._check_polling_response(response, failed)
start_time = time.time()
while not until(response):
if time.time() - start_time > TIMEOUT_SECS:
raise error.Timeout("Operation polling timed out.")
time.sleep(interval or response.retry_after or 10)
response, b, api_key = self.request(method, url, params, headers)
self._check_polling_response(response, failed)
response.data = response.data['result']
return response, b, api_key
async def _apoll(
self,
method,
url,
until,
failed,
params = None,
headers = None,
interval = None,
delay = None
) -> Tuple[Iterator[ApacAIResponse], bool, str]:
if delay:
await asyncio.sleep(delay)
response, b, api_key = await self.arequest(method, url, params, headers)
self._check_polling_response(response, failed)
start_time = time.time()
while not until(response):
if time.time() - start_time > TIMEOUT_SECS:
raise error.Timeout("Operation polling timed out.")
await asyncio.sleep(interval or response.retry_after or 10)
response, b, api_key = await self.arequest(method, url, params, headers)
self._check_polling_response(response, failed)
response.data = response.data['result']
return response, b, api_key
@overload
def request(
self,
method,
url,
params,
headers,
files,
stream: Literal[True],
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[Iterator[ApacAIResponse], bool, str]:
pass
@overload
def request(
self,
method,
url,
params=...,
headers=...,
files=...,
*,
stream: Literal[True],
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[Iterator[ApacAIResponse], bool, str]:
pass
@overload
def request(
self,
method,
url,
params=...,
headers=...,
files=...,
stream: Literal[False] = ...,
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[ApacAIResponse, bool, str]:
pass
@overload
def request(
self,
method,
url,
params=...,
headers=...,
files=...,
stream: bool = ...,
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[Union[ApacAIResponse, Iterator[ApacAIResponse]], bool, str]:
pass
def request(
self,
method,
url,
params=None,
headers=None,
files=None,
stream: bool = False,
request_id: Optional[str] = None,
request_timeout: Optional[Union[float, Tuple[float, float]]] = None,
) -> Tuple[Union[ApacAIResponse, Iterator[ApacAIResponse]], bool, str]:
result = self.request_raw(
method.lower(),
url,
params=params,
supplied_headers=headers,
files=files,
stream=stream,
request_id=request_id,
request_timeout=request_timeout,
)
resp, got_stream = self._interpret_response(result, stream)
return resp, got_stream, self.api_key
@overload
async def arequest(
self,
method,
url,
params,
headers,
files,
stream: Literal[True],
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[AsyncGenerator[ApacAIResponse, None], bool, str]:
pass
@overload
async def arequest(
self,
method,
url,
params=...,
headers=...,
files=...,
*,
stream: Literal[True],
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[AsyncGenerator[ApacAIResponse, None], bool, str]:
pass
@overload
async def arequest(
self,
method,
url,
params=...,
headers=...,
files=...,
stream: Literal[False] = ...,
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[ApacAIResponse, bool, str]:
pass
@overload
async def arequest(
self,
method,
url,
params=...,
headers=...,
files=...,
stream: bool = ...,
request_id: Optional[str] = ...,
request_timeout: Optional[Union[float, Tuple[float, float]]] = ...,
) -> Tuple[Union[ApacAIResponse, AsyncGenerator[ApacAIResponse, None]], bool, str]:
pass
async def arequest(
self,
method,
url,
params=None,
headers=None,
files=None,
stream: bool = False,
request_id: Optional[str] = None,
request_timeout: Optional[Union[float, Tuple[float, float]]] = None,
) -> Tuple[Union[ApacAIResponse, AsyncGenerator[ApacAIResponse, None]], bool, str]:
ctx = aiohttp_session()
session = await ctx.__aenter__()
try:
result = await self.arequest_raw(
method.lower(),
url,
session,
params=params,
supplied_headers=headers,
files=files,
request_id=request_id,
request_timeout=request_timeout,
)
resp, got_stream = await self._interpret_async_response(result, stream)
except Exception:
await ctx.__aexit__(None, None, None)
raise
if got_stream:
async def wrap_resp():
assert isinstance(resp, AsyncGenerator)
try:
async for r in resp:
yield r
finally:
await ctx.__aexit__(None, None, None)
return wrap_resp(), got_stream, self.api_key
else:
await ctx.__aexit__(None, None, None)
return resp, got_stream, self.api_key
def handle_error_response(self, rbody, rcode, resp, rheaders, stream_error=False):
try:
error_data = resp["error"]
except (KeyError, TypeError):
raise error.APIError(
"Invalid response object from API: %r (HTTP response code "
"was %d)" % (rbody, rcode),
rbody,
rcode,
resp,
)
if "internal_message" in error_data:
error_data["message"] += "\n\n" + error_data["internal_message"]
util.log_info(
"APACAI API error received",
error_code=error_data.get("code"),
error_type=error_data.get("type"),
error_message=error_data.get("message"),
error_param=error_data.get("param"),
stream_error=stream_error,
)
# Rate limits were previously coded as 400's with code 'rate_limit'
if rcode == 429:
return error.RateLimitError(
error_data.get("message"), rbody, rcode, resp, rheaders
)
elif rcode in [400, 404, 415]:
return error.InvalidRequestError(
error_data.get("message"),
error_data.get("param"),
error_data.get("code"),
rbody,
rcode,
resp,
rheaders,
)
elif rcode == 401:
return error.AuthenticationError(
error_data.get("message"), rbody, rcode, resp, rheaders
)
elif rcode == 403:
return error.PermissionError(
error_data.get("message"), rbody, rcode, resp, rheaders
)
elif rcode == 409:
return error.TryAgain(
error_data.get("message"), rbody, rcode, resp, rheaders
)
elif stream_error:
# TODO: we will soon attach status codes to stream errors
parts = [error_data.get("message"), "(Error occurred while streaming.)"]
message = " ".join([p for p in parts if p is not None])
return error.APIError(message, rbody, rcode, resp, rheaders)
else:
return error.APIError(
f"{error_data.get('message')} {rbody} {rcode} {resp} {rheaders}",
rbody,
rcode,
resp,
rheaders,
)
def request_headers(
self, method: str, extra, request_id: Optional[str]
) -> Dict[str, str]:
user_agent = "APACAI/v1 PythonBindings/%s" % (version.VERSION,)
if apacai.app_info:
user_agent += " " + self.format_app_info(apacai.app_info)
uname_without_node = " ".join(
v for k, v in platform.uname()._asdict().items() if k != "node"
)
ua = {
"bindings_version": version.VERSION,
"httplib": "requests",
"lang": "python",
"lang_version": platform.python_version(),
"platform": platform.platform(),
"publisher": "apacai",
"uname": uname_without_node,
}
if apacai.app_info:
ua["application"] = apacai.app_info
headers = {
"X-APACAI-Client-User-Agent": json.dumps(ua),
"User-Agent": user_agent,
}
headers.update(util.api_key_to_header(self.api_type, self.api_key))
if self.organization:
headers["APACAI-Organization"] = self.organization
if self.api_version is not None and self.api_type == ApiType.OPEN_AI:
headers["APACAI-Version"] = self.api_version
if request_id is not None:
headers["X-Request-Id"] = request_id
if apacai.debug:
headers["APACAI-Debug"] = "true"
headers.update(extra)
return headers
def _validate_headers(
self, supplied_headers: Optional[Dict[str, str]]
) -> Dict[str, str]:
headers: Dict[str, str] = {}
if supplied_headers is None:
return headers
if not isinstance(supplied_headers, dict):
raise TypeError("Headers must be a dictionary")
for k, v in supplied_headers.items():
if not isinstance(k, str):
raise TypeError("Header keys must be strings")
if not isinstance(v, str):
raise TypeError("Header values must be strings")
headers[k] = v
# NOTE: It is possible to do more validation of the headers, but a request could always
# be made to the API manually with invalid headers, so we need to handle them server side.
return headers
def _prepare_request_raw(
self,
url,
supplied_headers,
method,
params,
files,
request_id: Optional[str],
) -> Tuple[str, Dict[str, str], Optional[bytes]]:
abs_url = "%s%s" % (self.api_base, url)
headers = self._validate_headers(supplied_headers)
data = None
if method == "get" or method == "delete":
if params:
encoded_params = urlencode(
[(k, v) for k, v in params.items() if v is not None]
)
abs_url = _build_api_url(abs_url, encoded_params)
elif method in {"post", "put"}:
if params and files:
data = params
if params and not files:
data = json.dumps(params).encode()
headers["Content-Type"] = "application/json"
else:
raise error.APIConnectionError(
"Unrecognized HTTP method %r. This may indicate a bug in the "
"APACAI bindings. Please contact us through our help center at help.apacai.com for "
"assistance." % (method,)
)
headers = self.request_headers(method, headers, request_id)
util.log_debug("Request to APACAI API", method=method, path=abs_url)
util.log_debug("Post details", data=data, api_version=self.api_version)
return abs_url, headers, data
def request_raw(
self,
method,
url,
*,
params=None,
supplied_headers: Optional[Dict[str, str]] = None,
files=None,
stream: bool = False,
request_id: Optional[str] = None,
request_timeout: Optional[Union[float, Tuple[float, float]]] = None,
) -> requests.Response:
abs_url, headers, data = self._prepare_request_raw(
url, supplied_headers, method, params, files, request_id
)
if not hasattr(_thread_context, "session"):
_thread_context.session = _make_session()
_thread_context.session_create_time = time.time()
elif (
time.time() - getattr(_thread_context, "session_create_time", 0)
>= MAX_SESSION_LIFETIME_SECS
):
_thread_context.session.close()
_thread_context.session = _make_session()
_thread_context.session_create_time = time.time()
try:
result = _thread_context.session.request(
method,
abs_url,
headers=headers,
data=data,
files=files,
stream=stream,
timeout=request_timeout if request_timeout else TIMEOUT_SECS,
proxies=_thread_context.session.proxies,
)
except requests.exceptions.Timeout as e:
raise error.Timeout("Request timed out: {}".format(e)) from e
except requests.exceptions.RequestException as e:
raise error.APIConnectionError(
"Error communicating with APACAI: {}".format(e)
) from e
util.log_debug(
"APACAI API response",
path=abs_url,
response_code=result.status_code,
processing_ms=result.headers.get("APACAI-Processing-Ms"),
request_id=result.headers.get("X-Request-Id"),
)
# Don't read the whole stream for debug logging unless necessary.
if apacai.log == "debug":
util.log_debug(
"API response body", body=result.content, headers=result.headers
)
return result
async def arequest_raw(
self,
method,
url,
session,
*,
params=None,
supplied_headers: Optional[Dict[str, str]] = None,
files=None,
request_id: Optional[str] = None,
request_timeout: Optional[Union[float, Tuple[float, float]]] = None,
) -> aiohttp.ClientResponse:
abs_url, headers, data = self._prepare_request_raw(
url, supplied_headers, method, params, files, request_id
)
if isinstance(request_timeout, tuple):
timeout = aiohttp.ClientTimeout(
connect=request_timeout[0],
total=request_timeout[1],
)
else:
timeout = aiohttp.ClientTimeout(
total=request_timeout if request_timeout else TIMEOUT_SECS
)
if files:
# TODO: Use `aiohttp.MultipartWriter` to create the multipart form data here.
# For now we use the private `requests` method that is known to have worked so far.
data, content_type = requests.models.RequestEncodingMixin._encode_files( # type: ignore
files, data
)
headers["Content-Type"] = content_type
request_kwargs = {
"method": method,
"url": abs_url,
"headers": headers,
"data": data,
"proxy": _aiohttp_proxies_arg(apacai.proxy),
"timeout": timeout,
}
try:
result = await session.request(**request_kwargs)
util.log_info(
"APACAI API response",
path=abs_url,
response_code=result.status,
processing_ms=result.headers.get("APACAI-Processing-Ms"),
request_id=result.headers.get("X-Request-Id"),
)
# Don't read the whole stream for debug logging unless necessary.
if apacai.log == "debug":
util.log_debug(
"API response body", body=result.content, headers=result.headers
)
return result
except (aiohttp.ServerTimeoutError, asyncio.TimeoutError) as e:
raise error.Timeout("Request timed out") from e
except aiohttp.ClientError as e:
raise error.APIConnectionError("Error communicating with APACAI") from e
def _interpret_response(
self, result: requests.Response, stream: bool
) -> Tuple[Union[ApacAIResponse, Iterator[ApacAIResponse]], bool]:
"""Returns the response(s) and a bool indicating whether it is a stream."""
if stream and "text/event-stream" in result.headers.get("Content-Type", ""):
return (
self._interpret_response_line(
line, result.status_code, result.headers, stream=True
)
for line in parse_stream(result.iter_lines())
), True
else:
return (
self._interpret_response_line(
result.content.decode("utf-8"),
result.status_code,
result.headers,
stream=False,
),
False,
)
async def _interpret_async_response(
self, result: aiohttp.ClientResponse, stream: bool
) -> Tuple[Union[ApacAIResponse, AsyncGenerator[ApacAIResponse, None]], bool]:
"""Returns the response(s) and a bool indicating whether it is a stream."""
if stream and "text/event-stream" in result.headers.get("Content-Type", ""):
return (
self._interpret_response_line(
line, result.status, result.headers, stream=True
)
async for line in parse_stream_async(result.content)
), True
else:
try:
await result.read()
except (aiohttp.ServerTimeoutError, asyncio.TimeoutError) as e:
raise error.Timeout("Request timed out") from e
except aiohttp.ClientError as e:
util.log_warn(e, body=result.content)
return (
self._interpret_response_line(
(await result.read()).decode("utf-8"),
result.status,
result.headers,
stream=False,
),
False,
)
def _interpret_response_line(
self, rbody: str, rcode: int, rheaders, stream: bool
) -> ApacAIResponse:
# HTTP 204 response code does not have any content in the body.
if rcode == 204:
return ApacAIResponse(None, rheaders)
if rcode == 503:
raise error.ServiceUnavailableError(
"The server is overloaded or not ready yet.",
rbody,
rcode,
headers=rheaders,
)
try:
if 'text/plain' in rheaders.get('Content-Type', ''):
data = rbody
else:
data = json.loads(rbody)
except (JSONDecodeError, UnicodeDecodeError) as e:
raise error.APIError(
f"HTTP code {rcode} from API ({rbody})", rbody, rcode, headers=rheaders
) from e
resp = ApacAIResponse(data, rheaders)
# In the future, we might add a "status" parameter to errors
# to better handle the "error while streaming" case.
stream_error = stream and "error" in resp.data
if stream_error or not 200 <= rcode < 300:
raise self.handle_error_response(
rbody, rcode, resp.data, rheaders, stream_error=stream_error
)
return resp
@asynccontextmanager
async def aiohttp_session() -> AsyncIterator[aiohttp.ClientSession]:
user_set_session = apacai.aiosession.get()
if user_set_session:
yield user_set_session
else:
async with aiohttp.ClientSession() as session:
yield session
| APACAI-API-main | apacai/api_requestor.py |
import datetime
import os
import signal
import sys
import warnings
from typing import Optional
import requests
import apacai
from apacai.upload_progress import BufferReader
from apacai.validators import (
apply_necessary_remediation,
apply_validators,
get_validators,
read_any_format,
write_out_file,
)
class bcolors:
HEADER = "\033[95m"
OKBLUE = "\033[94m"
OKGREEN = "\033[92m"
WARNING = "\033[93m"
FAIL = "\033[91m"
ENDC = "\033[0m"
BOLD = "\033[1m"
UNDERLINE = "\033[4m"
def organization_info(obj):
organization = getattr(obj, "organization", None)
if organization is not None:
return "[organization={}] ".format(organization)
else:
return ""
def display(obj):
sys.stderr.write(organization_info(obj))
sys.stderr.flush()
print(obj)
def display_error(e):
extra = (
" (HTTP status code: {})".format(e.http_status)
if e.http_status is not None
else ""
)
sys.stderr.write(
"{}{}Error:{} {}{}\n".format(
organization_info(e), bcolors.FAIL, bcolors.ENDC, e, extra
)
)
class Engine:
@classmethod
def get(cls, args):
engine = apacai.Engine.retrieve(id=args.id)
display(engine)
@classmethod
def update(cls, args):
engine = apacai.Engine.modify(args.id, replicas=args.replicas)
display(engine)
@classmethod
def generate(cls, args):
warnings.warn(
"Engine.generate is deprecated, use Completion.create", DeprecationWarning
)
if args.completions and args.completions > 1 and args.stream:
raise ValueError("Can't stream multiple completions with apacai CLI")
kwargs = {}
if args.model is not None:
kwargs["model"] = args.model
resp = apacai.Engine(id=args.id).generate(
completions=args.completions,
context=args.context,
length=args.length,
stream=args.stream,
temperature=args.temperature,
top_p=args.top_p,
logprobs=args.logprobs,
stop=args.stop,
**kwargs,
)
if not args.stream:
resp = [resp]
for part in resp:
completions = len(part["data"])
for c_idx, c in enumerate(part["data"]):
if completions > 1:
sys.stdout.write("===== Completion {} =====\n".format(c_idx))
sys.stdout.write("".join(c["text"]))
if completions > 1:
sys.stdout.write("\n")
sys.stdout.flush()
@classmethod
def list(cls, args):
engines = apacai.Engine.list()
display(engines)
class ChatCompletion:
@classmethod
def create(cls, args):
if args.n is not None and args.n > 1 and args.stream:
raise ValueError(
"Can't stream chat completions with n>1 with the current CLI"
)
messages = [
{"role": role, "content": content} for role, content in args.message
]
resp = apacai.ChatCompletion.create(
# Required
model=args.model,
engine=args.engine,
messages=messages,
# Optional
n=args.n,
max_tokens=args.max_tokens,
temperature=args.temperature,
top_p=args.top_p,
stop=args.stop,
stream=args.stream,
)
if not args.stream:
resp = [resp]
for part in resp:
choices = part["choices"]
for c_idx, c in enumerate(sorted(choices, key=lambda s: s["index"])):
if len(choices) > 1:
sys.stdout.write("===== Chat Completion {} =====\n".format(c_idx))
if args.stream:
delta = c["delta"]
if "content" in delta:
sys.stdout.write(delta["content"])
else:
sys.stdout.write(c["message"]["content"])
if len(choices) > 1: # not in streams
sys.stdout.write("\n")
sys.stdout.flush()
class Completion:
@classmethod
def create(cls, args):
if args.n is not None and args.n > 1 and args.stream:
raise ValueError("Can't stream completions with n>1 with the current CLI")
if args.engine and args.model:
warnings.warn(
"In most cases, you should not be specifying both engine and model."
)
resp = apacai.Completion.create(
engine=args.engine,
model=args.model,
n=args.n,
max_tokens=args.max_tokens,
logprobs=args.logprobs,
prompt=args.prompt,
stream=args.stream,
temperature=args.temperature,
top_p=args.top_p,
stop=args.stop,
echo=True,
)
if not args.stream:
resp = [resp]
for part in resp:
choices = part["choices"]
for c_idx, c in enumerate(sorted(choices, key=lambda s: s["index"])):
if len(choices) > 1:
sys.stdout.write("===== Completion {} =====\n".format(c_idx))
sys.stdout.write(c["text"])
if len(choices) > 1:
sys.stdout.write("\n")
sys.stdout.flush()
class Deployment:
@classmethod
def get(cls, args):
resp = apacai.Deployment.retrieve(id=args.id)
print(resp)
@classmethod
def delete(cls, args):
model = apacai.Deployment.delete(args.id)
print(model)
@classmethod
def list(cls, args):
models = apacai.Deployment.list()
print(models)
@classmethod
def create(cls, args):
models = apacai.Deployment.create(
model=args.model, scale_settings={"scale_type": args.scale_type}
)
print(models)
class Model:
@classmethod
def get(cls, args):
resp = apacai.Model.retrieve(id=args.id)
print(resp)
@classmethod
def delete(cls, args):
model = apacai.Model.delete(args.id)
print(model)
@classmethod
def list(cls, args):
models = apacai.Model.list()
print(models)
class File:
@classmethod
def create(cls, args):
with open(args.file, "rb") as file_reader:
buffer_reader = BufferReader(file_reader.read(), desc="Upload progress")
resp = apacai.File.create(
file=buffer_reader,
purpose=args.purpose,
user_provided_filename=args.file,
)
print(resp)
@classmethod
def get(cls, args):
resp = apacai.File.retrieve(id=args.id)
print(resp)
@classmethod
def delete(cls, args):
file = apacai.File.delete(args.id)
print(file)
@classmethod
def list(cls, args):
file = apacai.File.list()
print(file)
class Image:
@classmethod
def create(cls, args):
resp = apacai.Image.create(
prompt=args.prompt,
size=args.size,
n=args.num_images,
response_format=args.response_format,
)
print(resp)
@classmethod
def create_variation(cls, args):
with open(args.image, "rb") as file_reader:
buffer_reader = BufferReader(file_reader.read(), desc="Upload progress")
resp = apacai.Image.create_variation(
image=buffer_reader,
size=args.size,
n=args.num_images,
response_format=args.response_format,
)
print(resp)
@classmethod
def create_edit(cls, args):
with open(args.image, "rb") as file_reader:
image_reader = BufferReader(file_reader.read(), desc="Upload progress")
mask_reader = None
if args.mask is not None:
with open(args.mask, "rb") as file_reader:
mask_reader = BufferReader(file_reader.read(), desc="Upload progress")
resp = apacai.Image.create_edit(
image=image_reader,
mask=mask_reader,
prompt=args.prompt,
size=args.size,
n=args.num_images,
response_format=args.response_format,
)
print(resp)
class Audio:
@classmethod
def transcribe(cls, args):
with open(args.file, "rb") as r:
file_reader = BufferReader(r.read(), desc="Upload progress")
resp = apacai.Audio.transcribe_raw(
# Required
model=args.model,
file=file_reader,
filename=args.file,
# Optional
response_format=args.response_format,
language=args.language,
temperature=args.temperature,
prompt=args.prompt,
)
print(resp)
@classmethod
def translate(cls, args):
with open(args.file, "rb") as r:
file_reader = BufferReader(r.read(), desc="Upload progress")
resp = apacai.Audio.translate_raw(
# Required
model=args.model,
file=file_reader,
filename=args.file,
# Optional
response_format=args.response_format,
language=args.language,
temperature=args.temperature,
prompt=args.prompt,
)
print(resp)
class FineTune:
@classmethod
def list(cls, args):
resp = apacai.FineTune.list()
print(resp)
@classmethod
def _is_url(cls, file: str):
return file.lower().startswith("http")
@classmethod
def _download_file_from_public_url(cls, url: str) -> Optional[bytes]:
resp = requests.get(url)
if resp.status_code == 200:
return resp.content
else:
return None
@classmethod
def _maybe_upload_file(
cls,
file: Optional[str] = None,
content: Optional[bytes] = None,
user_provided_file: Optional[str] = None,
check_if_file_exists: bool = True,
):
# Exactly one of `file` or `content` must be provided
if (file is None) == (content is None):
raise ValueError("Exactly one of `file` or `content` must be provided")
if content is None:
assert file is not None
with open(file, "rb") as f:
content = f.read()
if check_if_file_exists:
bytes = len(content)
matching_files = apacai.File.find_matching_files(
name=user_provided_file or f.name, bytes=bytes, purpose="fine-tune"
)
if len(matching_files) > 0:
file_ids = [f["id"] for f in matching_files]
sys.stdout.write(
"Found potentially duplicated files with name '{name}', purpose 'fine-tune' and size {size} bytes\n".format(
name=os.path.basename(matching_files[0]["filename"]),
size=matching_files[0]["bytes"]
if "bytes" in matching_files[0]
else matching_files[0]["size"],
)
)
sys.stdout.write("\n".join(file_ids))
while True:
sys.stdout.write(
"\nEnter file ID to reuse an already uploaded file, or an empty string to upload this file anyway: "
)
inp = sys.stdin.readline().strip()
if inp in file_ids:
sys.stdout.write(
"Reusing already uploaded file: {id}\n".format(id=inp)
)
return inp
elif inp == "":
break
else:
sys.stdout.write(
"File id '{id}' is not among the IDs of the potentially duplicated files\n".format(
id=inp
)
)
buffer_reader = BufferReader(content, desc="Upload progress")
resp = apacai.File.create(
file=buffer_reader,
purpose="fine-tune",
user_provided_filename=user_provided_file or file,
)
sys.stdout.write(
"Uploaded file from {file}: {id}\n".format(
file=user_provided_file or file, id=resp["id"]
)
)
return resp["id"]
@classmethod
def _get_or_upload(cls, file, check_if_file_exists=True):
try:
# 1. If it's a valid file, use it
apacai.File.retrieve(file)
return file
except apacai.error.InvalidRequestError:
pass
if os.path.isfile(file):
# 2. If it's a file on the filesystem, upload it
return cls._maybe_upload_file(
file=file, check_if_file_exists=check_if_file_exists
)
if cls._is_url(file):
# 3. If it's a URL, download it temporarily
content = cls._download_file_from_public_url(file)
if content is not None:
return cls._maybe_upload_file(
content=content,
check_if_file_exists=check_if_file_exists,
user_provided_file=file,
)
return file
@classmethod
def create(cls, args):
create_args = {
"training_file": cls._get_or_upload(
args.training_file, args.check_if_files_exist
),
}
if args.validation_file:
create_args["validation_file"] = cls._get_or_upload(
args.validation_file, args.check_if_files_exist
)
for hparam in (
"model",
"suffix",
"n_epochs",
"batch_size",
"learning_rate_multiplier",
"prompt_loss_weight",
"compute_classification_metrics",
"classification_n_classes",
"classification_positive_class",
"classification_betas",
):
attr = getattr(args, hparam)
if attr is not None:
create_args[hparam] = attr
resp = apacai.FineTune.create(**create_args)
if args.no_follow:
print(resp)
return
sys.stdout.write(
"Created fine-tune: {job_id}\n"
"Streaming events until fine-tuning is complete...\n\n"
"(Ctrl-C will interrupt the stream, but not cancel the fine-tune)\n".format(
job_id=resp["id"]
)
)
cls._stream_events(resp["id"])
@classmethod
def get(cls, args):
resp = apacai.FineTune.retrieve(id=args.id)
print(resp)
@classmethod
def results(cls, args):
fine_tune = apacai.FineTune.retrieve(id=args.id)
if "result_files" not in fine_tune or len(fine_tune["result_files"]) == 0:
raise apacai.error.InvalidRequestError(
f"No results file available for fine-tune {args.id}", "id"
)
result_file = apacai.FineTune.retrieve(id=args.id)["result_files"][0]
resp = apacai.File.download(id=result_file["id"])
print(resp.decode("utf-8"))
@classmethod
def events(cls, args):
if args.stream:
raise apacai.error.ApacAIError(
message=(
"The --stream parameter is deprecated, use fine_tunes.follow "
"instead:\n\n"
" apacai api fine_tunes.follow -i {id}\n".format(id=args.id)
),
)
resp = apacai.FineTune.list_events(id=args.id) # type: ignore
print(resp)
@classmethod
def follow(cls, args):
cls._stream_events(args.id)
@classmethod
def _stream_events(cls, job_id):
def signal_handler(sig, frame):
status = apacai.FineTune.retrieve(job_id).status
sys.stdout.write(
"\nStream interrupted. Job is still {status}.\n"
"To resume the stream, run:\n\n"
" apacai api fine_tunes.follow -i {job_id}\n\n"
"To cancel your job, run:\n\n"
" apacai api fine_tunes.cancel -i {job_id}\n\n".format(
status=status, job_id=job_id
)
)
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
events = apacai.FineTune.stream_events(job_id)
# TODO(rachel): Add a nifty spinner here.
try:
for event in events:
sys.stdout.write(
"[%s] %s"
% (
datetime.datetime.fromtimestamp(event["created_at"]),
event["message"],
)
)
sys.stdout.write("\n")
sys.stdout.flush()
except Exception:
sys.stdout.write(
"\nStream interrupted (client disconnected).\n"
"To resume the stream, run:\n\n"
" apacai api fine_tunes.follow -i {job_id}\n\n".format(job_id=job_id)
)
return
resp = apacai.FineTune.retrieve(id=job_id)
status = resp["status"]
if status == "succeeded":
sys.stdout.write("\nJob complete! Status: succeeded 🎉")
sys.stdout.write(
"\nTry out your fine-tuned model:\n\n"
"apacai api completions.create -m {model} -p <YOUR_PROMPT>".format(
model=resp["fine_tuned_model"]
)
)
elif status == "failed":
sys.stdout.write(
"\nJob failed. Please contact us through our help center at help.apacai.com if you need assistance."
)
sys.stdout.write("\n")
@classmethod
def cancel(cls, args):
resp = apacai.FineTune.cancel(id=args.id)
print(resp)
@classmethod
def delete(cls, args):
resp = apacai.FineTune.delete(sid=args.id)
print(resp)
@classmethod
def prepare_data(cls, args):
sys.stdout.write("Analyzing...\n")
fname = args.file
auto_accept = args.quiet
df, remediation = read_any_format(fname)
apply_necessary_remediation(None, remediation)
validators = get_validators()
apply_validators(
df,
fname,
remediation,
validators,
auto_accept,
write_out_file_func=write_out_file,
)
class WandbLogger:
@classmethod
def sync(cls, args):
import apacai.wandb_logger
resp = apacai.wandb_logger.WandbLogger.sync(
id=args.id,
n_fine_tunes=args.n_fine_tunes,
project=args.project,
entity=args.entity,
force=args.force,
)
print(resp)
def tools_register(parser):
subparsers = parser.add_subparsers(
title="Tools", help="Convenience client side tools"
)
def help(args):
parser.print_help()
parser.set_defaults(func=help)
sub = subparsers.add_parser("fine_tunes.prepare_data")
sub.add_argument(
"-f",
"--file",
required=True,
help="JSONL, JSON, CSV, TSV, TXT or XLSX file containing prompt-completion examples to be analyzed."
"This should be the local file path.",
)
sub.add_argument(
"-q",
"--quiet",
required=False,
action="store_true",
help="Auto accepts all suggestions, without asking for user input. To be used within scripts.",
)
sub.set_defaults(func=FineTune.prepare_data)
def api_register(parser):
# Engine management
subparsers = parser.add_subparsers(help="All API subcommands")
def help(args):
parser.print_help()
parser.set_defaults(func=help)
sub = subparsers.add_parser("engines.list")
sub.set_defaults(func=Engine.list)
sub = subparsers.add_parser("engines.get")
sub.add_argument("-i", "--id", required=True)
sub.set_defaults(func=Engine.get)
sub = subparsers.add_parser("engines.update")
sub.add_argument("-i", "--id", required=True)
sub.add_argument("-r", "--replicas", type=int)
sub.set_defaults(func=Engine.update)
sub = subparsers.add_parser("engines.generate")
sub.add_argument("-i", "--id", required=True)
sub.add_argument(
"--stream", help="Stream tokens as they're ready.", action="store_true"
)
sub.add_argument("-c", "--context", help="An optional context to generate from")
sub.add_argument("-l", "--length", help="How many tokens to generate", type=int)
sub.add_argument(
"-t",
"--temperature",
help="""What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
Mutually exclusive with `top_p`.""",
type=float,
)
sub.add_argument(
"-p",
"--top_p",
help="""An alternative to sampling with temperature, called nucleus sampling, where the considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%% probability mass are considered.
Mutually exclusive with `temperature`.""",
type=float,
)
sub.add_argument(
"-n",
"--completions",
help="How many parallel completions to run on this context",
type=int,
)
sub.add_argument(
"--logprobs",
help="Include the log probabilites on the `logprobs` most likely tokens. So for example, if `logprobs` is 10, the API will return a list of the 10 most likely tokens. If `logprobs` is supplied, the API will always return the logprob of the generated token, so there may be up to `logprobs+1` elements in the response.",
type=int,
)
sub.add_argument(
"--stop", help="A stop sequence at which to stop generating tokens."
)
sub.add_argument(
"-m",
"--model",
required=False,
help="A model (most commonly a model ID) to generate from. Defaults to the engine's default model.",
)
sub.set_defaults(func=Engine.generate)
# Chat Completions
sub = subparsers.add_parser("chat_completions.create")
sub._action_groups.pop()
req = sub.add_argument_group("required arguments")
opt = sub.add_argument_group("optional arguments")
req.add_argument(
"-g",
"--message",
action="append",
nargs=2,
metavar=("ROLE", "CONTENT"),
help="A message in `{role} {content}` format. Use this argument multiple times to add multiple messages.",
required=True,
)
group = opt.add_mutually_exclusive_group()
group.add_argument(
"-e",
"--engine",
help="The engine to use. See https://learn.microsoft.com/en-us/azure/cognitive-services/apacai/chatgpt-quickstart?pivots=programming-language-python for more about what engines are available.",
)
group.add_argument(
"-m",
"--model",
help="The model to use.",
)
opt.add_argument(
"-n",
"--n",
help="How many completions to generate for the conversation.",
type=int,
)
opt.add_argument(
"-M", "--max-tokens", help="The maximum number of tokens to generate.", type=int
)
opt.add_argument(
"-t",
"--temperature",
help="""What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
Mutually exclusive with `top_p`.""",
type=float,
)
opt.add_argument(
"-P",
"--top_p",
help="""An alternative to sampling with temperature, called nucleus sampling, where the considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%% probability mass are considered.
Mutually exclusive with `temperature`.""",
type=float,
)
opt.add_argument(
"--stop",
help="A stop sequence at which to stop generating tokens for the message.",
)
opt.add_argument(
"--stream", help="Stream messages as they're ready.", action="store_true"
)
sub.set_defaults(func=ChatCompletion.create)
# Completions
sub = subparsers.add_parser("completions.create")
sub.add_argument(
"-e",
"--engine",
help="The engine to use. See https://platform.apacai.com/docs/engines for more about what engines are available.",
)
sub.add_argument(
"-m",
"--model",
help="The model to use. At most one of `engine` or `model` should be specified.",
)
sub.add_argument(
"--stream", help="Stream tokens as they're ready.", action="store_true"
)
sub.add_argument("-p", "--prompt", help="An optional prompt to complete from")
sub.add_argument(
"-M", "--max-tokens", help="The maximum number of tokens to generate", type=int
)
sub.add_argument(
"-t",
"--temperature",
help="""What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
Mutually exclusive with `top_p`.""",
type=float,
)
sub.add_argument(
"-P",
"--top_p",
help="""An alternative to sampling with temperature, called nucleus sampling, where the considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%% probability mass are considered.
Mutually exclusive with `temperature`.""",
type=float,
)
sub.add_argument(
"-n",
"--n",
help="How many sub-completions to generate for each prompt.",
type=int,
)
sub.add_argument(
"--logprobs",
help="Include the log probabilites on the `logprobs` most likely tokens, as well the chosen tokens. So for example, if `logprobs` is 10, the API will return a list of the 10 most likely tokens. If `logprobs` is 0, only the chosen tokens will have logprobs returned.",
type=int,
)
sub.add_argument(
"--stop", help="A stop sequence at which to stop generating tokens."
)
sub.set_defaults(func=Completion.create)
# Deployments
sub = subparsers.add_parser("deployments.list")
sub.set_defaults(func=Deployment.list)
sub = subparsers.add_parser("deployments.get")
sub.add_argument("-i", "--id", required=True, help="The deployment ID")
sub.set_defaults(func=Deployment.get)
sub = subparsers.add_parser("deployments.delete")
sub.add_argument("-i", "--id", required=True, help="The deployment ID")
sub.set_defaults(func=Deployment.delete)
sub = subparsers.add_parser("deployments.create")
sub.add_argument("-m", "--model", required=True, help="The model ID")
sub.add_argument(
"-s",
"--scale_type",
required=True,
help="The scale type. Either 'manual' or 'standard'",
)
sub.set_defaults(func=Deployment.create)
# Models
sub = subparsers.add_parser("models.list")
sub.set_defaults(func=Model.list)
sub = subparsers.add_parser("models.get")
sub.add_argument("-i", "--id", required=True, help="The model ID")
sub.set_defaults(func=Model.get)
sub = subparsers.add_parser("models.delete")
sub.add_argument("-i", "--id", required=True, help="The model ID")
sub.set_defaults(func=Model.delete)
# Files
sub = subparsers.add_parser("files.create")
sub.add_argument(
"-f",
"--file",
required=True,
help="File to upload",
)
sub.add_argument(
"-p",
"--purpose",
help="Why are you uploading this file? (see https://platform.apacai.com/docs/api-reference/ for purposes)",
required=True,
)
sub.set_defaults(func=File.create)
sub = subparsers.add_parser("files.get")
sub.add_argument("-i", "--id", required=True, help="The files ID")
sub.set_defaults(func=File.get)
sub = subparsers.add_parser("files.delete")
sub.add_argument("-i", "--id", required=True, help="The files ID")
sub.set_defaults(func=File.delete)
sub = subparsers.add_parser("files.list")
sub.set_defaults(func=File.list)
# Finetune
sub = subparsers.add_parser("fine_tunes.list")
sub.set_defaults(func=FineTune.list)
sub = subparsers.add_parser("fine_tunes.create")
sub.add_argument(
"-t",
"--training_file",
required=True,
help="JSONL file containing prompt-completion examples for training. This can "
"be the ID of a file uploaded through the APACAI API (e.g. file-abcde12345), "
'a local file path, or a URL that starts with "http".',
)
sub.add_argument(
"-v",
"--validation_file",
help="JSONL file containing prompt-completion examples for validation. This can "
"be the ID of a file uploaded through the APACAI API (e.g. file-abcde12345), "
'a local file path, or a URL that starts with "http".',
)
sub.add_argument(
"--no_check_if_files_exist",
dest="check_if_files_exist",
action="store_false",
help="If this argument is set and training_file or validation_file are file paths, immediately upload them. If this argument is not set, check if they may be duplicates of already uploaded files before uploading, based on file name and file size.",
)
sub.add_argument(
"-m",
"--model",
help="The model to start fine-tuning from",
)
sub.add_argument(
"--suffix",
help="If set, this argument can be used to customize the generated fine-tuned model name."
"All punctuation and whitespace in `suffix` will be replaced with a "
"single dash, and the string will be lower cased. The max "
"length of `suffix` is 40 chars. "
"The generated name will match the form `{base_model}:ft-{org-title}:{suffix}-{timestamp}`. "
'For example, `apacai api fine_tunes.create -t test.jsonl -m ada --suffix "custom model name" '
"could generate a model with the name "
"ada:ft-your-org:custom-model-name-2022-02-15-04-21-04",
)
sub.add_argument(
"--no_follow",
action="store_true",
help="If set, returns immediately after creating the job. Otherwise, streams events and waits for the job to complete.",
)
sub.add_argument(
"--n_epochs",
type=int,
help="The number of epochs to train the model for. An epoch refers to one "
"full cycle through the training dataset.",
)
sub.add_argument(
"--batch_size",
type=int,
help="The batch size to use for training. The batch size is the number of "
"training examples used to train a single forward and backward pass.",
)
sub.add_argument(
"--learning_rate_multiplier",
type=float,
help="The learning rate multiplier to use for training. The fine-tuning "
"learning rate is determined by the original learning rate used for "
"pretraining multiplied by this value.",
)
sub.add_argument(
"--prompt_loss_weight",
type=float,
help="The weight to use for the prompt loss. The optimum value here depends "
"depends on your use case. This determines how much the model prioritizes "
"learning from prompt tokens vs learning from completion tokens.",
)
sub.add_argument(
"--compute_classification_metrics",
action="store_true",
help="If set, we calculate classification-specific metrics such as accuracy "
"and F-1 score using the validation set at the end of every epoch.",
)
sub.set_defaults(compute_classification_metrics=None)
sub.add_argument(
"--classification_n_classes",
type=int,
help="The number of classes in a classification task. This parameter is "
"required for multiclass classification.",
)
sub.add_argument(
"--classification_positive_class",
help="The positive class in binary classification. This parameter is needed "
"to generate precision, recall and F-1 metrics when doing binary "
"classification.",
)
sub.add_argument(
"--classification_betas",
type=float,
nargs="+",
help="If this is provided, we calculate F-beta scores at the specified beta "
"values. The F-beta score is a generalization of F-1 score. This is only "
"used for binary classification.",
)
sub.set_defaults(func=FineTune.create)
sub = subparsers.add_parser("fine_tunes.get")
sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job")
sub.set_defaults(func=FineTune.get)
sub = subparsers.add_parser("fine_tunes.results")
sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job")
sub.set_defaults(func=FineTune.results)
sub = subparsers.add_parser("fine_tunes.events")
sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job")
# TODO(rachel): Remove this in 1.0
sub.add_argument(
"-s",
"--stream",
action="store_true",
help="[DEPRECATED] If set, events will be streamed until the job is done. Otherwise, "
"displays the event history to date.",
)
sub.set_defaults(func=FineTune.events)
sub = subparsers.add_parser("fine_tunes.follow")
sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job")
sub.set_defaults(func=FineTune.follow)
sub = subparsers.add_parser("fine_tunes.cancel")
sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job")
sub.set_defaults(func=FineTune.cancel)
sub = subparsers.add_parser("fine_tunes.delete")
sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job")
sub.set_defaults(func=FineTune.delete)
# Image
sub = subparsers.add_parser("image.create")
sub.add_argument("-p", "--prompt", type=str, required=True)
sub.add_argument("-n", "--num-images", type=int, default=1)
sub.add_argument(
"-s", "--size", type=str, default="1024x1024", help="Size of the output image"
)
sub.add_argument("--response-format", type=str, default="url")
sub.set_defaults(func=Image.create)
sub = subparsers.add_parser("image.create_edit")
sub.add_argument("-p", "--prompt", type=str, required=True)
sub.add_argument("-n", "--num-images", type=int, default=1)
sub.add_argument(
"-I",
"--image",
type=str,
required=True,
help="Image to modify. Should be a local path and a PNG encoded image.",
)
sub.add_argument(
"-s", "--size", type=str, default="1024x1024", help="Size of the output image"
)
sub.add_argument("--response-format", type=str, default="url")
sub.add_argument(
"-M",
"--mask",
type=str,
required=False,
help="Path to a mask image. It should be the same size as the image you're editing and a RGBA PNG image. The Alpha channel acts as the mask.",
)
sub.set_defaults(func=Image.create_edit)
sub = subparsers.add_parser("image.create_variation")
sub.add_argument("-n", "--num-images", type=int, default=1)
sub.add_argument(
"-I",
"--image",
type=str,
required=True,
help="Image to modify. Should be a local path and a PNG encoded image.",
)
sub.add_argument(
"-s", "--size", type=str, default="1024x1024", help="Size of the output image"
)
sub.add_argument("--response-format", type=str, default="url")
sub.set_defaults(func=Image.create_variation)
# Audio
# transcriptions
sub = subparsers.add_parser("audio.transcribe")
# Required
sub.add_argument("-m", "--model", type=str, default="whisper-1")
sub.add_argument("-f", "--file", type=str, required=True)
# Optional
sub.add_argument("--response-format", type=str)
sub.add_argument("--language", type=str)
sub.add_argument("-t", "--temperature", type=float)
sub.add_argument("--prompt", type=str)
sub.set_defaults(func=Audio.transcribe)
# translations
sub = subparsers.add_parser("audio.translate")
# Required
sub.add_argument("-m", "--model", type=str, default="whisper-1")
sub.add_argument("-f", "--file", type=str, required=True)
# Optional
sub.add_argument("--response-format", type=str)
sub.add_argument("--language", type=str)
sub.add_argument("-t", "--temperature", type=float)
sub.add_argument("--prompt", type=str)
sub.set_defaults(func=Audio.translate)
def wandb_register(parser):
subparsers = parser.add_subparsers(
title="wandb", help="Logging with Weights & Biases"
)
def help(args):
parser.print_help()
parser.set_defaults(func=help)
sub = subparsers.add_parser("sync")
sub.add_argument("-i", "--id", help="The id of the fine-tune job (optional)")
sub.add_argument(
"-n",
"--n_fine_tunes",
type=int,
default=None,
help="Number of most recent fine-tunes to log when an id is not provided. By default, every fine-tune is synced.",
)
sub.add_argument(
"--project",
default="GPT-3",
help="""Name of the project where you're sending runs. By default, it is "GPT-3".""",
)
sub.add_argument(
"--entity",
help="Username or team name where you're sending runs. By default, your default entity is used, which is usually your username.",
)
sub.add_argument(
"--force",
action="store_true",
help="Forces logging and overwrite existing wandb run of the same fine-tune.",
)
sub.set_defaults(force=False)
sub.set_defaults(func=WandbLogger.sync)
| APACAI-API-main | apacai/cli.py |
from typing import Optional
class ApacAIResponse:
def __init__(self, data, headers):
self._headers = headers
self.data = data
@property
def request_id(self) -> Optional[str]:
return self._headers.get("request-id")
@property
def retry_after(self) -> Optional[int]:
try:
return int(self._headers.get("retry-after"))
except TypeError:
return None
@property
def operation_location(self) -> Optional[str]:
return self._headers.get("operation-location")
@property
def organization(self) -> Optional[str]:
return self._headers.get("APACAI-Organization")
@property
def response_ms(self) -> Optional[int]:
h = self._headers.get("APACAI-Processing-Ms")
return None if h is None else round(float(h))
| APACAI-API-main | apacai/apacai_response.py |
import textwrap as tr
from typing import List, Optional
import matplotlib.pyplot as plt
import plotly.express as px
from scipy import spatial
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn.metrics import average_precision_score, precision_recall_curve
from tenacity import retry, stop_after_attempt, wait_random_exponential
import apacai
from apacai.datalib.numpy_helper import numpy as np
from apacai.datalib.pandas_helper import pandas as pd
@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
def get_embedding(text: str, engine="text-similarity-davinci-001", **kwargs) -> List[float]:
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
return apacai.Embedding.create(input=[text], engine=engine, **kwargs)["data"][0]["embedding"]
@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
async def aget_embedding(
text: str, engine="text-similarity-davinci-001", **kwargs
) -> List[float]:
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
return (await apacai.Embedding.acreate(input=[text], engine=engine, **kwargs))["data"][0][
"embedding"
]
@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
def get_embeddings(
list_of_text: List[str], engine="text-similarity-babbage-001", **kwargs
) -> List[List[float]]:
assert len(list_of_text) <= 2048, "The batch size should not be larger than 2048."
# replace newlines, which can negatively affect performance.
list_of_text = [text.replace("\n", " ") for text in list_of_text]
data = apacai.Embedding.create(input=list_of_text, engine=engine, **kwargs).data
return [d["embedding"] for d in data]
@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
async def aget_embeddings(
list_of_text: List[str], engine="text-similarity-babbage-001", **kwargs
) -> List[List[float]]:
assert len(list_of_text) <= 2048, "The batch size should not be larger than 2048."
# replace newlines, which can negatively affect performance.
list_of_text = [text.replace("\n", " ") for text in list_of_text]
data = (await apacai.Embedding.acreate(input=list_of_text, engine=engine, **kwargs)).data
return [d["embedding"] for d in data]
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
def plot_multiclass_precision_recall(
y_score, y_true_untransformed, class_list, classifier_name
):
"""
Precision-Recall plotting for a multiclass problem. It plots average precision-recall, per class precision recall and reference f1 contours.
Code slightly modified, but heavily based on https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
"""
n_classes = len(class_list)
y_true = pd.concat(
[(y_true_untransformed == class_list[i]) for i in range(n_classes)], axis=1
).values
# For each class
precision = dict()
recall = dict()
average_precision = dict()
for i in range(n_classes):
precision[i], recall[i], _ = precision_recall_curve(y_true[:, i], y_score[:, i])
average_precision[i] = average_precision_score(y_true[:, i], y_score[:, i])
# A "micro-average": quantifying score on all classes jointly
precision_micro, recall_micro, _ = precision_recall_curve(
y_true.ravel(), y_score.ravel()
)
average_precision_micro = average_precision_score(y_true, y_score, average="micro")
print(
str(classifier_name)
+ " - Average precision score over all classes: {0:0.2f}".format(
average_precision_micro
)
)
# setup plot details
plt.figure(figsize=(9, 10))
f_scores = np.linspace(0.2, 0.8, num=4)
lines = []
labels = []
for f_score in f_scores:
x = np.linspace(0.01, 1)
y = f_score * x / (2 * x - f_score)
(l,) = plt.plot(x[y >= 0], y[y >= 0], color="gray", alpha=0.2)
plt.annotate("f1={0:0.1f}".format(f_score), xy=(0.9, y[45] + 0.02))
lines.append(l)
labels.append("iso-f1 curves")
(l,) = plt.plot(recall_micro, precision_micro, color="gold", lw=2)
lines.append(l)
labels.append(
"average Precision-recall (auprc = {0:0.2f})" "".format(average_precision_micro)
)
for i in range(n_classes):
(l,) = plt.plot(recall[i], precision[i], lw=2)
lines.append(l)
labels.append(
"Precision-recall for class `{0}` (auprc = {1:0.2f})"
"".format(class_list[i], average_precision[i])
)
fig = plt.gcf()
fig.subplots_adjust(bottom=0.25)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.title(f"{classifier_name}: Precision-Recall curve for each class")
plt.legend(lines, labels)
def distances_from_embeddings(
query_embedding: List[float],
embeddings: List[List[float]],
distance_metric="cosine",
) -> List[List]:
"""Return the distances between a query embedding and a list of embeddings."""
distance_metrics = {
"cosine": spatial.distance.cosine,
"L1": spatial.distance.cityblock,
"L2": spatial.distance.euclidean,
"Linf": spatial.distance.chebyshev,
}
distances = [
distance_metrics[distance_metric](query_embedding, embedding)
for embedding in embeddings
]
return distances
def indices_of_nearest_neighbors_from_distances(distances) -> np.ndarray:
"""Return a list of indices of nearest neighbors from a list of distances."""
return np.argsort(distances)
def pca_components_from_embeddings(
embeddings: List[List[float]], n_components=2
) -> np.ndarray:
"""Return the PCA components of a list of embeddings."""
pca = PCA(n_components=n_components)
array_of_embeddings = np.array(embeddings)
return pca.fit_transform(array_of_embeddings)
def tsne_components_from_embeddings(
embeddings: List[List[float]], n_components=2, **kwargs
) -> np.ndarray:
"""Returns t-SNE components of a list of embeddings."""
# use better defaults if not specified
if "init" not in kwargs.keys():
kwargs["init"] = "pca"
if "learning_rate" not in kwargs.keys():
kwargs["learning_rate"] = "auto"
tsne = TSNE(n_components=n_components, **kwargs)
array_of_embeddings = np.array(embeddings)
return tsne.fit_transform(array_of_embeddings)
def chart_from_components(
components: np.ndarray,
labels: Optional[List[str]] = None,
strings: Optional[List[str]] = None,
x_title="Component 0",
y_title="Component 1",
mark_size=5,
**kwargs,
):
"""Return an interactive 2D chart of embedding components."""
empty_list = ["" for _ in components]
data = pd.DataFrame(
{
x_title: components[:, 0],
y_title: components[:, 1],
"label": labels if labels else empty_list,
"string": ["<br>".join(tr.wrap(string, width=30)) for string in strings]
if strings
else empty_list,
}
)
chart = px.scatter(
data,
x=x_title,
y=y_title,
color="label" if labels else None,
symbol="label" if labels else None,
hover_data=["string"] if strings else None,
**kwargs,
).update_traces(marker=dict(size=mark_size))
return chart
def chart_from_components_3D(
components: np.ndarray,
labels: Optional[List[str]] = None,
strings: Optional[List[str]] = None,
x_title: str = "Component 0",
y_title: str = "Component 1",
z_title: str = "Compontent 2",
mark_size: int = 5,
**kwargs,
):
"""Return an interactive 3D chart of embedding components."""
empty_list = ["" for _ in components]
data = pd.DataFrame(
{
x_title: components[:, 0],
y_title: components[:, 1],
z_title: components[:, 2],
"label": labels if labels else empty_list,
"string": ["<br>".join(tr.wrap(string, width=30)) for string in strings]
if strings
else empty_list,
}
)
chart = px.scatter_3d(
data,
x=x_title,
y=y_title,
z=z_title,
color="label" if labels else None,
symbol="label" if labels else None,
hover_data=["string"] if strings else None,
**kwargs,
).update_traces(marker=dict(size=mark_size))
return chart
| APACAI-API-main | apacai/embeddings_utils.py |
import json
from copy import deepcopy
from typing import Optional, Tuple, Union
import apacai
from apacai import api_requestor, util
from apacai.apacai_response import ApacAIResponse
from apacai.util import ApiType
class ApacAIObject(dict):
api_base_override = None
def __init__(
self,
id=None,
api_key=None,
api_version=None,
api_type=None,
organization=None,
response_ms: Optional[int] = None,
api_base=None,
engine=None,
**params,
):
super(ApacAIObject, self).__init__()
if response_ms is not None and not isinstance(response_ms, int):
raise TypeError(f"response_ms is a {type(response_ms).__name__}.")
self._response_ms = response_ms
self._retrieve_params = params
object.__setattr__(self, "api_key", api_key)
object.__setattr__(self, "api_version", api_version)
object.__setattr__(self, "api_type", api_type)
object.__setattr__(self, "organization", organization)
object.__setattr__(self, "api_base_override", api_base)
object.__setattr__(self, "engine", engine)
if id:
self["id"] = id
@property
def response_ms(self) -> Optional[int]:
return self._response_ms
def __setattr__(self, k, v):
if k[0] == "_" or k in self.__dict__:
return super(ApacAIObject, self).__setattr__(k, v)
self[k] = v
return None
def __getattr__(self, k):
if k[0] == "_":
raise AttributeError(k)
try:
return self[k]
except KeyError as err:
raise AttributeError(*err.args)
def __delattr__(self, k):
if k[0] == "_" or k in self.__dict__:
return super(ApacAIObject, self).__delattr__(k)
else:
del self[k]
def __setitem__(self, k, v):
if v == "":
raise ValueError(
"You cannot set %s to an empty string. "
"We interpret empty strings as None in requests."
"You may set %s.%s = None to delete the property" % (k, str(self), k)
)
super(ApacAIObject, self).__setitem__(k, v)
def __delitem__(self, k):
raise NotImplementedError("del is not supported")
# Custom unpickling method that uses `update` to update the dictionary
# without calling __setitem__, which would fail if any value is an empty
# string
def __setstate__(self, state):
self.update(state)
# Custom pickling method to ensure the instance is pickled as a custom
# class and not as a dict, otherwise __setstate__ would not be called when
# unpickling.
def __reduce__(self):
reduce_value = (
type(self), # callable
( # args
self.get("id", None),
self.api_key,
self.api_version,
self.api_type,
self.organization,
),
dict(self), # state
)
return reduce_value
@classmethod
def construct_from(
cls,
values,
api_key: Optional[str] = None,
api_version=None,
organization=None,
engine=None,
response_ms: Optional[int] = None,
):
instance = cls(
values.get("id"),
api_key=api_key,
api_version=api_version,
organization=organization,
engine=engine,
response_ms=response_ms,
)
instance.refresh_from(
values,
api_key=api_key,
api_version=api_version,
organization=organization,
response_ms=response_ms,
)
return instance
def refresh_from(
self,
values,
api_key=None,
api_version=None,
api_type=None,
organization=None,
response_ms: Optional[int] = None,
):
self.api_key = api_key or getattr(values, "api_key", None)
self.api_version = api_version or getattr(values, "api_version", None)
self.api_type = api_type or getattr(values, "api_type", None)
self.organization = organization or getattr(values, "organization", None)
self._response_ms = response_ms or getattr(values, "_response_ms", None)
# Wipe old state before setting new.
self.clear()
for k, v in values.items():
super(ApacAIObject, self).__setitem__(
k, util.convert_to_apacai_object(v, api_key, api_version, organization)
)
self._previous = values
@classmethod
def api_base(cls):
return None
def request(
self,
method,
url,
params=None,
headers=None,
stream=False,
plain_old_data=False,
request_id: Optional[str] = None,
request_timeout: Optional[Union[float, Tuple[float, float]]] = None,
):
if params is None:
params = self._retrieve_params
requestor = api_requestor.APIRequestor(
key=self.api_key,
api_base=self.api_base_override or self.api_base(),
api_type=self.api_type,
api_version=self.api_version,
organization=self.organization,
)
response, stream, api_key = requestor.request(
method,
url,
params=params,
stream=stream,
headers=headers,
request_id=request_id,
request_timeout=request_timeout,
)
if stream:
assert not isinstance(response, ApacAIResponse) # must be an iterator
return (
util.convert_to_apacai_object(
line,
api_key,
self.api_version,
self.organization,
plain_old_data=plain_old_data,
)
for line in response
)
else:
return util.convert_to_apacai_object(
response,
api_key,
self.api_version,
self.organization,
plain_old_data=plain_old_data,
)
async def arequest(
self,
method,
url,
params=None,
headers=None,
stream=False,
plain_old_data=False,
request_id: Optional[str] = None,
request_timeout: Optional[Union[float, Tuple[float, float]]] = None,
):
if params is None:
params = self._retrieve_params
requestor = api_requestor.APIRequestor(
key=self.api_key,
api_base=self.api_base_override or self.api_base(),
api_type=self.api_type,
api_version=self.api_version,
organization=self.organization,
)
response, stream, api_key = await requestor.arequest(
method,
url,
params=params,
stream=stream,
headers=headers,
request_id=request_id,
request_timeout=request_timeout,
)
if stream:
assert not isinstance(response, ApacAIResponse) # must be an iterator
return (
util.convert_to_apacai_object(
line,
api_key,
self.api_version,
self.organization,
plain_old_data=plain_old_data,
)
for line in response
)
else:
return util.convert_to_apacai_object(
response,
api_key,
self.api_version,
self.organization,
plain_old_data=plain_old_data,
)
def __repr__(self):
ident_parts = [type(self).__name__]
obj = self.get("object")
if isinstance(obj, str):
ident_parts.append(obj)
if isinstance(self.get("id"), str):
ident_parts.append("id=%s" % (self.get("id"),))
unicode_repr = "<%s at %s> JSON: %s" % (
" ".join(ident_parts),
hex(id(self)),
str(self),
)
return unicode_repr
def __str__(self):
obj = self.to_dict_recursive()
return json.dumps(obj, indent=2)
def to_dict(self):
return dict(self)
def to_dict_recursive(self):
d = dict(self)
for k, v in d.items():
if isinstance(v, ApacAIObject):
d[k] = v.to_dict_recursive()
elif isinstance(v, list):
d[k] = [
e.to_dict_recursive() if isinstance(e, ApacAIObject) else e
for e in v
]
return d
@property
def apacai_id(self):
return self.id
@property
def typed_api_type(self):
return (
ApiType.from_str(self.api_type)
if self.api_type
else ApiType.from_str(apacai.api_type)
)
# This class overrides __setitem__ to throw exceptions on inputs that it
# doesn't like. This can cause problems when we try to copy an object
# wholesale because some data that's returned from the API may not be valid
# if it was set to be set manually. Here we override the class' copy
# arguments so that we can bypass these possible exceptions on __setitem__.
def __copy__(self):
copied = ApacAIObject(
self.get("id"),
self.api_key,
api_version=self.api_version,
api_type=self.api_type,
organization=self.organization,
)
copied._retrieve_params = self._retrieve_params
for k, v in self.items():
# Call parent's __setitem__ to avoid checks that we've added in the
# overridden version that can throw exceptions.
super(ApacAIObject, copied).__setitem__(k, v)
return copied
# This class overrides __setitem__ to throw exceptions on inputs that it
# doesn't like. This can cause problems when we try to copy an object
# wholesale because some data that's returned from the API may not be valid
# if it was set to be set manually. Here we override the class' copy
# arguments so that we can bypass these possible exceptions on __setitem__.
def __deepcopy__(self, memo):
copied = self.__copy__()
memo[id(self)] = copied
for k, v in self.items():
# Call parent's __setitem__ to avoid checks that we've added in the
# overridden version that can throw exceptions.
super(ApacAIObject, copied).__setitem__(k, deepcopy(v, memo))
return copied
| APACAI-API-main | apacai/apacai_object.py |
from apacai.datalib.common import INSTRUCTIONS, MissingDependencyError
try:
import pandas
except ImportError:
pandas = None
HAS_PANDAS = bool(pandas)
PANDAS_INSTRUCTIONS = INSTRUCTIONS.format(library="pandas")
def assert_has_pandas():
if not HAS_PANDAS:
raise MissingDependencyError(PANDAS_INSTRUCTIONS)
| APACAI-API-main | apacai/datalib/pandas_helper.py |
"""
This module helps make data libraries like `numpy` and `pandas` optional dependencies.
The libraries add up to 130MB+, which makes it challenging to deploy applications
using this library in environments with code size constraints, like AWS Lambda.
This module serves as an import proxy and provides a few utilities for dealing with the optionality.
Since the primary use case of this library (talking to the APACAI API) doesn't generally require data libraries,
it's safe to make them optional. The rare case when data libraries are needed in the client is handled through
assertions with instructive error messages.
See also `setup.py`.
"""
| APACAI-API-main | apacai/datalib/__init__.py |
INSTRUCTIONS = """
APACAI error:
missing `{library}`
This feature requires additional dependencies:
$ pip install apacai[datalib]
"""
NUMPY_INSTRUCTIONS = INSTRUCTIONS.format(library="numpy")
class MissingDependencyError(Exception):
pass
| APACAI-API-main | apacai/datalib/common.py |
from apacai.datalib.common import INSTRUCTIONS, MissingDependencyError
try:
import numpy
except ImportError:
numpy = None
HAS_NUMPY = bool(numpy)
NUMPY_INSTRUCTIONS = INSTRUCTIONS.format(library="numpy")
def assert_has_numpy():
if not HAS_NUMPY:
raise MissingDependencyError(NUMPY_INSTRUCTIONS)
| APACAI-API-main | apacai/datalib/numpy_helper.py |
import json
import subprocess
import time
from tempfile import NamedTemporaryFile
STILL_PROCESSING = "File is still processing. Check back later."
def test_file_cli() -> None:
contents = json.dumps({"prompt": "1 + 3 =", "completion": "4"}) + "\n"
with NamedTemporaryFile(suffix=".jsonl", mode="wb") as train_file:
train_file.write(contents.encode("utf-8"))
train_file.flush()
create_output = subprocess.check_output(
["apacai", "api", "files.create", "-f", train_file.name, "-p", "fine-tune"]
)
file_obj = json.loads(create_output)
assert file_obj["bytes"] == len(contents)
file_id: str = file_obj["id"]
assert file_id.startswith("file-")
start_time = time.time()
while True:
delete_result = subprocess.run(
["apacai", "api", "files.delete", "-i", file_id],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
encoding="utf-8",
)
if delete_result.returncode == 0:
break
elif STILL_PROCESSING in delete_result.stderr:
time.sleep(0.5)
if start_time + 60 < time.time():
raise RuntimeError("timed out waiting for file to become available")
continue
else:
raise RuntimeError(
f"delete failed: stdout={delete_result.stdout} stderr={delete_result.stderr}"
)
| APACAI-API-main | apacai/tests/test_file_cli.py |
import io
import json
import pytest
import requests
import apacai
from apacai import error
# FILE TESTS
def test_file_upload():
result = apacai.File.create(
file=io.StringIO(
json.dumps({"prompt": "test file data", "completion": "tada"})
),
purpose="fine-tune",
)
assert result.purpose == "fine-tune"
assert "id" in result
result = apacai.File.retrieve(id=result.id)
assert result.status == "uploaded"
# CHAT COMPLETION TESTS
def test_chat_completions():
result = apacai.ChatCompletion.create(
model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello!"}]
)
assert len(result.choices) == 1
def test_chat_completions_multiple():
result = apacai.ChatCompletion.create(
model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello!"}], n=5
)
assert len(result.choices) == 5
def test_chat_completions_streaming():
result = None
events = apacai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello!"}],
stream=True,
)
for result in events:
assert len(result.choices) == 1
# COMPLETION TESTS
def test_completions():
result = apacai.Completion.create(prompt="This was a test", n=5, engine="ada")
assert len(result.choices) == 5
def test_completions_multiple_prompts():
result = apacai.Completion.create(
prompt=["This was a test", "This was another test"], n=5, engine="ada"
)
assert len(result.choices) == 10
def test_completions_model():
result = apacai.Completion.create(prompt="This was a test", n=5, model="ada")
assert len(result.choices) == 5
assert result.model.startswith("ada")
def test_timeout_raises_error():
# A query that should take awhile to return
with pytest.raises(error.Timeout):
apacai.Completion.create(
prompt="test" * 1000,
n=10,
model="ada",
max_tokens=100,
request_timeout=0.01,
)
def test_timeout_does_not_error():
# A query that should be fast
apacai.Completion.create(
prompt="test",
model="ada",
request_timeout=10,
)
def test_user_session():
with requests.Session() as session:
apacai.requestssession = session
completion = apacai.Completion.create(
prompt="hello world",
model="ada",
)
assert completion
def test_user_session_factory():
def factory():
session = requests.Session()
session.mount(
"https://",
requests.adapters.HTTPAdapter(max_retries=4),
)
return session
apacai.requestssession = factory
completion = apacai.Completion.create(
prompt="hello world",
model="ada",
)
assert completion
| APACAI-API-main | apacai/tests/test_endpoints.py |
import pickle
import pytest
import apacai
EXCEPTION_TEST_CASES = [
apacai.InvalidRequestError(
"message",
"param",
code=400,
http_body={"test": "test1"},
http_status="fail",
json_body={"text": "iono some text"},
headers={"request-id": "asasd"},
),
apacai.error.AuthenticationError(),
apacai.error.PermissionError(),
apacai.error.RateLimitError(),
apacai.error.ServiceUnavailableError(),
apacai.error.SignatureVerificationError("message", "sig_header?"),
apacai.error.APIConnectionError("message!", should_retry=True),
apacai.error.TryAgain(),
apacai.error.Timeout(),
apacai.error.APIError(
message="message",
code=400,
http_body={"test": "test1"},
http_status="fail",
json_body={"text": "iono some text"},
headers={"request-id": "asasd"},
),
apacai.error.ApacAIError(),
]
class TestExceptions:
@pytest.mark.parametrize("error", EXCEPTION_TEST_CASES)
def test_exceptions_are_pickleable(self, error) -> None:
assert error.__repr__() == pickle.loads(pickle.dumps(error)).__repr__()
| APACAI-API-main | apacai/tests/test_exceptions.py |
APACAI-API-main | apacai/tests/__init__.py |
|
import json
from tempfile import NamedTemporaryFile
import pytest
import apacai
from apacai import util
@pytest.fixture(scope="function")
def api_key_file():
saved_path = apacai.api_key_path
try:
with NamedTemporaryFile(prefix="apacai-api-key", mode="wt") as tmp:
apacai.api_key_path = tmp.name
yield tmp
finally:
apacai.api_key_path = saved_path
def test_apacai_api_key_path(api_key_file) -> None:
print("sk-foo", file=api_key_file)
api_key_file.flush()
assert util.default_api_key() == "sk-foo"
def test_apacai_api_key_path_with_malformed_key(api_key_file) -> None:
print("malformed-api-key", file=api_key_file)
api_key_file.flush()
with pytest.raises(ValueError, match="Malformed API key"):
util.default_api_key()
def test_key_order_apacai_object_rendering() -> None:
sample_response = {
"id": "chatcmpl-7NaPEA6sgX7LnNPyKPbRlsyqLbr5V",
"object": "chat.completion",
"created": 1685855844,
"model": "gpt-3.5-turbo-0301",
"usage": {"prompt_tokens": 57, "completion_tokens": 40, "total_tokens": 97},
"choices": [
{
"message": {
"role": "assistant",
"content": "The 2020 World Series was played at Globe Life Field in Arlington, Texas. It was the first time that the World Series was played at a neutral site because of the COVID-19 pandemic.",
},
"finish_reason": "stop",
"index": 0,
}
],
}
oai_object = util.convert_to_apacai_object(sample_response)
# The `__str__` method was sorting while dumping to json
assert list(json.loads(str(oai_object)).keys()) == list(sample_response.keys())
| APACAI-API-main | apacai/tests/test_util.py |
from sys import api_version
import pytest
from apacai import Completion, Engine
from apacai.util import ApiType
@pytest.mark.url
def test_completions_url_composition_azure() -> None:
url = Completion.class_url("test_engine", "azure", "2021-11-01-preview")
assert (
url
== "/apacai/deployments/test_engine/completions?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_completions_url_composition_azure_ad() -> None:
url = Completion.class_url("test_engine", "azure_ad", "2021-11-01-preview")
assert (
url
== "/apacai/deployments/test_engine/completions?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_completions_url_composition_default() -> None:
url = Completion.class_url("test_engine")
assert url == "/engines/test_engine/completions"
@pytest.mark.url
def test_completions_url_composition_open_ai() -> None:
url = Completion.class_url("test_engine", "open_ai")
assert url == "/engines/test_engine/completions"
@pytest.mark.url
def test_completions_url_composition_invalid_type() -> None:
with pytest.raises(Exception):
url = Completion.class_url("test_engine", "invalid")
@pytest.mark.url
def test_completions_url_composition_instance_url_azure() -> None:
completion = Completion(
id="test_id",
engine="test_engine",
api_type="azure",
api_version="2021-11-01-preview",
)
url = completion.instance_url()
assert (
url
== "/apacai/deployments/test_engine/completions/test_id?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_completions_url_composition_instance_url_azure_ad() -> None:
completion = Completion(
id="test_id",
engine="test_engine",
api_type="azure_ad",
api_version="2021-11-01-preview",
)
url = completion.instance_url()
assert (
url
== "/apacai/deployments/test_engine/completions/test_id?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_completions_url_composition_instance_url_azure_no_version() -> None:
completion = Completion(
id="test_id", engine="test_engine", api_type="azure", api_version=None
)
with pytest.raises(Exception):
completion.instance_url()
@pytest.mark.url
def test_completions_url_composition_instance_url_default() -> None:
completion = Completion(id="test_id", engine="test_engine")
url = completion.instance_url()
assert url == "/engines/test_engine/completions/test_id"
@pytest.mark.url
def test_completions_url_composition_instance_url_open_ai() -> None:
completion = Completion(
id="test_id",
engine="test_engine",
api_type="open_ai",
api_version="2021-11-01-preview",
)
url = completion.instance_url()
assert url == "/engines/test_engine/completions/test_id"
@pytest.mark.url
def test_completions_url_composition_instance_url_invalid() -> None:
completion = Completion(id="test_id", engine="test_engine", api_type="invalid")
with pytest.raises(Exception):
url = completion.instance_url()
@pytest.mark.url
def test_completions_url_composition_instance_url_timeout_azure() -> None:
completion = Completion(
id="test_id",
engine="test_engine",
api_type="azure",
api_version="2021-11-01-preview",
)
completion["timeout"] = 12
url = completion.instance_url()
assert (
url
== "/apacai/deployments/test_engine/completions/test_id?api-version=2021-11-01-preview&timeout=12"
)
@pytest.mark.url
def test_completions_url_composition_instance_url_timeout_apacai() -> None:
completion = Completion(id="test_id", engine="test_engine", api_type="open_ai")
completion["timeout"] = 12
url = completion.instance_url()
assert url == "/engines/test_engine/completions/test_id?timeout=12"
@pytest.mark.url
def test_engine_search_url_composition_azure() -> None:
engine = Engine(id="test_id", api_type="azure", api_version="2021-11-01-preview")
assert engine.api_type == "azure"
assert engine.typed_api_type == ApiType.AZURE
url = engine.instance_url("test_operation")
assert (
url
== "/apacai/deployments/test_id/test_operation?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_engine_search_url_composition_azure_ad() -> None:
engine = Engine(id="test_id", api_type="azure_ad", api_version="2021-11-01-preview")
assert engine.api_type == "azure_ad"
assert engine.typed_api_type == ApiType.AZURE_AD
url = engine.instance_url("test_operation")
assert (
url
== "/apacai/deployments/test_id/test_operation?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_engine_search_url_composition_azure_no_version() -> None:
engine = Engine(id="test_id", api_type="azure", api_version=None)
assert engine.api_type == "azure"
assert engine.typed_api_type == ApiType.AZURE
with pytest.raises(Exception):
engine.instance_url("test_operation")
@pytest.mark.url
def test_engine_search_url_composition_azure_no_operation() -> None:
engine = Engine(id="test_id", api_type="azure", api_version="2021-11-01-preview")
assert engine.api_type == "azure"
assert engine.typed_api_type == ApiType.AZURE
assert (
engine.instance_url()
== "/apacai/engines/test_id?api-version=2021-11-01-preview"
)
@pytest.mark.url
def test_engine_search_url_composition_default() -> None:
engine = Engine(id="test_id")
assert engine.api_type == None
assert engine.typed_api_type == ApiType.OPEN_AI
url = engine.instance_url()
assert url == "/engines/test_id"
@pytest.mark.url
def test_engine_search_url_composition_open_ai() -> None:
engine = Engine(id="test_id", api_type="open_ai")
assert engine.api_type == "open_ai"
assert engine.typed_api_type == ApiType.OPEN_AI
url = engine.instance_url()
assert url == "/engines/test_id"
@pytest.mark.url
def test_engine_search_url_composition_invalid_type() -> None:
engine = Engine(id="test_id", api_type="invalid")
assert engine.api_type == "invalid"
with pytest.raises(Exception):
assert engine.typed_api_type == ApiType.OPEN_AI
@pytest.mark.url
def test_engine_search_url_composition_invalid_search() -> None:
engine = Engine(id="test_id", api_type="invalid")
assert engine.api_type == "invalid"
with pytest.raises(Exception):
engine.search()
| APACAI-API-main | apacai/tests/test_url_composition.py |
import json
import subprocess
from tempfile import NamedTemporaryFile
import pytest
from apacai.datalib.numpy_helper import HAS_NUMPY, NUMPY_INSTRUCTIONS
from apacai.datalib.pandas_helper import HAS_PANDAS, PANDAS_INSTRUCTIONS
@pytest.mark.skipif(not HAS_PANDAS, reason=PANDAS_INSTRUCTIONS)
@pytest.mark.skipif(not HAS_NUMPY, reason=NUMPY_INSTRUCTIONS)
def test_long_examples_validator() -> None:
"""
Ensures that long_examples_validator() handles previously applied recommendations,
namely dropped duplicates, without resulting in a KeyError.
"""
# data
short_prompt = "a prompt "
long_prompt = short_prompt * 500
short_completion = "a completion "
long_completion = short_completion * 500
# the order of these matters
unprepared_training_data = [
{"prompt": long_prompt, "completion": long_completion}, # 1 of 2 duplicates
{"prompt": short_prompt, "completion": short_completion},
{"prompt": long_prompt, "completion": long_completion}, # 2 of 2 duplicates
]
with NamedTemporaryFile(suffix=".jsonl", mode="w") as training_data:
print(training_data.name)
for prompt_completion_row in unprepared_training_data:
training_data.write(json.dumps(prompt_completion_row) + "\n")
training_data.flush()
prepared_data_cmd_output = subprocess.run(
[f"apacai tools fine_tunes.prepare_data -f {training_data.name}"],
stdout=subprocess.PIPE,
text=True,
input="y\ny\ny\ny\ny", # apply all recommendations, one at a time
stderr=subprocess.PIPE,
encoding="utf-8",
shell=True,
)
# validate data was prepared successfully
assert prepared_data_cmd_output.stderr == ""
# validate get_long_indexes() applied during optional_fn() call in long_examples_validator()
assert "indices of the long examples has changed" in prepared_data_cmd_output.stdout
return prepared_data_cmd_output.stdout
| APACAI-API-main | apacai/tests/test_long_examples_validator.py |
import json
import pytest
import requests
from pytest_mock import MockerFixture
from apacai import Model
from apacai.api_requestor import APIRequestor
@pytest.mark.requestor
def test_requestor_sets_request_id(mocker: MockerFixture) -> None:
# Fake out 'requests' and confirm that the X-Request-Id header is set.
got_headers = {}
def fake_request(self, *args, **kwargs):
nonlocal got_headers
got_headers = kwargs["headers"]
r = requests.Response()
r.status_code = 200
r.headers["content-type"] = "application/json"
r._content = json.dumps({}).encode("utf-8")
return r
mocker.patch("requests.sessions.Session.request", fake_request)
fake_request_id = "1234"
Model.retrieve("xxx", request_id=fake_request_id) # arbitrary API resource
got_request_id = got_headers.get("X-Request-Id")
assert got_request_id == fake_request_id
@pytest.mark.requestor
def test_requestor_open_ai_headers() -> None:
api_requestor = APIRequestor(key="test_key", api_type="open_ai")
headers = {"Test_Header": "Unit_Test_Header"}
headers = api_requestor.request_headers(
method="get", extra=headers, request_id="test_id"
)
assert "Test_Header" in headers
assert headers["Test_Header"] == "Unit_Test_Header"
assert "Authorization" in headers
assert headers["Authorization"] == "Bearer test_key"
@pytest.mark.requestor
def test_requestor_azure_headers() -> None:
api_requestor = APIRequestor(key="test_key", api_type="azure")
headers = {"Test_Header": "Unit_Test_Header"}
headers = api_requestor.request_headers(
method="get", extra=headers, request_id="test_id"
)
assert "Test_Header" in headers
assert headers["Test_Header"] == "Unit_Test_Header"
assert "api-key" in headers
assert headers["api-key"] == "test_key"
@pytest.mark.requestor
def test_requestor_azure_ad_headers() -> None:
api_requestor = APIRequestor(key="test_key", api_type="azure_ad")
headers = {"Test_Header": "Unit_Test_Header"}
headers = api_requestor.request_headers(
method="get", extra=headers, request_id="test_id"
)
assert "Test_Header" in headers
assert headers["Test_Header"] == "Unit_Test_Header"
assert "Authorization" in headers
assert headers["Authorization"] == "Bearer test_key"
@pytest.mark.requestor
def test_requestor_cycle_sessions(mocker: MockerFixture) -> None:
# HACK: we need to purge the _thread_context to not interfere
# with other tests
from apacai.api_requestor import _thread_context
delattr(_thread_context, "session")
api_requestor = APIRequestor(key="test_key", api_type="azure_ad")
mock_session = mocker.MagicMock()
mocker.patch("apacai.api_requestor._make_session", lambda: mock_session)
# We don't call `session.close()` if not enough time has elapsed
api_requestor.request_raw("get", "http://example.com")
mock_session.request.assert_called()
api_requestor.request_raw("get", "http://example.com")
mock_session.close.assert_not_called()
mocker.patch("apacai.api_requestor.MAX_SESSION_LIFETIME_SECS", 0)
# Due to 0 lifetime, the original session will be closed before the next call
# and a new session will be created
mock_session_2 = mocker.MagicMock()
mocker.patch("apacai.api_requestor._make_session", lambda: mock_session_2)
api_requestor.request_raw("get", "http://example.com")
mock_session.close.assert_called()
mock_session_2.request.assert_called()
delattr(_thread_context, "session")
| APACAI-API-main | apacai/tests/test_api_requestor.py |
import io
import json
import pytest
from aiohttp import ClientSession
import apacai
from apacai import error
pytestmark = [pytest.mark.asyncio]
# FILE TESTS
async def test_file_upload():
result = await apacai.File.acreate(
file=io.StringIO(
json.dumps({"prompt": "test file data", "completion": "tada"})
),
purpose="fine-tune",
)
assert result.purpose == "fine-tune"
assert "id" in result
result = await apacai.File.aretrieve(id=result.id)
assert result.status == "uploaded"
# COMPLETION TESTS
async def test_completions():
result = await apacai.Completion.acreate(
prompt="This was a test", n=5, engine="ada"
)
assert len(result.choices) == 5
async def test_completions_multiple_prompts():
result = await apacai.Completion.acreate(
prompt=["This was a test", "This was another test"], n=5, engine="ada"
)
assert len(result.choices) == 10
async def test_completions_model():
result = await apacai.Completion.acreate(prompt="This was a test", n=5, model="ada")
assert len(result.choices) == 5
assert result.model.startswith("ada")
async def test_timeout_raises_error():
# A query that should take awhile to return
with pytest.raises(error.Timeout):
await apacai.Completion.acreate(
prompt="test" * 1000,
n=10,
model="ada",
max_tokens=100,
request_timeout=0.01,
)
async def test_timeout_does_not_error():
# A query that should be fast
await apacai.Completion.acreate(
prompt="test",
model="ada",
request_timeout=10,
)
async def test_completions_stream_finishes_global_session():
async with ClientSession() as session:
apacai.aiosession.set(session)
# A query that should be fast
parts = []
async for part in await apacai.Completion.acreate(
prompt="test", model="ada", request_timeout=3, stream=True
):
parts.append(part)
assert len(parts) > 1
async def test_completions_stream_finishes_local_session():
# A query that should be fast
parts = []
async for part in await apacai.Completion.acreate(
prompt="test", model="ada", request_timeout=3, stream=True
):
parts.append(part)
assert len(parts) > 1
| APACAI-API-main | apacai/tests/asyncio/test_endpoints.py |
APACAI-API-main | apacai/tests/asyncio/__init__.py |
|
import time
from apacai import util
from apacai.api_resources.abstract.engine_api_resource import EngineAPIResource
from apacai.error import TryAgain
class ChatCompletion(EngineAPIResource):
engine_required = False
OBJECT_NAME = "chat.completions"
@classmethod
def create(cls, *args, **kwargs):
"""
Creates a new chat completion for the provided messages and parameters.
See https://platform.apacai.com/docs/api-reference/chat/create
for a list of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
while True:
try:
return super().create(*args, **kwargs)
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)
@classmethod
async def acreate(cls, *args, **kwargs):
"""
Creates a new chat completion for the provided messages and parameters.
See https://platform.apacai.com/docs/api-reference/chat/create
for a list of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
while True:
try:
return await super().acreate(*args, **kwargs)
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)
| APACAI-API-main | apacai/api_resources/chat_completion.py |
from apacai import util
from apacai.api_resources.abstract import (
DeletableAPIResource,
ListableAPIResource,
CreateableAPIResource,
)
from apacai.error import InvalidRequestError, APIError
class Deployment(CreateableAPIResource, ListableAPIResource, DeletableAPIResource):
OBJECT_NAME = "deployments"
@classmethod
def _check_create(cls, *args, **kwargs):
typed_api_type, _ = cls._get_api_type_and_version(
kwargs.get("api_type", None), None
)
if typed_api_type not in (util.ApiType.AZURE, util.ApiType.AZURE_AD):
raise APIError(
"Deployment operations are only available for the Azure API type."
)
if kwargs.get("model", None) is None:
raise InvalidRequestError(
"Must provide a 'model' parameter to create a Deployment.",
param="model",
)
scale_settings = kwargs.get("scale_settings", None)
if scale_settings is None:
raise InvalidRequestError(
"Must provide a 'scale_settings' parameter to create a Deployment.",
param="scale_settings",
)
if "scale_type" not in scale_settings or (
scale_settings["scale_type"].lower() == "manual"
and "capacity" not in scale_settings
):
raise InvalidRequestError(
"The 'scale_settings' parameter contains invalid or incomplete values.",
param="scale_settings",
)
@classmethod
def create(cls, *args, **kwargs):
"""
Creates a new deployment for the provided prompt and parameters.
"""
cls._check_create(*args, **kwargs)
return super().create(*args, **kwargs)
@classmethod
def acreate(cls, *args, **kwargs):
"""
Creates a new deployment for the provided prompt and parameters.
"""
cls._check_create(*args, **kwargs)
return super().acreate(*args, **kwargs)
@classmethod
def _check_list(cls, *args, **kwargs):
typed_api_type, _ = cls._get_api_type_and_version(
kwargs.get("api_type", None), None
)
if typed_api_type not in (util.ApiType.AZURE, util.ApiType.AZURE_AD):
raise APIError(
"Deployment operations are only available for the Azure API type."
)
@classmethod
def list(cls, *args, **kwargs):
cls._check_list(*args, **kwargs)
return super().list(*args, **kwargs)
@classmethod
def alist(cls, *args, **kwargs):
cls._check_list(*args, **kwargs)
return super().alist(*args, **kwargs)
@classmethod
def _check_delete(cls, *args, **kwargs):
typed_api_type, _ = cls._get_api_type_and_version(
kwargs.get("api_type", None), None
)
if typed_api_type not in (util.ApiType.AZURE, util.ApiType.AZURE_AD):
raise APIError(
"Deployment operations are only available for the Azure API type."
)
@classmethod
def delete(cls, *args, **kwargs):
cls._check_delete(*args, **kwargs)
return super().delete(*args, **kwargs)
@classmethod
def adelete(cls, *args, **kwargs):
cls._check_delete(*args, **kwargs)
return super().adelete(*args, **kwargs)
@classmethod
def _check_retrieve(cls, *args, **kwargs):
typed_api_type, _ = cls._get_api_type_and_version(
kwargs.get("api_type", None), None
)
if typed_api_type not in (util.ApiType.AZURE, util.ApiType.AZURE_AD):
raise APIError(
"Deployment operations are only available for the Azure API type."
)
@classmethod
def retrieve(cls, *args, **kwargs):
cls._check_retrieve(*args, **kwargs)
return super().retrieve(*args, **kwargs)
@classmethod
def aretrieve(cls, *args, **kwargs):
cls._check_retrieve(*args, **kwargs)
return super().aretrieve(*args, **kwargs)
| APACAI-API-main | apacai/api_resources/deployment.py |
from typing import Optional
from apacai.apacai_object import ApacAIObject
from apacai.util import merge_dicts
class ErrorObject(ApacAIObject):
def refresh_from(
self,
values,
api_key=None,
api_version=None,
api_type=None,
organization=None,
response_ms: Optional[int] = None,
):
# Unlike most other API resources, the API will omit attributes in
# error objects when they have a null value. We manually set default
# values here to facilitate generic error handling.
values = merge_dicts({"message": None, "type": None}, values)
return super(ErrorObject, self).refresh_from(
values=values,
api_key=api_key,
api_version=api_version,
api_type=api_type,
organization=organization,
response_ms=response_ms,
)
| APACAI-API-main | apacai/api_resources/error_object.py |
import time
from apacai import util
from apacai.api_resources.abstract import DeletableAPIResource, ListableAPIResource
from apacai.api_resources.abstract.engine_api_resource import EngineAPIResource
from apacai.error import TryAgain
class Completion(EngineAPIResource):
OBJECT_NAME = "completions"
@classmethod
def create(cls, *args, **kwargs):
"""
Creates a new completion for the provided prompt and parameters.
See https://platform.apacai.com/docs/api-reference/completions/create for a list
of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
while True:
try:
return super().create(*args, **kwargs)
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)
@classmethod
async def acreate(cls, *args, **kwargs):
"""
Creates a new completion for the provided prompt and parameters.
See https://platform.apacai.com/docs/api-reference/completions/create for a list
of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
while True:
try:
return await super().acreate(*args, **kwargs)
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)
| APACAI-API-main | apacai/api_resources/completion.py |
from urllib.parse import quote_plus
from apacai import api_requestor, util, error
from apacai.api_resources.abstract import (
CreateableAPIResource,
ListableAPIResource,
nested_resource_class_methods,
)
from apacai.api_resources.abstract.deletable_api_resource import DeletableAPIResource
from apacai.apacai_response import ApacAIResponse
from apacai.util import ApiType
@nested_resource_class_methods("event", operations=["list"])
class FineTune(ListableAPIResource, CreateableAPIResource, DeletableAPIResource):
OBJECT_NAME = "fine-tunes"
@classmethod
def _prepare_cancel(
cls,
id,
api_key=None,
api_type=None,
request_id=None,
api_version=None,
**params,
):
base = cls.class_url()
extn = quote_plus(id)
typed_api_type, api_version = cls._get_api_type_and_version(
api_type, api_version
)
if typed_api_type in (ApiType.AZURE, ApiType.AZURE_AD):
url = "/%s%s/%s/cancel?api-version=%s" % (
cls.azure_api_prefix,
base,
extn,
api_version,
)
elif typed_api_type == ApiType.OPEN_AI:
url = "%s/%s/cancel" % (base, extn)
else:
raise error.InvalidAPIType("Unsupported API type %s" % api_type)
instance = cls(id, api_key, **params)
return instance, url
@classmethod
def cancel(
cls,
id,
api_key=None,
api_type=None,
request_id=None,
api_version=None,
**params,
):
instance, url = cls._prepare_cancel(
id,
api_key,
api_type,
request_id,
api_version,
**params,
)
return instance.request("post", url, request_id=request_id)
@classmethod
def acancel(
cls,
id,
api_key=None,
api_type=None,
request_id=None,
api_version=None,
**params,
):
instance, url = cls._prepare_cancel(
id,
api_key,
api_type,
request_id,
api_version,
**params,
)
return instance.arequest("post", url, request_id=request_id)
@classmethod
def _prepare_stream_events(
cls,
id,
api_key=None,
api_base=None,
api_type=None,
request_id=None,
api_version=None,
organization=None,
**params,
):
base = cls.class_url()
extn = quote_plus(id)
requestor = api_requestor.APIRequestor(
api_key,
api_base=api_base,
api_type=api_type,
api_version=api_version,
organization=organization,
)
typed_api_type, api_version = cls._get_api_type_and_version(
api_type, api_version
)
if typed_api_type in (ApiType.AZURE, ApiType.AZURE_AD):
url = "/%s%s/%s/events?stream=true&api-version=%s" % (
cls.azure_api_prefix,
base,
extn,
api_version,
)
elif typed_api_type == ApiType.OPEN_AI:
url = "%s/%s/events?stream=true" % (base, extn)
else:
raise error.InvalidAPIType("Unsupported API type %s" % api_type)
return requestor, url
@classmethod
def stream_events(
cls,
id,
api_key=None,
api_base=None,
api_type=None,
request_id=None,
api_version=None,
organization=None,
**params,
):
requestor, url = cls._prepare_stream_events(
id,
api_key,
api_base,
api_type,
request_id,
api_version,
organization,
**params,
)
response, _, api_key = requestor.request(
"get", url, params, stream=True, request_id=request_id
)
assert not isinstance(response, ApacAIResponse) # must be an iterator
return (
util.convert_to_apacai_object(
line,
api_key,
api_version,
organization,
)
for line in response
)
@classmethod
async def astream_events(
cls,
id,
api_key=None,
api_base=None,
api_type=None,
request_id=None,
api_version=None,
organization=None,
**params,
):
requestor, url = cls._prepare_stream_events(
id,
api_key,
api_base,
api_type,
request_id,
api_version,
organization,
**params,
)
response, _, api_key = await requestor.arequest(
"get", url, params, stream=True, request_id=request_id
)
assert not isinstance(response, ApacAIResponse) # must be an iterator
return (
util.convert_to_apacai_object(
line,
api_key,
api_version,
organization,
)
async for line in response
)
| APACAI-API-main | apacai/api_resources/fine_tune.py |
import base64
import time
from apacai import util
from apacai.api_resources.abstract.engine_api_resource import EngineAPIResource
from apacai.datalib.numpy_helper import assert_has_numpy
from apacai.datalib.numpy_helper import numpy as np
from apacai.error import TryAgain
class Embedding(EngineAPIResource):
OBJECT_NAME = "embeddings"
@classmethod
def create(cls, *args, **kwargs):
"""
Creates a new embedding for the provided input and parameters.
See https://platform.apacai.com/docs/api-reference/embeddings for a list
of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
user_provided_encoding_format = kwargs.get("encoding_format", None)
# If encoding format was not explicitly specified, we opaquely use base64 for performance
if not user_provided_encoding_format:
kwargs["encoding_format"] = "base64"
while True:
try:
response = super().create(*args, **kwargs)
# If a user specifies base64, we'll just return the encoded string.
# This is only for the default case.
if not user_provided_encoding_format:
for data in response.data:
# If an engine isn't using this optimization, don't do anything
if type(data["embedding"]) == str:
assert_has_numpy()
data["embedding"] = np.frombuffer(
base64.b64decode(data["embedding"]), dtype="float32"
).tolist()
return response
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)
@classmethod
async def acreate(cls, *args, **kwargs):
"""
Creates a new embedding for the provided input and parameters.
See https://platform.apacai.com/docs/api-reference/embeddings for a list
of valid parameters.
"""
start = time.time()
timeout = kwargs.pop("timeout", None)
user_provided_encoding_format = kwargs.get("encoding_format", None)
# If encoding format was not explicitly specified, we opaquely use base64 for performance
if not user_provided_encoding_format:
kwargs["encoding_format"] = "base64"
while True:
try:
response = await super().acreate(*args, **kwargs)
# If a user specifies base64, we'll just return the encoded string.
# This is only for the default case.
if not user_provided_encoding_format:
for data in response.data:
# If an engine isn't using this optimization, don't do anything
if type(data["embedding"]) == str:
data["embedding"] = np.frombuffer(
base64.b64decode(data["embedding"]), dtype="float32"
).tolist()
return response
except TryAgain as e:
if timeout is not None and time.time() > start + timeout:
raise
util.log_info("Waiting for model to warm up", error=e)
| APACAI-API-main | apacai/api_resources/embedding.py |
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 33