python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# adopted from # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py # and # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py # and # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py # # thanks! import importlib import os import math import torch import torch.nn as nn import numpy as np from einops import repeat def instantiate_from_config(config): if not "target" in config: if config == '__is_first_stage__': return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): if schedule == "linear": betas = ( torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 ) elif schedule == "cosine": timesteps = ( torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s ) alphas = timesteps / (1 + cosine_s) * np.pi / 2 alphas = torch.cos(alphas).pow(2) alphas = alphas / alphas[0] betas = 1 - alphas[1:] / alphas[:-1] betas = np.clip(betas, a_min=0, a_max=0.999) elif schedule == "sqrt_linear": betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) elif schedule == "sqrt": betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 else: raise ValueError(f"schedule '{schedule}' unknown.") return betas.numpy() def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True): if ddim_discr_method == 'uniform': c = num_ddpm_timesteps // num_ddim_timesteps ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) elif ddim_discr_method == 'quad': ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int) else: raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"') # assert ddim_timesteps.shape[0] == num_ddim_timesteps # add one to get the final alpha values right (the ones from first scale to data during sampling) steps_out = ddim_timesteps + 1 if verbose: print(f'Selected timesteps for ddim sampler: {steps_out}') return steps_out def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): # select alphas for computing the variance schedule alphas = alphacums[ddim_timesteps] alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) # according the the formula provided in https://arxiv.org/abs/2010.02502 sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) if verbose: print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}') print(f'For the chosen value of eta, which is {eta}, ' f'this results in the following sigma_t schedule for ddim sampler {sigmas}') return sigmas, alphas, alphas_prev def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t from 0 to 1 and produces the cumulative product of (1-beta) up to that part of the diffusion process. :param max_beta: the maximum beta to use; use values lower than 1 to prevent singularities. """ betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return np.array(betas) def extract_into_tensor(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def checkpoint(func, inputs, params, flag): """ Evaluate a function without caching intermediate activations, allowing for reduced memory at the expense of extra compute in the backward pass. :param func: the function to evaluate. :param inputs: the argument sequence to pass to `func`. :param params: a sequence of parameters `func` depends on but does not explicitly take as arguments. :param flag: if False, disable gradient checkpointing. """ if flag: args = tuple(inputs) + tuple(params) return CheckpointFunction.apply(func, len(inputs), *args) else: return func(*inputs) class CheckpointFunction(torch.autograd.Function): @staticmethod def forward(ctx, run_function, length, *args): ctx.run_function = run_function ctx.input_tensors = list(args[:length]) ctx.input_params = list(args[length:]) with torch.no_grad(): output_tensors = ctx.run_function(*ctx.input_tensors) return output_tensors @staticmethod def backward(ctx, *output_grads): ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] with torch.enable_grad(): # Fixes a bug where the first op in run_function modifies the # Tensor storage in place, which is not allowed for detach()'d # Tensors. shallow_copies = [x.view_as(x) for x in ctx.input_tensors] output_tensors = ctx.run_function(*shallow_copies) input_grads = torch.autograd.grad( output_tensors, ctx.input_tensors + ctx.input_params, output_grads, allow_unused=True, ) del ctx.input_tensors del ctx.input_params del output_tensors return (None, None) + input_grads def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ if not repeat_only: half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) else: embedding = repeat(timesteps, 'b -> b d', d=dim) return embedding def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def scale_module(module, scale): """ Scale the parameters of a module and return it. """ for p in module.parameters(): p.detach().mul_(scale) return module def mean_flat(tensor): """ Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def normalization(channels): """ Make a standard normalization layer. :param channels: number of input channels. :return: an nn.Module for normalization. """ return GroupNorm32(32, channels) # PyTorch 1.7 has SiLU, but we support PyTorch 1.5. class SiLU(nn.Module): def forward(self, x): return x * torch.sigmoid(x) class GroupNorm32(nn.GroupNorm): def forward(self, x): return super().forward(x.float()).type(x.dtype) def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def linear(*args, **kwargs): """ Create a linear module. """ return nn.Linear(*args, **kwargs) def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") class HybridConditioner(nn.Module): def __init__(self, c_concat_config, c_crossattn_config): super().__init__() self.concat_conditioner = instantiate_from_config(c_concat_config) self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) def forward(self, c_concat, c_crossattn): c_concat = self.concat_conditioner(c_concat) c_crossattn = self.crossattn_conditioner(c_crossattn) return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} def noise_like(shape, device, repeat=False): repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) noise = lambda: torch.randn(shape, device=device) return repeat_noise() if repeat else noise()
Segment-Everything-Everywhere-All-At-Once-main
demo_code/utils/util.py
import yaml import json import argparse import logging logger = logging.getLogger(__name__) def load_config_dict_to_opt(opt, config_dict): """ Load the key, value pairs from config_dict to opt, overriding existing values in opt if there is any. """ if not isinstance(config_dict, dict): raise TypeError("Config must be a Python dictionary") for k, v in config_dict.items(): k_parts = k.split('.') pointer = opt for k_part in k_parts[:-1]: if k_part not in pointer: pointer[k_part] = {} pointer = pointer[k_part] assert isinstance(pointer, dict), "Overriding key needs to be inside a Python dict." ori_value = pointer.get(k_parts[-1]) pointer[k_parts[-1]] = v if ori_value: logger.warning(f"Overrided {k} from {ori_value} to {pointer[k_parts[-1]]}") def load_opt_from_config_files(conf_file): """ Load opt from the config files, settings in later files can override those in previous files. Args: conf_files: config file path Returns: dict: a dictionary of opt settings """ opt = {} with open(conf_file, encoding='utf-8') as f: config_dict = yaml.safe_load(f) load_config_dict_to_opt(opt, config_dict) return opt def load_opt_command(args): parser = argparse.ArgumentParser(description='Pretrain or fine-tune models for NLP tasks.') parser.add_argument('command', help='Command: train/evaluate/train-and-evaluate') parser.add_argument('--conf_files', required=True, help='Path(s) to the config file(s).') parser.add_argument('--config_overrides', nargs='*', help='Override parameters on config with a json style string, e.g. {"<PARAM_NAME_1>": <PARAM_VALUE_1>, "<PARAM_GROUP_2>.<PARAM_SUBGROUP_2>.<PARAM_2>": <PARAM_VALUE_2>}. A key with "." updates the object in the corresponding nested dict. Remember to escape " in command line.') parser.add_argument('--overrides', help='arguments that used to overide the config file in cmdline', nargs=argparse.REMAINDER) cmdline_args = parser.parse_args() if not args else parser.parse_args(args) opt = load_opt_from_config_files(cmdline_args.conf_files) if cmdline_args.config_overrides: config_overrides_string = ' '.join(cmdline_args.config_overrides) logger.warning(f"Command line config overrides: {config_overrides_string}") config_dict = json.loads(config_overrides_string) load_config_dict_to_opt(opt, config_dict) if cmdline_args.overrides: assert len(cmdline_args.overrides) % 2 == 0, "overides arguments is not paired, required: key value" keys = [cmdline_args.overrides[idx*2] for idx in range(len(cmdline_args.overrides)//2)] vals = [cmdline_args.overrides[idx*2+1] for idx in range(len(cmdline_args.overrides)//2)] vals = [val.replace('false', '').replace('False','') if len(val.replace(' ', '')) == 5 else val for val in vals] types = [] for key in keys: key = key.split('.') ele = opt.copy() while len(key) > 0: ele = ele[key.pop(0)] types.append(type(ele)) config_dict = {x:z(y) for x,y,z in zip(keys, vals, types)} load_config_dict_to_opt(opt, config_dict) # combine cmdline_args into opt dictionary for key, val in cmdline_args.__dict__.items(): if val is not None: opt[key] = val return opt, cmdline_args def save_opt_to_json(opt, conf_file): with open(conf_file, 'w', encoding='utf-8') as f: json.dump(opt, f, indent=4) def save_opt_to_yaml(opt, conf_file): with open(conf_file, 'w', encoding='utf-8') as f: yaml.dump(opt, f)
Segment-Everything-Everywhere-All-At-Once-main
demo_code/utils/arguments.py
COCO_PANOPTIC_CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner', 'blanket', 'bridge', 'cardboard', 'counter', 'curtain', 'door-stuff', 'floor-wood', 'flower', 'fruit', 'gravel', 'house', 'light', 'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield', 'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow', 'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'window-blind', 'window-other', 'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged', 'cabinet-merged', 'table-merged', 'floor-other-merged', 'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged', 'paper-merged', 'food-other-merged', 'building-other-merged', 'rock-merged', 'wall-other-merged', 'rug-merged']
Segment-Everything-Everywhere-All-At-Once-main
demo_code/utils/constants.py
Segment-Everything-Everywhere-All-At-Once-main
demo_code/utils/__init__.py
import sys import cv2 import torch import numpy as np import gradio as gr from PIL import Image from omegaconf import OmegaConf from einops import repeat from imwatermark import WatermarkEncoder from pathlib import Path from .ddim import DDIMSampler from .util import instantiate_from_config torch.set_grad_enabled(False) def put_watermark(img, wm_encoder=None): if wm_encoder is not None: img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) img = wm_encoder.encode(img, 'dwtDct') img = Image.fromarray(img[:, :, ::-1]) return img def initialize_model(config, ckpt): config = OmegaConf.load(config) model = instantiate_from_config(config.model) model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False) device = torch.device( "cuda") if torch.cuda.is_available() else torch.device("cpu") model = model.to(device) sampler = DDIMSampler(model) return sampler def make_batch_sd( image, mask, txt, device, num_samples=1): image = np.array(image.convert("RGB")) image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 mask = np.array(mask.convert("L")) mask = mask.astype(np.float32) / 255.0 mask = mask[None, None] mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 mask = torch.from_numpy(mask) masked_image = image * (mask < 0.5) batch = { "image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples), "txt": num_samples * [txt], "mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples), "masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples), } return batch @torch.no_grad() def inpaint(sampler, image, mask, prompt, seed, scale, ddim_steps, num_samples=1, w=512, h=512): device = torch.device( "cuda") if torch.cuda.is_available() else torch.device("cpu") model = sampler.model print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") wm = "SDV2" wm_encoder = WatermarkEncoder() wm_encoder.set_watermark('bytes', wm.encode('utf-8')) prng = np.random.RandomState(seed) start_code = prng.randn(num_samples, 4, h // 8, w // 8) start_code = torch.from_numpy(start_code).to( device=device, dtype=torch.float32) with torch.no_grad(), \ torch.autocast("cuda"): batch = make_batch_sd(image, mask, txt=prompt, device=device, num_samples=num_samples) c = model.cond_stage_model.encode(batch["txt"]) c_cat = list() for ck in model.concat_keys: cc = batch[ck].float() if ck != model.masked_image_key: bchw = [num_samples, 4, h // 8, w // 8] cc = torch.nn.functional.interpolate(cc, size=bchw[-2:]) else: cc = model.get_first_stage_encoding( model.encode_first_stage(cc)) c_cat.append(cc) c_cat = torch.cat(c_cat, dim=1) # cond cond = {"c_concat": [c_cat], "c_crossattn": [c]} # uncond cond uc_cross = model.get_unconditional_conditioning(num_samples, "") uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]} shape = [model.channels, h // 8, w // 8] samples_cfg, intermediates = sampler.sample( ddim_steps, num_samples, shape, cond, verbose=False, eta=1.0, unconditional_guidance_scale=scale, unconditional_conditioning=uc_full, x_T=start_code, ) x_samples_ddim = model.decode_first_stage(samples_cfg) result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255 return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result] def pad_image(input_image): pad_w, pad_h = np.max(((2, 2), np.ceil( np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size im_padded = Image.fromarray( np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) return im_padded def crop_image(input_image): crop_w, crop_h = np.floor(np.array(input_image.size) / 64).astype(int) * 64 im_cropped = Image.fromarray(np.array(input_image)[:crop_h, :crop_w]) return im_cropped # sampler = initialize_model(sys.argv[1], sys.argv[2]) @torch.no_grad() def predict(model, input_image, prompt, ddim_steps, num_samples, scale, seed): """_summary_ Args: input_image (_type_): dict - image: PIL.Image. Input image. - mask: PIL.Image. Mask image. prompt (_type_): string to be used as prompt. ddim_steps (_type_): typical 45 num_samples (_type_): typical 4 scale (_type_): typical 10.0 Guidance Scale. seed (_type_): typical 1529160519 """ init_image = input_image["image"].convert("RGB") init_mask = input_image["mask"].convert("RGB") image = pad_image(init_image) # resize to integer multiple of 32 mask = pad_image(init_mask) # resize to integer multiple of 32 width, height = image.size print("Inpainting...", width, height) result = inpaint( sampler=model, image=image, mask=mask, prompt=prompt, seed=seed, scale=scale, ddim_steps=ddim_steps, num_samples=num_samples, h=height, w=width ) return result
Segment-Everything-Everywhere-All-At-Once-main
demo_code/utils/inpainting.py
import logging import os import time import pickle import torch import torch.distributed as dist from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table from fvcore.nn import flop_count_str logger = logging.getLogger(__name__) NORM_MODULES = [ torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d, torch.nn.SyncBatchNorm, # NaiveSyncBatchNorm inherits from BatchNorm2d torch.nn.GroupNorm, torch.nn.InstanceNorm1d, torch.nn.InstanceNorm2d, torch.nn.InstanceNorm3d, torch.nn.LayerNorm, torch.nn.LocalResponseNorm, ] def register_norm_module(cls): NORM_MODULES.append(cls) return cls
Segment-Everything-Everywhere-All-At-Once-main
demo_code/utils/model.py
# -------------------------------------------------------- # X-Decoder -- Generalized Decoding for Pixel, Image, and Language # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Xueyan Zou ([email protected]) # -------------------------------------------------------- import logging from utils.distributed import is_main_process logger = logging.getLogger(__name__) def align_and_update_state_dicts(model_state_dict, ckpt_state_dict): model_keys = sorted(model_state_dict.keys()) ckpt_keys = sorted(ckpt_state_dict.keys()) result_dicts = {} matched_log = [] unmatched_log = [] unloaded_log = [] for model_key in model_keys: model_weight = model_state_dict[model_key] if model_key in ckpt_keys: ckpt_weight = ckpt_state_dict[model_key] if model_weight.shape == ckpt_weight.shape: result_dicts[model_key] = ckpt_weight ckpt_keys.pop(ckpt_keys.index(model_key)) matched_log.append("Loaded {}, Model Shape: {} <-> Ckpt Shape: {}".format(model_key, model_weight.shape, ckpt_weight.shape)) else: unmatched_log.append("*UNMATCHED* {}, Model Shape: {} <-> Ckpt Shape: {}".format(model_key, model_weight.shape, ckpt_weight.shape)) else: unloaded_log.append("*UNLOADED* {}, Model Shape: {}".format(model_key, model_weight.shape)) if is_main_process(): for info in matched_log: logger.info(info) for info in unloaded_log: logger.warning(info) for key in ckpt_keys: logger.warning("$UNUSED$ {}, Ckpt Shape: {}".format(key, ckpt_state_dict[key].shape)) for info in unmatched_log: logger.warning(info) return result_dicts
Segment-Everything-Everywhere-All-At-Once-main
demo_code/utils/model_loading.py
import os import time import torch import pickle import torch.distributed as dist def init_distributed(opt): opt['CUDA'] = opt.get('CUDA', True) and torch.cuda.is_available() if 'OMPI_COMM_WORLD_SIZE' not in os.environ: # application was started without MPI # default to single node with single process opt['env_info'] = 'no MPI' opt['world_size'] = 1 opt['local_size'] = 1 opt['rank'] = 0 opt['local_rank'] = 0 opt['master_address'] = '127.0.0.1' opt['master_port'] = '8673' else: # application was started with MPI # get MPI parameters opt['world_size'] = int(os.environ['OMPI_COMM_WORLD_SIZE']) opt['local_size'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_SIZE']) opt['rank'] = int(os.environ['OMPI_COMM_WORLD_RANK']) opt['local_rank'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) # set up device if not opt['CUDA']: assert opt['world_size'] == 1, 'multi-GPU training without CUDA is not supported since we use NCCL as communication backend' opt['device'] = torch.device("cpu") else: torch.cuda.set_device(opt['local_rank']) opt['device'] = torch.device("cuda", opt['local_rank']) return opt def is_main_process(): rank = 0 if 'OMPI_COMM_WORLD_SIZE' in os.environ: rank = int(os.environ['OMPI_COMM_WORLD_RANK']) return rank == 0 def get_world_size(): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() rank = dist.get_rank() if world_size == 1: return def _send_and_wait(r): if rank == r: tensor = torch.tensor(0, device="cuda") else: tensor = torch.tensor(1, device="cuda") dist.broadcast(tensor, r) while tensor.item() == 1: time.sleep(1) _send_and_wait(0) # now sync on the main process _send_and_wait(1) def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.IntTensor([tensor.numel()]).to("cuda") size_list = [torch.IntTensor([0]).to("cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that process with rank 0 has the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.reduce(values, dst=0) if dist.get_rank() == 0 and average: # only main process gets accumulated, so only divide by # world_size in this case values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict def broadcast_data(data): if not torch.distributed.is_initialized(): return data rank = dist.get_rank() if rank == 0: data_tensor = torch.tensor(data + [0], device="cuda") else: data_tensor = torch.tensor(data + [1], device="cuda") torch.distributed.broadcast(data_tensor, 0) while data_tensor.cpu().numpy()[-1] == 1: time.sleep(1) return data_tensor.cpu().numpy().tolist()[:-1] def reduce_sum(tensor): if get_world_size() <= 1: return tensor tensor = tensor.clone() dist.all_reduce(tensor, op=dist.ReduceOp.SUM) return tensor
Segment-Everything-Everywhere-All-At-Once-main
demo_code/utils/distributed.py
# Copyright (c) Facebook, Inc. and its affiliates. import colorsys import logging import math import numpy as np from enum import Enum, unique import cv2 import matplotlib as mpl import matplotlib.colors as mplc import matplotlib.figure as mplfigure import pycocotools.mask as mask_util import torch from matplotlib.backends.backend_agg import FigureCanvasAgg from PIL import Image from detectron2.data import MetadataCatalog from detectron2.structures import BitMasks, Boxes, BoxMode, Keypoints, PolygonMasks, RotatedBoxes from detectron2.utils.file_io import PathManager from detectron2.utils.colormap import random_color logger = logging.getLogger(__name__) __all__ = ["ColorMode", "VisImage", "Visualizer"] _SMALL_OBJECT_AREA_THRESH = 1000 _LARGE_MASK_AREA_THRESH = 120000 _OFF_WHITE = (1.0, 1.0, 240.0 / 255) _BLACK = (0, 0, 0) _RED = (1.0, 0, 0) _KEYPOINT_THRESHOLD = 0.05 @unique class ColorMode(Enum): """ Enum of different color modes to use for instance visualizations. """ IMAGE = 0 """ Picks a random color for every instance and overlay segmentations with low opacity. """ SEGMENTATION = 1 """ Let instances of the same category have similar colors (from metadata.thing_colors), and overlay them with high opacity. This provides more attention on the quality of segmentation. """ IMAGE_BW = 2 """ Same as IMAGE, but convert all areas without masks to gray-scale. Only available for drawing per-instance mask predictions. """ class GenericMask: """ Attribute: polygons (list[ndarray]): list[ndarray]: polygons for this mask. Each ndarray has format [x, y, x, y, ...] mask (ndarray): a binary mask """ def __init__(self, mask_or_polygons, height, width): self._mask = self._polygons = self._has_holes = None self.height = height self.width = width m = mask_or_polygons if isinstance(m, dict): # RLEs assert "counts" in m and "size" in m if isinstance(m["counts"], list): # uncompressed RLEs h, w = m["size"] assert h == height and w == width m = mask_util.frPyObjects(m, h, w) self._mask = mask_util.decode(m)[:, :] return if isinstance(m, list): # list[ndarray] self._polygons = [np.asarray(x).reshape(-1) for x in m] return if isinstance(m, np.ndarray): # assumed to be a binary mask assert m.shape[1] != 2, m.shape assert m.shape == ( height, width, ), f"mask shape: {m.shape}, target dims: {height}, {width}" self._mask = m.astype("uint8") return raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m))) @property def mask(self): if self._mask is None: self._mask = self.polygons_to_mask(self._polygons) return self._mask @property def polygons(self): if self._polygons is None: self._polygons, self._has_holes = self.mask_to_polygons(self._mask) return self._polygons @property def has_holes(self): if self._has_holes is None: if self._mask is not None: self._polygons, self._has_holes = self.mask_to_polygons(self._mask) else: self._has_holes = False # if original format is polygon, does not have holes return self._has_holes def mask_to_polygons(self, mask): # cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level # hierarchy. External contours (boundary) of the object are placed in hierarchy-1. # Internal contours (holes) are placed in hierarchy-2. # cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours. mask = np.ascontiguousarray(mask) # some versions of cv2 does not support incontiguous arr res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) hierarchy = res[-1] if hierarchy is None: # empty mask return [], False has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0 res = res[-2] res = [x.flatten() for x in res] # These coordinates from OpenCV are integers in range [0, W-1 or H-1]. # We add 0.5 to turn them into real-value coordinate space. A better solution # would be to first +0.5 and then dilate the returned polygon by 0.5. res = [x + 0.5 for x in res if len(x) >= 6] return res, has_holes def polygons_to_mask(self, polygons): rle = mask_util.frPyObjects(polygons, self.height, self.width) rle = mask_util.merge(rle) return mask_util.decode(rle)[:, :] def area(self): return self.mask.sum() def bbox(self): p = mask_util.frPyObjects(self.polygons, self.height, self.width) p = mask_util.merge(p) bbox = mask_util.toBbox(p) bbox[2] += bbox[0] bbox[3] += bbox[1] return bbox class _PanopticPrediction: """ Unify different panoptic annotation/prediction formats """ def __init__(self, panoptic_seg, segments_info, metadata=None): if segments_info is None: assert metadata is not None # If "segments_info" is None, we assume "panoptic_img" is a # H*W int32 image storing the panoptic_id in the format of # category_id * label_divisor + instance_id. We reserve -1 for # VOID label. label_divisor = metadata.label_divisor segments_info = [] for panoptic_label in np.unique(panoptic_seg.numpy()): if panoptic_label == -1: # VOID region. continue pred_class = panoptic_label // label_divisor isthing = pred_class in metadata.thing_dataset_id_to_contiguous_id.values() segments_info.append( { "id": int(panoptic_label), "category_id": int(pred_class), "isthing": bool(isthing), } ) del metadata self._seg = panoptic_seg self._sinfo = {s["id"]: s for s in segments_info} # seg id -> seg info segment_ids, areas = torch.unique(panoptic_seg, sorted=True, return_counts=True) areas = areas.numpy() sorted_idxs = np.argsort(-areas) self._seg_ids, self._seg_areas = segment_ids[sorted_idxs], areas[sorted_idxs] self._seg_ids = self._seg_ids.tolist() for sid, area in zip(self._seg_ids, self._seg_areas): if sid in self._sinfo: self._sinfo[sid]["area"] = float(area) def non_empty_mask(self): """ Returns: (H, W) array, a mask for all pixels that have a prediction """ empty_ids = [] for id in self._seg_ids: if id not in self._sinfo: empty_ids.append(id) if len(empty_ids) == 0: return np.zeros(self._seg.shape, dtype=np.uint8) assert ( len(empty_ids) == 1 ), ">1 ids corresponds to no labels. This is currently not supported" return (self._seg != empty_ids[0]).numpy().astype(np.bool) def semantic_masks(self): for sid in self._seg_ids: sinfo = self._sinfo.get(sid) if sinfo is None or sinfo["isthing"]: # Some pixels (e.g. id 0 in PanopticFPN) have no instance or semantic predictions. continue yield (self._seg == sid).numpy().astype(np.bool), sinfo def instance_masks(self): for sid in self._seg_ids: sinfo = self._sinfo.get(sid) if sinfo is None or not sinfo["isthing"]: continue mask = (self._seg == sid).numpy().astype(np.bool) if mask.sum() > 0: yield mask, sinfo def _create_text_labels(classes, scores, class_names, is_crowd=None): """ Args: classes (list[int] or None): scores (list[float] or None): class_names (list[str] or None): is_crowd (list[bool] or None): Returns: list[str] or None """ labels = None if classes is not None: if class_names is not None and len(class_names) > 0: labels = [class_names[i] for i in classes] else: labels = [str(i) for i in classes] if scores is not None: if labels is None: labels = ["{:.0f}%".format(s * 100) for s in scores] else: labels = ["{} {:.0f}%".format(l, s * 100) for l, s in zip(labels, scores)] if labels is not None and is_crowd is not None: labels = [l + ("|crowd" if crowd else "") for l, crowd in zip(labels, is_crowd)] return labels class VisImage: def __init__(self, img, scale=1.0): """ Args: img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255]. scale (float): scale the input image """ self.img = img self.scale = scale self.width, self.height = img.shape[1], img.shape[0] self._setup_figure(img) def _setup_figure(self, img): """ Args: Same as in :meth:`__init__()`. Returns: fig (matplotlib.pyplot.figure): top level container for all the image plot elements. ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system. """ fig = mplfigure.Figure(frameon=False) self.dpi = fig.get_dpi() # add a small 1e-2 to avoid precision lost due to matplotlib's truncation # (https://github.com/matplotlib/matplotlib/issues/15363) fig.set_size_inches( (self.width * self.scale + 1e-2) / self.dpi, (self.height * self.scale + 1e-2) / self.dpi, ) self.canvas = FigureCanvasAgg(fig) # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig) ax = fig.add_axes([0.0, 0.0, 1.0, 1.0]) ax.axis("off") self.fig = fig self.ax = ax self.reset_image(img) def reset_image(self, img): """ Args: img: same as in __init__ """ img = img.astype("uint8") self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest") def save(self, filepath): """ Args: filepath (str): a string that contains the absolute path, including the file name, where the visualized image will be saved. """ self.fig.savefig(filepath) def get_image(self): """ Returns: ndarray: the visualized image of shape (H, W, 3) (RGB) in uint8 type. The shape is scaled w.r.t the input image using the given `scale` argument. """ canvas = self.canvas s, (width, height) = canvas.print_to_buffer() # buf = io.BytesIO() # works for cairo backend # canvas.print_rgba(buf) # width, height = self.width, self.height # s = buf.getvalue() buffer = np.frombuffer(s, dtype="uint8") img_rgba = buffer.reshape(height, width, 4) rgb, alpha = np.split(img_rgba, [3], axis=2) return rgb.astype("uint8") class Visualizer: """ Visualizer that draws data about detection/segmentation on images. It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}` that draw primitive objects to images, as well as high-level wrappers like `draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}` that draw composite data in some pre-defined style. Note that the exact visualization style for the high-level wrappers are subject to change. Style such as color, opacity, label contents, visibility of labels, or even the visibility of objects themselves (e.g. when the object is too small) may change according to different heuristics, as long as the results still look visually reasonable. To obtain a consistent style, you can implement custom drawing functions with the abovementioned primitive methods instead. If you need more customized visualization styles, you can process the data yourself following their format documented in tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not intend to satisfy everyone's preference on drawing styles. This visualizer focuses on high rendering quality rather than performance. It is not designed to be used for real-time applications. """ # TODO implement a fast, rasterized version using OpenCV def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE): """ Args: img_rgb: a numpy array of shape (H, W, C), where H and W correspond to the height and width of the image respectively. C is the number of color channels. The image is required to be in RGB format since that is a requirement of the Matplotlib library. The image is also expected to be in the range [0, 255]. metadata (Metadata): dataset metadata (e.g. class names and colors) instance_mode (ColorMode): defines one of the pre-defined style for drawing instances on an image. """ self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8) if metadata is None: metadata = MetadataCatalog.get("__nonexist__") self.metadata = metadata self.output = VisImage(self.img, scale=scale) self.cpu_device = torch.device("cpu") # too small texts are useless, therefore clamp to 9 self._default_font_size = max( np.sqrt(self.output.height * self.output.width) // 90, 10 // scale ) self._default_font_size = 18 self._instance_mode = instance_mode self.keypoint_threshold = _KEYPOINT_THRESHOLD def draw_instance_predictions(self, predictions): """ Draw instance-level prediction results on an image. Args: predictions (Instances): the output of an instance detection/segmentation model. Following fields will be used to draw: "pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle"). Returns: output (VisImage): image object with visualizations. """ boxes = predictions.pred_boxes if predictions.has("pred_boxes") else None scores = predictions.scores if predictions.has("scores") else None classes = predictions.pred_classes.tolist() if predictions.has("pred_classes") else None labels = _create_text_labels(classes, scores, self.metadata.get("thing_classes", None)) keypoints = predictions.pred_keypoints if predictions.has("pred_keypoints") else None keep = (scores > 0.8).cpu() boxes = boxes[keep] scores = scores[keep] classes = np.array(classes) classes = classes[np.array(keep)] labels = np.array(labels) labels = labels[np.array(keep)] if predictions.has("pred_masks"): masks = np.asarray(predictions.pred_masks) masks = masks[np.array(keep)] masks = [GenericMask(x, self.output.height, self.output.width) for x in masks] else: masks = None if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"): # if self.metadata.get("thing_colors"): colors = [ self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in classes ] alpha = 0.4 else: colors = None alpha = 0.4 if self._instance_mode == ColorMode.IMAGE_BW: self.output.reset_image( self._create_grayscale_image( (predictions.pred_masks.any(dim=0) > 0).numpy() if predictions.has("pred_masks") else None ) ) alpha = 0.3 self.overlay_instances( masks=masks, boxes=boxes, labels=labels, keypoints=keypoints, assigned_colors=colors, alpha=alpha, ) return self.output def draw_sem_seg(self, sem_seg, area_threshold=None, alpha=0.7): """ Draw semantic segmentation predictions/labels. Args: sem_seg (Tensor or ndarray): the segmentation of shape (H, W). Each value is the integer label of the pixel. area_threshold (int): segments with less than `area_threshold` are not drawn. alpha (float): the larger it is, the more opaque the segmentations are. Returns: output (VisImage): image object with visualizations. """ if isinstance(sem_seg, torch.Tensor): sem_seg = sem_seg.numpy() labels, areas = np.unique(sem_seg, return_counts=True) sorted_idxs = np.argsort(-areas).tolist() labels = labels[sorted_idxs] for label in filter(lambda l: l < len(self.metadata.stuff_classes), labels): try: mask_color = [x / 255 for x in self.metadata.stuff_colors[label]] except (AttributeError, IndexError): mask_color = None binary_mask = (sem_seg == label).astype(np.uint8) text = self.metadata.stuff_classes[label] self.draw_binary_mask( binary_mask, color=mask_color, edge_color=_OFF_WHITE, text=text, alpha=alpha, area_threshold=area_threshold, ) return self.output def draw_panoptic_seg(self, panoptic_seg, segments_info, area_threshold=None, alpha=0.7): """ Draw panoptic prediction annotations or results. Args: panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. segments_info (list[dict] or None): Describe each segment in `panoptic_seg`. If it is a ``list[dict]``, each dict contains keys "id", "category_id". If None, category id of each pixel is computed by ``pixel // metadata.label_divisor``. area_threshold (int): stuff segments with less than `area_threshold` are not drawn. Returns: output (VisImage): image object with visualizations. """ pred = _PanopticPrediction(panoptic_seg, segments_info, self.metadata) if self._instance_mode == ColorMode.IMAGE_BW: self.output.reset_image(self._create_grayscale_image(pred.non_empty_mask())) # draw mask for all semantic segments first i.e. "stuff" for mask, sinfo in pred.semantic_masks(): category_idx = sinfo["category_id"] try: mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]] except AttributeError: mask_color = None text = self.metadata.stuff_classes[category_idx].replace('-other','').replace('-merged','') self.draw_binary_mask( mask, color=mask_color, edge_color=_OFF_WHITE, text=text, alpha=alpha, area_threshold=area_threshold, ) # draw mask for all instances second all_instances = list(pred.instance_masks()) if len(all_instances) == 0: return self.output masks, sinfo = list(zip(*all_instances)) category_ids = [x["category_id"] for x in sinfo] try: scores = [x["score"] for x in sinfo] except KeyError: scores = None class_names = [name.replace('-other','').replace('-merged','') for name in self.metadata.thing_classes] labels = _create_text_labels( category_ids, scores, class_names, [x.get("iscrowd", 0) for x in sinfo] ) try: colors = [ self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in category_ids ] except AttributeError: colors = None self.overlay_instances(masks=masks, labels=labels, assigned_colors=colors, alpha=alpha) return self.output draw_panoptic_seg_predictions = draw_panoptic_seg # backward compatibility def draw_dataset_dict(self, dic): """ Draw annotations/segmentaions in Detectron2 Dataset format. Args: dic (dict): annotation/segmentation data of one image, in Detectron2 Dataset format. Returns: output (VisImage): image object with visualizations. """ annos = dic.get("annotations", None) if annos: if "segmentation" in annos[0]: masks = [x["segmentation"] for x in annos] else: masks = None if "keypoints" in annos[0]: keypts = [x["keypoints"] for x in annos] keypts = np.array(keypts).reshape(len(annos), -1, 3) else: keypts = None boxes = [ BoxMode.convert(x["bbox"], x["bbox_mode"], BoxMode.XYXY_ABS) if len(x["bbox"]) == 4 else x["bbox"] for x in annos ] colors = None category_ids = [x["category_id"] for x in annos] if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"): colors = [ self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in category_ids ] names = self.metadata.get("thing_classes", None) labels = _create_text_labels( category_ids, scores=None, class_names=names, is_crowd=[x.get("iscrowd", 0) for x in annos], ) self.overlay_instances( labels=labels, boxes=boxes, masks=masks, keypoints=keypts, assigned_colors=colors ) sem_seg = dic.get("sem_seg", None) if sem_seg is None and "sem_seg_file_name" in dic: with PathManager.open(dic["sem_seg_file_name"], "rb") as f: sem_seg = Image.open(f) sem_seg = np.asarray(sem_seg, dtype="uint8") if sem_seg is not None: self.draw_sem_seg(sem_seg, area_threshold=0, alpha=0.4) pan_seg = dic.get("pan_seg", None) if pan_seg is None and "pan_seg_file_name" in dic: with PathManager.open(dic["pan_seg_file_name"], "rb") as f: pan_seg = Image.open(f) pan_seg = np.asarray(pan_seg) from panopticapi.utils import rgb2id pan_seg = rgb2id(pan_seg) if pan_seg is not None: segments_info = dic["segments_info"] pan_seg = torch.tensor(pan_seg) self.draw_panoptic_seg(pan_seg, segments_info, area_threshold=0, alpha=0.7) return self.output def overlay_instances( self, *, boxes=None, labels=None, masks=None, keypoints=None, assigned_colors=None, alpha=0.5, ): """ Args: boxes (Boxes, RotatedBoxes or ndarray): either a :class:`Boxes`, or an Nx4 numpy array of XYXY_ABS format for the N objects in a single image, or a :class:`RotatedBoxes`, or an Nx5 numpy array of (x_center, y_center, width, height, angle_degrees) format for the N objects in a single image, labels (list[str]): the text to be displayed for each instance. masks (masks-like object): Supported types are: * :class:`detectron2.structures.PolygonMasks`, :class:`detectron2.structures.BitMasks`. * list[list[ndarray]]: contains the segmentation masks for all objects in one image. The first level of the list corresponds to individual instances. The second level to all the polygon that compose the instance, and the third level to the polygon coordinates. The third level should have the format of [x0, y0, x1, y1, ..., xn, yn] (n >= 3). * list[ndarray]: each ndarray is a binary mask of shape (H, W). * list[dict]: each dict is a COCO-style RLE. keypoints (Keypoint or array like): an array-like object of shape (N, K, 3), where the N is the number of instances and K is the number of keypoints. The last dimension corresponds to (x, y, visibility or score). assigned_colors (list[matplotlib.colors]): a list of colors, where each color corresponds to each mask or box in the image. Refer to 'matplotlib.colors' for full list of formats that the colors are accepted in. Returns: output (VisImage): image object with visualizations. """ num_instances = 0 if boxes is not None: boxes = self._convert_boxes(boxes) num_instances = len(boxes) if masks is not None: masks = self._convert_masks(masks) if num_instances: assert len(masks) == num_instances else: num_instances = len(masks) if keypoints is not None: if num_instances: assert len(keypoints) == num_instances else: num_instances = len(keypoints) keypoints = self._convert_keypoints(keypoints) if labels is not None: assert len(labels) == num_instances if assigned_colors is None: assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)] if num_instances == 0: return self.output if boxes is not None and boxes.shape[1] == 5: return self.overlay_rotated_instances( boxes=boxes, labels=labels, assigned_colors=assigned_colors ) # Display in largest to smallest order to reduce occlusion. areas = None if boxes is not None: areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1) elif masks is not None: areas = np.asarray([x.area() for x in masks]) if areas is not None: sorted_idxs = np.argsort(-areas).tolist() # Re-order overlapped instances in descending order. boxes = boxes[sorted_idxs] if boxes is not None else None labels = [labels[k] for k in sorted_idxs] if labels is not None else None masks = [masks[idx] for idx in sorted_idxs] if masks is not None else None assigned_colors = [assigned_colors[idx] for idx in sorted_idxs] keypoints = keypoints[sorted_idxs] if keypoints is not None else None for i in range(num_instances): color = assigned_colors[i] if boxes is not None: self.draw_box(boxes[i], edge_color=color) if masks is not None: for segment in masks[i].polygons: self.draw_polygon(segment.reshape(-1, 2), color, alpha=alpha) if labels is not None: # first get a box if boxes is not None: x0, y0, x1, y1 = boxes[i] text_pos = (x0, y0) # if drawing boxes, put text on the box corner. horiz_align = "left" elif masks is not None: # skip small mask without polygon if len(masks[i].polygons) == 0: continue x0, y0, x1, y1 = masks[i].bbox() # draw text in the center (defined by median) when box is not drawn # median is less sensitive to outliers. text_pos = np.median(masks[i].mask.nonzero(), axis=1)[::-1] horiz_align = "center" else: continue # drawing the box confidence for keypoints isn't very useful. # for small objects, draw text at the side to avoid occlusion instance_area = (y1 - y0) * (x1 - x0) if ( instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale or y1 - y0 < 40 * self.output.scale ): if y1 >= self.output.height - 5: text_pos = (x1, y0) else: text_pos = (x0, y1) height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width) lighter_color = self._change_color_brightness(color, brightness_factor=0.7) font_size = ( np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5 * self._default_font_size ) self.draw_text( labels[i], text_pos, color=lighter_color, horizontal_alignment=horiz_align, font_size=font_size, ) # draw keypoints if keypoints is not None: for keypoints_per_instance in keypoints: self.draw_and_connect_keypoints(keypoints_per_instance) return self.output def overlay_rotated_instances(self, boxes=None, labels=None, assigned_colors=None): """ Args: boxes (ndarray): an Nx5 numpy array of (x_center, y_center, width, height, angle_degrees) format for the N objects in a single image. labels (list[str]): the text to be displayed for each instance. assigned_colors (list[matplotlib.colors]): a list of colors, where each color corresponds to each mask or box in the image. Refer to 'matplotlib.colors' for full list of formats that the colors are accepted in. Returns: output (VisImage): image object with visualizations. """ num_instances = len(boxes) if assigned_colors is None: assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)] if num_instances == 0: return self.output # Display in largest to smallest order to reduce occlusion. if boxes is not None: areas = boxes[:, 2] * boxes[:, 3] sorted_idxs = np.argsort(-areas).tolist() # Re-order overlapped instances in descending order. boxes = boxes[sorted_idxs] labels = [labels[k] for k in sorted_idxs] if labels is not None else None colors = [assigned_colors[idx] for idx in sorted_idxs] for i in range(num_instances): self.draw_rotated_box_with_label( boxes[i], edge_color=colors[i], label=labels[i] if labels is not None else None ) return self.output def draw_and_connect_keypoints(self, keypoints): """ Draws keypoints of an instance and follows the rules for keypoint connections to draw lines between appropriate keypoints. This follows color heuristics for line color. Args: keypoints (Tensor): a tensor of shape (K, 3), where K is the number of keypoints and the last dimension corresponds to (x, y, probability). Returns: output (VisImage): image object with visualizations. """ visible = {} keypoint_names = self.metadata.get("keypoint_names") for idx, keypoint in enumerate(keypoints): # draw keypoint x, y, prob = keypoint if prob > self.keypoint_threshold: self.draw_circle((x, y), color=_RED) if keypoint_names: keypoint_name = keypoint_names[idx] visible[keypoint_name] = (x, y) if self.metadata.get("keypoint_connection_rules"): for kp0, kp1, color in self.metadata.keypoint_connection_rules: if kp0 in visible and kp1 in visible: x0, y0 = visible[kp0] x1, y1 = visible[kp1] color = tuple(x / 255.0 for x in color) self.draw_line([x0, x1], [y0, y1], color=color) # draw lines from nose to mid-shoulder and mid-shoulder to mid-hip # Note that this strategy is specific to person keypoints. # For other keypoints, it should just do nothing try: ls_x, ls_y = visible["left_shoulder"] rs_x, rs_y = visible["right_shoulder"] mid_shoulder_x, mid_shoulder_y = (ls_x + rs_x) / 2, (ls_y + rs_y) / 2 except KeyError: pass else: # draw line from nose to mid-shoulder nose_x, nose_y = visible.get("nose", (None, None)) if nose_x is not None: self.draw_line([nose_x, mid_shoulder_x], [nose_y, mid_shoulder_y], color=_RED) try: # draw line from mid-shoulder to mid-hip lh_x, lh_y = visible["left_hip"] rh_x, rh_y = visible["right_hip"] except KeyError: pass else: mid_hip_x, mid_hip_y = (lh_x + rh_x) / 2, (lh_y + rh_y) / 2 self.draw_line([mid_hip_x, mid_shoulder_x], [mid_hip_y, mid_shoulder_y], color=_RED) return self.output """ Primitive drawing functions: """ def draw_text( self, text, position, *, font_size=None, color="g", horizontal_alignment="center", rotation=0, ): """ Args: text (str): class label position (tuple): a tuple of the x and y coordinates to place text on image. font_size (int, optional): font of the text. If not provided, a font size proportional to the image width is calculated and used. color: color of the text. Refer to `matplotlib.colors` for full list of formats that are accepted. horizontal_alignment (str): see `matplotlib.text.Text` rotation: rotation angle in degrees CCW Returns: output (VisImage): image object with text drawn. """ if not font_size: font_size = self._default_font_size # since the text background is dark, we don't want the text to be dark color = np.maximum(list(mplc.to_rgb(color)), 0.2) color[np.argmax(color)] = max(0.8, np.max(color)) x, y = position self.output.ax.text( x, y, text, size=font_size * self.output.scale, family="sans-serif", bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"}, verticalalignment="top", horizontalalignment=horizontal_alignment, color=color, zorder=10, rotation=rotation, ) return self.output def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"): """ Args: box_coord (tuple): a tuple containing x0, y0, x1, y1 coordinates, where x0 and y0 are the coordinates of the image's top left corner. x1 and y1 are the coordinates of the image's bottom right corner. alpha (float): blending efficient. Smaller values lead to more transparent masks. edge_color: color of the outline of the box. Refer to `matplotlib.colors` for full list of formats that are accepted. line_style (string): the string to use to create the outline of the boxes. Returns: output (VisImage): image object with box drawn. """ x0, y0, x1, y1 = box_coord width = x1 - x0 height = y1 - y0 linewidth = max(self._default_font_size / 4, 1) self.output.ax.add_patch( mpl.patches.Rectangle( (x0, y0), width, height, fill=False, edgecolor=edge_color, linewidth=linewidth * self.output.scale, alpha=alpha, linestyle=line_style, ) ) return self.output def draw_rotated_box_with_label( self, rotated_box, alpha=0.5, edge_color="g", line_style="-", label=None ): """ Draw a rotated box with label on its top-left corner. Args: rotated_box (tuple): a tuple containing (cnt_x, cnt_y, w, h, angle), where cnt_x and cnt_y are the center coordinates of the box. w and h are the width and height of the box. angle represents how many degrees the box is rotated CCW with regard to the 0-degree box. alpha (float): blending efficient. Smaller values lead to more transparent masks. edge_color: color of the outline of the box. Refer to `matplotlib.colors` for full list of formats that are accepted. line_style (string): the string to use to create the outline of the boxes. label (string): label for rotated box. It will not be rendered when set to None. Returns: output (VisImage): image object with box drawn. """ cnt_x, cnt_y, w, h, angle = rotated_box area = w * h # use thinner lines when the box is small linewidth = self._default_font_size / ( 6 if area < _SMALL_OBJECT_AREA_THRESH * self.output.scale else 3 ) theta = angle * math.pi / 180.0 c = math.cos(theta) s = math.sin(theta) rect = [(-w / 2, h / 2), (-w / 2, -h / 2), (w / 2, -h / 2), (w / 2, h / 2)] # x: left->right ; y: top->down rotated_rect = [(s * yy + c * xx + cnt_x, c * yy - s * xx + cnt_y) for (xx, yy) in rect] for k in range(4): j = (k + 1) % 4 self.draw_line( [rotated_rect[k][0], rotated_rect[j][0]], [rotated_rect[k][1], rotated_rect[j][1]], color=edge_color, linestyle="--" if k == 1 else line_style, linewidth=linewidth, ) if label is not None: text_pos = rotated_rect[1] # topleft corner height_ratio = h / np.sqrt(self.output.height * self.output.width) label_color = self._change_color_brightness(edge_color, brightness_factor=0.7) font_size = ( np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5 * self._default_font_size ) self.draw_text(label, text_pos, color=label_color, font_size=font_size, rotation=angle) return self.output def draw_circle(self, circle_coord, color, radius=3): """ Args: circle_coord (list(int) or tuple(int)): contains the x and y coordinates of the center of the circle. color: color of the polygon. Refer to `matplotlib.colors` for a full list of formats that are accepted. radius (int): radius of the circle. Returns: output (VisImage): image object with box drawn. """ x, y = circle_coord self.output.ax.add_patch( mpl.patches.Circle(circle_coord, radius=radius, fill=True, color=color) ) return self.output def draw_line(self, x_data, y_data, color, linestyle="-", linewidth=None): """ Args: x_data (list[int]): a list containing x values of all the points being drawn. Length of list should match the length of y_data. y_data (list[int]): a list containing y values of all the points being drawn. Length of list should match the length of x_data. color: color of the line. Refer to `matplotlib.colors` for a full list of formats that are accepted. linestyle: style of the line. Refer to `matplotlib.lines.Line2D` for a full list of formats that are accepted. linewidth (float or None): width of the line. When it's None, a default value will be computed and used. Returns: output (VisImage): image object with line drawn. """ if linewidth is None: linewidth = self._default_font_size / 3 linewidth = max(linewidth, 1) self.output.ax.add_line( mpl.lines.Line2D( x_data, y_data, linewidth=linewidth * self.output.scale, color=color, linestyle=linestyle, ) ) return self.output def draw_binary_mask( self, binary_mask, color=None, *, edge_color=None, text=None, alpha=0.7, area_threshold=10 ): """ Args: binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and W is the image width. Each value in the array is either a 0 or 1 value of uint8 type. color: color of the mask. Refer to `matplotlib.colors` for a full list of formats that are accepted. If None, will pick a random color. edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a full list of formats that are accepted. text (str): if None, will be drawn on the object alpha (float): blending efficient. Smaller values lead to more transparent masks. area_threshold (float): a connected component smaller than this area will not be shown. Returns: output (VisImage): image object with mask drawn. """ if color is None: color = random_color(rgb=True, maximum=1) color = mplc.to_rgb(color) has_valid_segment = False binary_mask = binary_mask.astype("uint8") # opencv needs uint8 mask = GenericMask(binary_mask, self.output.height, self.output.width) shape2d = (binary_mask.shape[0], binary_mask.shape[1]) if not mask.has_holes: # draw polygons for regular masks for segment in mask.polygons: area = mask_util.area(mask_util.frPyObjects([segment], shape2d[0], shape2d[1])) if area < (area_threshold or 0): continue has_valid_segment = True segment = segment.reshape(-1, 2) self.draw_polygon(segment, color=color, edge_color=edge_color, alpha=alpha) else: # TODO: Use Path/PathPatch to draw vector graphics: # https://stackoverflow.com/questions/8919719/how-to-plot-a-complex-polygon rgba = np.zeros(shape2d + (4,), dtype="float32") rgba[:, :, :3] = color rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha has_valid_segment = True self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0)) if text is not None and has_valid_segment: lighter_color = self._change_color_brightness(color, brightness_factor=0.7) self._draw_text_in_mask(binary_mask, text, lighter_color) return self.output def draw_soft_mask(self, soft_mask, color=None, *, text=None, alpha=0.5): """ Args: soft_mask (ndarray): float array of shape (H, W), each value in [0, 1]. color: color of the mask. Refer to `matplotlib.colors` for a full list of formats that are accepted. If None, will pick a random color. text (str): if None, will be drawn on the object alpha (float): blending efficient. Smaller values lead to more transparent masks. Returns: output (VisImage): image object with mask drawn. """ if color is None: color = random_color(rgb=True, maximum=1) color = mplc.to_rgb(color) shape2d = (soft_mask.shape[0], soft_mask.shape[1]) rgba = np.zeros(shape2d + (4,), dtype="float32") rgba[:, :, :3] = color rgba[:, :, 3] = soft_mask * alpha self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0)) if text is not None: lighter_color = self._change_color_brightness(color, brightness_factor=0.7) binary_mask = (soft_mask > 0.5).astype("uint8") self._draw_text_in_mask(binary_mask, text, lighter_color) return self.output def draw_polygon(self, segment, color, edge_color=None, alpha=0.5): """ Args: segment: numpy array of shape Nx2, containing all the points in the polygon. color: color of the polygon. Refer to `matplotlib.colors` for a full list of formats that are accepted. edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a full list of formats that are accepted. If not provided, a darker shade of the polygon color will be used instead. alpha (float): blending efficient. Smaller values lead to more transparent masks. Returns: output (VisImage): image object with polygon drawn. """ if edge_color is None: # make edge color darker than the polygon color if alpha > 0.8: edge_color = self._change_color_brightness(color, brightness_factor=-0.7) else: edge_color = color edge_color = mplc.to_rgb(edge_color) + (1,) polygon = mpl.patches.Polygon( segment, fill=True, facecolor=mplc.to_rgb(color) + (alpha,), edgecolor=edge_color, linewidth=max(self._default_font_size // 15 * self.output.scale, 1), ) self.output.ax.add_patch(polygon) return self.output """ Internal methods: """ def _jitter(self, color): """ Randomly modifies given color to produce a slightly different color than the color given. Args: color (tuple[double]): a tuple of 3 elements, containing the RGB values of the color picked. The values in the list are in the [0.0, 1.0] range. Returns: jittered_color (tuple[double]): a tuple of 3 elements, containing the RGB values of the color after being jittered. The values in the list are in the [0.0, 1.0] range. """ color = mplc.to_rgb(color) # np.random.seed(0) vec = np.random.rand(3) # better to do it in another color space vec = vec / np.linalg.norm(vec) * 0.5 res = np.clip(vec + color, 0, 1) return tuple(res) def _create_grayscale_image(self, mask=None): """ Create a grayscale version of the original image. The colors in masked area, if given, will be kept. """ img_bw = self.img.astype("f4").mean(axis=2) img_bw = np.stack([img_bw] * 3, axis=2) if mask is not None: img_bw[mask] = self.img[mask] return img_bw def _change_color_brightness(self, color, brightness_factor): """ Depending on the brightness_factor, gives a lighter or darker color i.e. a color with less or more saturation than the original color. Args: color: color of the polygon. Refer to `matplotlib.colors` for a full list of formats that are accepted. brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of 0 will correspond to no change, a factor in [-1.0, 0) range will result in a darker color and a factor in (0, 1.0] range will result in a lighter color. Returns: modified_color (tuple[double]): a tuple containing the RGB values of the modified color. Each value in the tuple is in the [0.0, 1.0] range. """ assert brightness_factor >= -1.0 and brightness_factor <= 1.0 color = mplc.to_rgb(color) polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color)) modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1]) modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2]) return modified_color def _convert_boxes(self, boxes): """ Convert different format of boxes to an NxB array, where B = 4 or 5 is the box dimension. """ if isinstance(boxes, Boxes) or isinstance(boxes, RotatedBoxes): return boxes.tensor.detach().numpy() else: return np.asarray(boxes) def _convert_masks(self, masks_or_polygons): """ Convert different format of masks or polygons to a tuple of masks and polygons. Returns: list[GenericMask]: """ m = masks_or_polygons if isinstance(m, PolygonMasks): m = m.polygons if isinstance(m, BitMasks): m = m.tensor.numpy() if isinstance(m, torch.Tensor): m = m.numpy() ret = [] for x in m: if isinstance(x, GenericMask): ret.append(x) else: ret.append(GenericMask(x, self.output.height, self.output.width)) return ret def _draw_text_in_mask(self, binary_mask, text, color): """ Find proper places to draw text given a binary mask. """ # TODO sometimes drawn on wrong objects. the heuristics here can improve. _num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(binary_mask, 8) if stats[1:, -1].size == 0: return largest_component_id = np.argmax(stats[1:, -1]) + 1 # draw text on the largest component, as well as other very large components. for cid in range(1, _num_cc): if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH: # median is more stable than centroid # center = centroids[largest_component_id] center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1] self.draw_text(text, center, color=color) def _convert_keypoints(self, keypoints): if isinstance(keypoints, Keypoints): keypoints = keypoints.tensor keypoints = np.asarray(keypoints) return keypoints def get_output(self): """ Returns: output (VisImage): the image output containing the visualizations added to the image. """ return self.output
Segment-Everything-Everywhere-All-At-Once-main
demo_code/utils/visualizer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from pathlib import Path import re from typing import List, Tuple from setuptools import setup, find_packages NAME = "dinov2" DESCRIPTION = "PyTorch code and models for the DINOv2 self-supervised learning method." URL = "https://github.com/facebookresearch/dinov2" AUTHOR = "FAIR" REQUIRES_PYTHON = ">=3.9.0" HERE = Path(__file__).parent try: with open(HERE / "README.md", encoding="utf-8") as f: long_description = "\n" + f.read() except FileNotFoundError: long_description = DESCRIPTION def get_requirements(path: str = HERE / "requirements.txt") -> Tuple[List[str], List[str]]: requirements = [] extra_indices = [] with open(path) as f: for line in f.readlines(): line = line.rstrip("\r\n") if line.startswith("--extra-index-url "): extra_indices.append(line[18:]) continue requirements.append(line) return requirements, extra_indices def get_package_version() -> str: with open(HERE / "dinov2/__init__.py") as f: result = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", f.read(), re.M) if result: return result.group(1) raise RuntimeError("Can't get package version") requirements, extra_indices = get_requirements() version = get_package_version() dev_requirements, _ = get_requirements(HERE / "requirements-dev.txt") extras_requirements, _ = get_requirements(HERE / "requirements-extras.txt") setup( name=NAME, version=version, description=DESCRIPTION, long_description=long_description, long_description_content_type="text/markdown", author=AUTHOR, python_requires=REQUIRES_PYTHON, url=URL, packages=find_packages(), package_data={ "": ["*.yaml"], }, install_requires=requirements, extras_require={ "dev": dev_requirements, "extras": extras_requirements, }, dependency_links=extra_indices, install_package_data=True, license="Apache", license_files=("LICENSE",), classifiers=[ # Trove classifiers: https://github.com/pypa/trove-classifiers/blob/main/src/trove_classifiers/__init__.py "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.9", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Software Development :: Libraries :: Python Modules", ], )
dinov2-main
setup.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import torch.nn as nn dependencies = ["torch"] _DINOV2_BASE_URL = "https://dl.fbaipublicfiles.com/dinov2" def _make_dinov2_model_name(arch_name: str, patch_size: int) -> str: compact_arch_name = arch_name.replace("_", "")[:4] return f"dinov2_{compact_arch_name}{patch_size}" def _make_dinov2_model( *, arch_name: str = "vit_large", img_size: int = 518, patch_size: int = 14, init_values: float = 1.0, ffn_layer: str = "mlp", block_chunks: int = 0, pretrained: bool = True, **kwargs, ): from dinov2.models import vision_transformer as vits model_name = _make_dinov2_model_name(arch_name, patch_size) vit_kwargs = dict( img_size=img_size, patch_size=patch_size, init_values=init_values, ffn_layer=ffn_layer, block_chunks=block_chunks, ) vit_kwargs.update(**kwargs) model = vits.__dict__[arch_name](**vit_kwargs) if pretrained: url = _DINOV2_BASE_URL + f"/{model_name}/{model_name}_pretrain.pth" state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu") model.load_state_dict(state_dict, strict=False) return model def dinov2_vits14(*, pretrained: bool = True, **kwargs): """ DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset. """ return _make_dinov2_model(arch_name="vit_small", pretrained=pretrained, **kwargs) def dinov2_vitb14(*, pretrained: bool = True, **kwargs): """ DINOv2 ViT-B/14 model pretrained on the LVD-142M dataset. """ return _make_dinov2_model(arch_name="vit_base", pretrained=pretrained, **kwargs) def dinov2_vitl14(*, pretrained: bool = True, **kwargs): """ DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset. """ return _make_dinov2_model(arch_name="vit_large", pretrained=pretrained, **kwargs) def dinov2_vitg14(*, pretrained: bool = True, **kwargs): """ DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset. """ return _make_dinov2_model(arch_name="vit_giant2", ffn_layer="swiglufused", pretrained=pretrained, **kwargs) def _make_dinov2_linear_head( *, model_name: str = "dinov2_vitl14", embed_dim: int = 1024, layers: int = 4, pretrained: bool = True, **kwargs, ): assert layers in (1, 4), f"Unsupported number of layers: {layers}" linear_head = nn.Linear((1 + layers) * embed_dim, 1_000) if pretrained: layers_str = str(layers) if layers == 4 else "" url = _DINOV2_BASE_URL + f"/{model_name}/{model_name}_linear{layers_str}_head.pth" state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu") linear_head.load_state_dict(state_dict, strict=False) return linear_head class _LinearClassifierWrapper(nn.Module): def __init__(self, *, backbone: nn.Module, linear_head: nn.Module, layers: int = 4): super().__init__() self.backbone = backbone self.linear_head = linear_head self.layers = layers def forward(self, x): if self.layers == 1: x = self.backbone.forward_features(x) cls_token = x["x_norm_clstoken"] patch_tokens = x["x_norm_patchtokens"] # fmt: off linear_input = torch.cat([ cls_token, patch_tokens.mean(dim=1), ], dim=1) # fmt: on elif self.layers == 4: x = self.backbone.get_intermediate_layers(x, n=4, return_class_token=True) # fmt: off linear_input = torch.cat([ x[0][1], x[1][1], x[2][1], x[3][1], x[3][0].mean(dim=1), ], dim=1) # fmt: on else: assert False, f"Unsupported number of layers: {self.layers}" return self.linear_head(linear_input) def _make_dinov2_linear_classifier( *, arch_name: str = "vit_large", layers: int = 4, pretrained: bool = True, **kwargs, ): backbone = _make_dinov2_model(arch_name=arch_name, pretrained=pretrained, **kwargs) embed_dim = backbone.embed_dim patch_size = backbone.patch_size model_name = _make_dinov2_model_name(arch_name, patch_size) linear_head = _make_dinov2_linear_head( model_name=model_name, embed_dim=embed_dim, layers=layers, pretrained=pretrained ) return _LinearClassifierWrapper(backbone=backbone, linear_head=linear_head, layers=layers) def dinov2_vits14_lc(*, layers: int = 4, pretrained: bool = True, **kwargs): """ Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-S/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. """ return _make_dinov2_linear_classifier(arch_name="vit_small", layers=layers, pretrained=pretrained, **kwargs) def dinov2_vitb14_lc(*, layers: int = 4, pretrained: bool = True, **kwargs): """ Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-B/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. """ return _make_dinov2_linear_classifier(arch_name="vit_base", layers=layers, pretrained=pretrained, **kwargs) def dinov2_vitl14_lc(*, layers: int = 4, pretrained: bool = True, **kwargs): """ Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-L/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. """ return _make_dinov2_linear_classifier(arch_name="vit_large", layers=layers, pretrained=pretrained, **kwargs) def dinov2_vitg14_lc(*, layers: int = 4, pretrained: bool = True, **kwargs): """ Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-g/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k. """ return _make_dinov2_linear_classifier( arch_name="vit_giant2", layers=layers, ffn_layer="swiglufused", pretrained=pretrained, **kwargs )
dinov2-main
hubconf.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. __version__ = "0.0.1"
dinov2-main
dinov2/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py import logging import os import warnings from torch import Tensor from torch import nn logger = logging.getLogger("dinov2") XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None try: if XFORMERS_ENABLED: from xformers.ops import memory_efficient_attention, unbind XFORMERS_AVAILABLE = True warnings.warn("xFormers is available (Attention)") else: warnings.warn("xFormers is disabled (Attention)") raise ImportError except ImportError: XFORMERS_AVAILABLE = False warnings.warn("xFormers is not available (Attention)") class Attention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, attn_drop: float = 0.0, proj_drop: float = 0.0, ) -> None: super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x: Tensor) -> Tensor: B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class MemEffAttention(Attention): def forward(self, x: Tensor, attn_bias=None) -> Tensor: if not XFORMERS_AVAILABLE: if attn_bias is not None: raise AssertionError("xFormers is required for using nested tensors") return super().forward(x) B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) q, k, v = unbind(qkv, 2) x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) x = x.reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x
dinov2-main
dinov2/layers/attention.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from torch.nn.init import trunc_normal_ from torch.nn.utils import weight_norm class DINOHead(nn.Module): def __init__( self, in_dim, out_dim, use_bn=False, nlayers=3, hidden_dim=2048, bottleneck_dim=256, mlp_bias=True, ): super().__init__() nlayers = max(nlayers, 1) self.mlp = _build_mlp(nlayers, in_dim, bottleneck_dim, hidden_dim=hidden_dim, use_bn=use_bn, bias=mlp_bias) self.apply(self._init_weights) self.last_layer = weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False)) self.last_layer.weight_g.data.fill_(1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.mlp(x) eps = 1e-6 if x.dtype == torch.float16 else 1e-12 x = nn.functional.normalize(x, dim=-1, p=2, eps=eps) x = self.last_layer(x) return x def _build_mlp(nlayers, in_dim, bottleneck_dim, hidden_dim=None, use_bn=False, bias=True): if nlayers == 1: return nn.Linear(in_dim, bottleneck_dim, bias=bias) else: layers = [nn.Linear(in_dim, hidden_dim, bias=bias)] if use_bn: layers.append(nn.BatchNorm1d(hidden_dim)) layers.append(nn.GELU()) for _ in range(nlayers - 2): layers.append(nn.Linear(hidden_dim, hidden_dim, bias=bias)) if use_bn: layers.append(nn.BatchNorm1d(hidden_dim)) layers.append(nn.GELU()) layers.append(nn.Linear(hidden_dim, bottleneck_dim, bias=bias)) return nn.Sequential(*layers)
dinov2-main
dinov2/layers/dino_head.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import os from typing import Callable, Optional import warnings from torch import Tensor, nn import torch.nn.functional as F class SwiGLUFFN(nn.Module): def __init__( self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, act_layer: Callable[..., nn.Module] = None, drop: float = 0.0, bias: bool = True, ) -> None: super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias) self.w3 = nn.Linear(hidden_features, out_features, bias=bias) def forward(self, x: Tensor) -> Tensor: x12 = self.w12(x) x1, x2 = x12.chunk(2, dim=-1) hidden = F.silu(x1) * x2 return self.w3(hidden) XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None try: if XFORMERS_ENABLED: from xformers.ops import SwiGLU XFORMERS_AVAILABLE = True warnings.warn("xFormers is available (SwiGLU)") else: warnings.warn("xFormers is disabled (SwiGLU)") raise ImportError except ImportError: SwiGLU = SwiGLUFFN XFORMERS_AVAILABLE = False warnings.warn("xFormers is not available (SwiGLU)") class SwiGLUFFNFused(SwiGLU): def __init__( self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, act_layer: Callable[..., nn.Module] = None, drop: float = 0.0, bias: bool = True, ) -> None: out_features = out_features or in_features hidden_features = hidden_features or in_features hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 super().__init__( in_features=in_features, hidden_features=hidden_features, out_features=out_features, bias=bias, )
dinov2-main
dinov2/layers/swiglu_ffn.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .dino_head import DINOHead from .mlp import Mlp from .patch_embed import PatchEmbed from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused from .block import NestedTensorBlock from .attention import MemEffAttention
dinov2-main
dinov2/layers/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110 from typing import Union import torch from torch import Tensor from torch import nn class LayerScale(nn.Module): def __init__( self, dim: int, init_values: Union[float, Tensor] = 1e-5, inplace: bool = False, ) -> None: super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x: Tensor) -> Tensor: return x.mul_(self.gamma) if self.inplace else x * self.gamma
dinov2-main
dinov2/layers/layer_scale.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py from typing import Callable, Optional from torch import Tensor, nn class Mlp(nn.Module): def __init__( self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, act_layer: Callable[..., nn.Module] = nn.GELU, drop: float = 0.0, bias: bool = True, ) -> None: super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features, bias=bias) self.drop = nn.Dropout(drop) def forward(self, x: Tensor) -> Tensor: x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x
dinov2-main
dinov2/layers/mlp.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py from typing import Callable, Optional, Tuple, Union from torch import Tensor import torch.nn as nn def make_2tuple(x): if isinstance(x, tuple): assert len(x) == 2 return x assert isinstance(x, int) return (x, x) class PatchEmbed(nn.Module): """ 2D image to patch embedding: (B,C,H,W) -> (B,N,D) Args: img_size: Image size. patch_size: Patch token size. in_chans: Number of input image channels. embed_dim: Number of linear projection output channels. norm_layer: Normalization layer. """ def __init__( self, img_size: Union[int, Tuple[int, int]] = 224, patch_size: Union[int, Tuple[int, int]] = 16, in_chans: int = 3, embed_dim: int = 768, norm_layer: Optional[Callable] = None, flatten_embedding: bool = True, ) -> None: super().__init__() image_HW = make_2tuple(img_size) patch_HW = make_2tuple(patch_size) patch_grid_size = ( image_HW[0] // patch_HW[0], image_HW[1] // patch_HW[1], ) self.img_size = image_HW self.patch_size = patch_HW self.patches_resolution = patch_grid_size self.num_patches = patch_grid_size[0] * patch_grid_size[1] self.in_chans = in_chans self.embed_dim = embed_dim self.flatten_embedding = flatten_embedding self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x: Tensor) -> Tensor: _, _, H, W = x.shape patch_H, patch_W = self.patch_size assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}" assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}" x = self.proj(x) # B C H W H, W = x.size(2), x.size(3) x = x.flatten(2).transpose(1, 2) # B HW C x = self.norm(x) if not self.flatten_embedding: x = x.reshape(-1, H, W, self.embed_dim) # B H W C return x def flops(self) -> float: Ho, Wo = self.patches_resolution flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops
dinov2-main
dinov2/layers/patch_embed.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py import logging import os from typing import Callable, List, Any, Tuple, Dict import warnings import torch from torch import nn, Tensor from .attention import Attention, MemEffAttention from .drop_path import DropPath from .layer_scale import LayerScale from .mlp import Mlp logger = logging.getLogger("dinov2") XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None try: if XFORMERS_ENABLED: from xformers.ops import fmha, scaled_index_add, index_select_cat XFORMERS_AVAILABLE = True warnings.warn("xFormers is available (Block)") else: warnings.warn("xFormers is disabled (Block)") raise ImportError except ImportError: XFORMERS_AVAILABLE = False warnings.warn("xFormers is not available (Block)") class Block(nn.Module): def __init__( self, dim: int, num_heads: int, mlp_ratio: float = 4.0, qkv_bias: bool = False, proj_bias: bool = True, ffn_bias: bool = True, drop: float = 0.0, attn_drop: float = 0.0, init_values=None, drop_path: float = 0.0, act_layer: Callable[..., nn.Module] = nn.GELU, norm_layer: Callable[..., nn.Module] = nn.LayerNorm, attn_class: Callable[..., nn.Module] = Attention, ffn_layer: Callable[..., nn.Module] = Mlp, ) -> None: super().__init__() # print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}") self.norm1 = norm_layer(dim) self.attn = attn_class( dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, attn_drop=attn_drop, proj_drop=drop, ) self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = ffn_layer( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, bias=ffn_bias, ) self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.sample_drop_ratio = drop_path def forward(self, x: Tensor) -> Tensor: def attn_residual_func(x: Tensor) -> Tensor: return self.ls1(self.attn(self.norm1(x))) def ffn_residual_func(x: Tensor) -> Tensor: return self.ls2(self.mlp(self.norm2(x))) if self.training and self.sample_drop_ratio > 0.1: # the overhead is compensated only for a drop path rate larger than 0.1 x = drop_add_residual_stochastic_depth( x, residual_func=attn_residual_func, sample_drop_ratio=self.sample_drop_ratio, ) x = drop_add_residual_stochastic_depth( x, residual_func=ffn_residual_func, sample_drop_ratio=self.sample_drop_ratio, ) elif self.training and self.sample_drop_ratio > 0.0: x = x + self.drop_path1(attn_residual_func(x)) x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2 else: x = x + attn_residual_func(x) x = x + ffn_residual_func(x) return x def drop_add_residual_stochastic_depth( x: Tensor, residual_func: Callable[[Tensor], Tensor], sample_drop_ratio: float = 0.0, ) -> Tensor: # 1) extract subset using permutation b, n, d = x.shape sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) brange = (torch.randperm(b, device=x.device))[:sample_subset_size] x_subset = x[brange] # 2) apply residual_func to get residual residual = residual_func(x_subset) x_flat = x.flatten(1) residual = residual.flatten(1) residual_scale_factor = b / sample_subset_size # 3) add the residual x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor) return x_plus_residual.view_as(x) def get_branges_scales(x, sample_drop_ratio=0.0): b, n, d = x.shape sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) brange = (torch.randperm(b, device=x.device))[:sample_subset_size] residual_scale_factor = b / sample_subset_size return brange, residual_scale_factor def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None): if scaling_vector is None: x_flat = x.flatten(1) residual = residual.flatten(1) x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor) else: x_plus_residual = scaled_index_add( x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor ) return x_plus_residual attn_bias_cache: Dict[Tuple, Any] = {} def get_attn_bias_and_cat(x_list, branges=None): """ this will perform the index select, cat the tensors, and provide the attn_bias from cache """ batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list] all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list)) if all_shapes not in attn_bias_cache.keys(): seqlens = [] for b, x in zip(batch_sizes, x_list): for _ in range(b): seqlens.append(x.shape[1]) attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens) attn_bias._batch_sizes = batch_sizes attn_bias_cache[all_shapes] = attn_bias if branges is not None: cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1]) else: tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list) cat_tensors = torch.cat(tensors_bs1, dim=1) return attn_bias_cache[all_shapes], cat_tensors def drop_add_residual_stochastic_depth_list( x_list: List[Tensor], residual_func: Callable[[Tensor, Any], Tensor], sample_drop_ratio: float = 0.0, scaling_vector=None, ) -> Tensor: # 1) generate random set of indices for dropping samples in the batch branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list] branges = [s[0] for s in branges_scales] residual_scale_factors = [s[1] for s in branges_scales] # 2) get attention bias and index+concat the tensors attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges) # 3) apply residual_func to get residual, and split the result residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore outputs = [] for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors): outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x)) return outputs class NestedTensorBlock(Block): def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]: """ x_list contains a list of tensors to nest together and run """ assert isinstance(self.attn, MemEffAttention) if self.training and self.sample_drop_ratio > 0.0: def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor: return self.attn(self.norm1(x), attn_bias=attn_bias) def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor: return self.mlp(self.norm2(x)) x_list = drop_add_residual_stochastic_depth_list( x_list, residual_func=attn_residual_func, sample_drop_ratio=self.sample_drop_ratio, scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None, ) x_list = drop_add_residual_stochastic_depth_list( x_list, residual_func=ffn_residual_func, sample_drop_ratio=self.sample_drop_ratio, scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None, ) return x_list else: def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor: return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias)) def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor: return self.ls2(self.mlp(self.norm2(x))) attn_bias, x = get_attn_bias_and_cat(x_list) x = x + attn_residual_func(x, attn_bias=attn_bias) x = x + ffn_residual_func(x) return attn_bias.split(x) def forward(self, x_or_x_list): if isinstance(x_or_x_list, Tensor): return super().forward(x_or_x_list) elif isinstance(x_or_x_list, list): if not XFORMERS_AVAILABLE: raise AssertionError("xFormers is required for using nested tensors") return self.forward_nested(x_or_x_list) else: raise AssertionError
dinov2-main
dinov2/layers/block.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py from torch import nn def drop_path(x, drop_prob: float = 0.0, training: bool = False): if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0: random_tensor.div_(keep_prob) output = x * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training)
dinov2-main
dinov2/layers/drop_path.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn import logging logger = logging.getLogger("dinov2") try: from xformers.ops import cross_entropy def lossfunc(t, s, temp): s = s.float() t = t.float() if s.ndim == 2: return -cross_entropy(s.unsqueeze(0), t.unsqueeze(0), temp, bw_inplace=True).squeeze(0) elif s.ndim == 3: return -cross_entropy(s, t, temp, bw_inplace=True) except ImportError: def lossfunc(t, s, temp): return torch.sum(t * F.log_softmax(s / temp, dim=-1), dim=-1) class iBOTPatchLoss(nn.Module): def __init__(self, patch_out_dim, student_temp=0.1, center_momentum=0.9): super().__init__() self.student_temp = student_temp self.center_momentum = center_momentum self.register_buffer("center", torch.zeros(1, 1, patch_out_dim)) self.updated = True self.reduce_handle = None self.len_teacher_patch_tokens = None self.async_batch_center = None @torch.no_grad() def softmax_center_teacher(self, teacher_patch_tokens, teacher_temp): self.apply_center_update() # teacher centering and sharpening # # WARNING: # as self.center is a float32, everything gets casted to float32 afterwards # # teacher_patch_tokens = teacher_patch_tokens.float() # return F.softmax((teacher_patch_tokens.sub_(self.center.to(teacher_patch_tokens.dtype))).mul_(1 / teacher_temp), dim=-1) return F.softmax((teacher_patch_tokens - self.center) / teacher_temp, dim=-1) # this is experimental, keep everything in float16 and let's see what happens: # return F.softmax((teacher_patch_tokens.sub_(self.center)) / teacher_temp, dim=-1) @torch.no_grad() def sinkhorn_knopp_teacher(self, teacher_output, teacher_temp, n_masked_patches_tensor, n_iterations=3): teacher_output = teacher_output.float() # world_size = dist.get_world_size() if dist.is_initialized() else 1 Q = torch.exp(teacher_output / teacher_temp).t() # Q is K-by-B for consistency with notations from our paper # B = Q.shape[1] * world_size # number of samples to assign B = n_masked_patches_tensor dist.all_reduce(B) K = Q.shape[0] # how many prototypes # make the matrix sums to 1 sum_Q = torch.sum(Q) if dist.is_initialized(): dist.all_reduce(sum_Q) Q /= sum_Q for it in range(n_iterations): # normalize each row: total weight per prototype must be 1/K sum_of_rows = torch.sum(Q, dim=1, keepdim=True) if dist.is_initialized(): dist.all_reduce(sum_of_rows) Q /= sum_of_rows Q /= K # normalize each column: total weight per sample must be 1/B Q /= torch.sum(Q, dim=0, keepdim=True) Q /= B Q *= B # the columns must sum to 1 so that Q is an assignment return Q.t() def forward(self, student_patch_tokens, teacher_patch_tokens, student_masks_flat): """ Cross-entropy between softmax outputs of the teacher and student networks. student_patch_tokens: (B, N, D) tensor teacher_patch_tokens: (B, N, D) tensor student_masks_flat: (B, N) tensor """ t = teacher_patch_tokens s = student_patch_tokens loss = torch.sum(t * F.log_softmax(s / self.student_temp, dim=-1), dim=-1) loss = torch.sum(loss * student_masks_flat.float(), dim=-1) / student_masks_flat.sum(dim=-1).clamp(min=1.0) return -loss.mean() def forward_masked( self, student_patch_tokens_masked, teacher_patch_tokens_masked, student_masks_flat, n_masked_patches=None, masks_weight=None, ): t = teacher_patch_tokens_masked s = student_patch_tokens_masked # loss = torch.sum(t * F.log_softmax(s / self.student_temp, dim=-1), dim=-1) loss = lossfunc(t, s, self.student_temp) if masks_weight is None: masks_weight = ( (1 / student_masks_flat.sum(-1).clamp(min=1.0)) .unsqueeze(-1) .expand_as(student_masks_flat)[student_masks_flat] ) if n_masked_patches is not None: loss = loss[:n_masked_patches] loss = loss * masks_weight return -loss.sum() / student_masks_flat.shape[0] @torch.no_grad() def update_center(self, teacher_patch_tokens): self.reduce_center_update(teacher_patch_tokens) @torch.no_grad() def reduce_center_update(self, teacher_patch_tokens): self.updated = False self.len_teacher_patch_tokens = len(teacher_patch_tokens) self.async_batch_center = torch.sum(teacher_patch_tokens.mean(1), dim=0, keepdim=True) if dist.is_initialized(): self.reduce_handle = dist.all_reduce(self.async_batch_center, async_op=True) @torch.no_grad() def apply_center_update(self): if self.updated is False: world_size = dist.get_world_size() if dist.is_initialized() else 1 if self.reduce_handle is not None: self.reduce_handle.wait() _t = self.async_batch_center / (self.len_teacher_patch_tokens * world_size) self.center = self.center * self.center_momentum + _t * (1 - self.center_momentum) self.updated = True
dinov2-main
dinov2/loss/ibot_patch_loss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import logging import torch import torch.nn as nn import torch.nn.functional as F # import torch.distributed as dist logger = logging.getLogger("dinov2") class KoLeoLoss(nn.Module): """Kozachenko-Leonenko entropic loss regularizer from Sablayrolles et al. - 2018 - Spreading vectors for similarity search""" def __init__(self): super().__init__() self.pdist = nn.PairwiseDistance(2, eps=1e-8) def pairwise_NNs_inner(self, x): """ Pairwise nearest neighbors for L2-normalized vectors. Uses Torch rather than Faiss to remain on GPU. """ # parwise dot products (= inverse distance) dots = torch.mm(x, x.t()) n = x.shape[0] dots.view(-1)[:: (n + 1)].fill_(-1) # Trick to fill diagonal with -1 # max inner prod -> min distance _, I = torch.max(dots, dim=1) # noqa: E741 return I def forward(self, student_output, eps=1e-8): """ Args: student_output (BxD): backbone output of student """ with torch.cuda.amp.autocast(enabled=False): student_output = F.normalize(student_output, eps=eps, p=2, dim=-1) I = self.pairwise_NNs_inner(student_output) # noqa: E741 distances = self.pdist(student_output, student_output[I]) # BxD, BxD -> B loss = -torch.log(distances + eps).mean() return loss
dinov2-main
dinov2/loss/koleo_loss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn class DINOLoss(nn.Module): def __init__( self, out_dim, student_temp=0.1, center_momentum=0.9, ): super().__init__() self.student_temp = student_temp self.center_momentum = center_momentum self.register_buffer("center", torch.zeros(1, out_dim)) self.updated = True self.reduce_handle = None self.len_teacher_output = None self.async_batch_center = None @torch.no_grad() def softmax_center_teacher(self, teacher_output, teacher_temp): self.apply_center_update() # teacher centering and sharpening return F.softmax((teacher_output - self.center) / teacher_temp, dim=-1) @torch.no_grad() def sinkhorn_knopp_teacher(self, teacher_output, teacher_temp, n_iterations=3): teacher_output = teacher_output.float() world_size = dist.get_world_size() if dist.is_initialized() else 1 Q = torch.exp(teacher_output / teacher_temp).t() # Q is K-by-B for consistency with notations from our paper B = Q.shape[1] * world_size # number of samples to assign K = Q.shape[0] # how many prototypes # make the matrix sums to 1 sum_Q = torch.sum(Q) if dist.is_initialized(): dist.all_reduce(sum_Q) Q /= sum_Q for it in range(n_iterations): # normalize each row: total weight per prototype must be 1/K sum_of_rows = torch.sum(Q, dim=1, keepdim=True) if dist.is_initialized(): dist.all_reduce(sum_of_rows) Q /= sum_of_rows Q /= K # normalize each column: total weight per sample must be 1/B Q /= torch.sum(Q, dim=0, keepdim=True) Q /= B Q *= B # the columns must sum to 1 so that Q is an assignment return Q.t() def forward(self, student_output_list, teacher_out_softmaxed_centered_list): """ Cross-entropy between softmax outputs of the teacher and student networks. """ # TODO: Use cross_entropy_distribution here total_loss = 0 for s in student_output_list: lsm = F.log_softmax(s / self.student_temp, dim=-1) for t in teacher_out_softmaxed_centered_list: loss = torch.sum(t * lsm, dim=-1) total_loss -= loss.mean() return total_loss @torch.no_grad() def update_center(self, teacher_output): self.reduce_center_update(teacher_output) @torch.no_grad() def reduce_center_update(self, teacher_output): self.updated = False self.len_teacher_output = len(teacher_output) self.async_batch_center = torch.sum(teacher_output, dim=0, keepdim=True) if dist.is_initialized(): self.reduce_handle = dist.all_reduce(self.async_batch_center, async_op=True) @torch.no_grad() def apply_center_update(self): if self.updated is False: world_size = dist.get_world_size() if dist.is_initialized() else 1 if self.reduce_handle is not None: self.reduce_handle.wait() _t = self.async_batch_center / (self.len_teacher_output * world_size) self.center = self.center * self.center_momentum + _t * (1 - self.center_momentum) self.updated = True
dinov2-main
dinov2/loss/dino_clstoken_loss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .dino_clstoken_loss import DINOLoss from .ibot_patch_loss import iBOTPatchLoss from .koleo_loss import KoLeoLoss
dinov2-main
dinov2/loss/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import os import random import re import socket from typing import Dict, List import torch import torch.distributed as dist _LOCAL_RANK = -1 _LOCAL_WORLD_SIZE = -1 def is_enabled() -> bool: """ Returns: True if distributed training is enabled """ return dist.is_available() and dist.is_initialized() def get_global_size() -> int: """ Returns: The number of processes in the process group """ return dist.get_world_size() if is_enabled() else 1 def get_global_rank() -> int: """ Returns: The rank of the current process within the global process group. """ return dist.get_rank() if is_enabled() else 0 def get_local_rank() -> int: """ Returns: The rank of the current process within the local (per-machine) process group. """ if not is_enabled(): return 0 assert 0 <= _LOCAL_RANK < _LOCAL_WORLD_SIZE return _LOCAL_RANK def get_local_size() -> int: """ Returns: The size of the per-machine process group, i.e. the number of processes per machine. """ if not is_enabled(): return 1 assert 0 <= _LOCAL_RANK < _LOCAL_WORLD_SIZE return _LOCAL_WORLD_SIZE def is_main_process() -> bool: """ Returns: True if the current process is the main one. """ return get_global_rank() == 0 def _restrict_print_to_main_process() -> None: """ This function disables printing when not in the main process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop("force", False) if is_main_process() or force: builtin_print(*args, **kwargs) __builtin__.print = print def _get_master_port(seed: int = 0) -> int: MIN_MASTER_PORT, MAX_MASTER_PORT = (20_000, 60_000) master_port_str = os.environ.get("MASTER_PORT") if master_port_str is None: rng = random.Random(seed) return rng.randint(MIN_MASTER_PORT, MAX_MASTER_PORT) return int(master_port_str) def _get_available_port() -> int: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: # A "" host address means INADDR_ANY i.e. binding to all interfaces. # Note this is not compatible with IPv6. s.bind(("", 0)) port = s.getsockname()[1] return port _TORCH_DISTRIBUTED_ENV_VARS = ( "MASTER_ADDR", "MASTER_PORT", "RANK", "WORLD_SIZE", "LOCAL_RANK", "LOCAL_WORLD_SIZE", ) def _collect_env_vars() -> Dict[str, str]: return {env_var: os.environ[env_var] for env_var in _TORCH_DISTRIBUTED_ENV_VARS if env_var in os.environ} def _is_slurm_job_process() -> bool: return "SLURM_JOB_ID" in os.environ def _parse_slurm_node_list(s: str) -> List[str]: nodes = [] # Extract "hostname", "hostname[1-2,3,4-5]," substrings p = re.compile(r"(([^\[]+)(?:\[([^\]]+)\])?),?") for m in p.finditer(s): prefix, suffixes = s[m.start(2) : m.end(2)], s[m.start(3) : m.end(3)] for suffix in suffixes.split(","): span = suffix.split("-") if len(span) == 1: nodes.append(prefix + suffix) else: width = len(span[0]) start, end = int(span[0]), int(span[1]) + 1 nodes.extend([prefix + f"{i:0{width}}" for i in range(start, end)]) return nodes def _check_env_variable(key: str, new_value: str): # Only check for difference with preset environment variables if key in os.environ and os.environ[key] != new_value: raise RuntimeError(f"Cannot export environment variables as {key} is already set") class _TorchDistributedEnvironment: def __init__(self): self.master_addr = "127.0.0.1" self.master_port = 0 self.rank = -1 self.world_size = -1 self.local_rank = -1 self.local_world_size = -1 if _is_slurm_job_process(): return self._set_from_slurm_env() env_vars = _collect_env_vars() if not env_vars: # Environment is not set pass elif len(env_vars) == len(_TORCH_DISTRIBUTED_ENV_VARS): # Environment is fully set return self._set_from_preset_env() else: # Environment is partially set collected_env_vars = ", ".join(env_vars.keys()) raise RuntimeError(f"Partially set environment: {collected_env_vars}") if torch.cuda.device_count() > 0: return self._set_from_local() raise RuntimeError("Can't initialize PyTorch distributed environment") # Slurm job created with sbatch, submitit, etc... def _set_from_slurm_env(self): # logger.info("Initialization from Slurm environment") job_id = int(os.environ["SLURM_JOB_ID"]) node_count = int(os.environ["SLURM_JOB_NUM_NODES"]) nodes = _parse_slurm_node_list(os.environ["SLURM_JOB_NODELIST"]) assert len(nodes) == node_count self.master_addr = nodes[0] self.master_port = _get_master_port(seed=job_id) self.rank = int(os.environ["SLURM_PROCID"]) self.world_size = int(os.environ["SLURM_NTASKS"]) assert self.rank < self.world_size self.local_rank = int(os.environ["SLURM_LOCALID"]) self.local_world_size = self.world_size // node_count assert self.local_rank < self.local_world_size # Single node job with preset environment (i.e. torchrun) def _set_from_preset_env(self): # logger.info("Initialization from preset environment") self.master_addr = os.environ["MASTER_ADDR"] self.master_port = os.environ["MASTER_PORT"] self.rank = int(os.environ["RANK"]) self.world_size = int(os.environ["WORLD_SIZE"]) assert self.rank < self.world_size self.local_rank = int(os.environ["LOCAL_RANK"]) self.local_world_size = int(os.environ["LOCAL_WORLD_SIZE"]) assert self.local_rank < self.local_world_size # Single node and GPU job (i.e. local script run) def _set_from_local(self): # logger.info("Initialization from local") self.master_addr = "127.0.0.1" self.master_port = _get_available_port() self.rank = 0 self.world_size = 1 self.local_rank = 0 self.local_world_size = 1 def export(self, *, overwrite: bool) -> "_TorchDistributedEnvironment": # See the "Environment variable initialization" section from # https://pytorch.org/docs/stable/distributed.html for the complete list of # environment variables required for the env:// initialization method. env_vars = { "MASTER_ADDR": self.master_addr, "MASTER_PORT": str(self.master_port), "RANK": str(self.rank), "WORLD_SIZE": str(self.world_size), "LOCAL_RANK": str(self.local_rank), "LOCAL_WORLD_SIZE": str(self.local_world_size), } if not overwrite: for k, v in env_vars.items(): _check_env_variable(k, v) os.environ.update(env_vars) return self def enable(*, set_cuda_current_device: bool = True, overwrite: bool = False, allow_nccl_timeout: bool = False): """Enable distributed mode Args: set_cuda_current_device: If True, call torch.cuda.set_device() to set the current PyTorch CUDA device to the one matching the local rank. overwrite: If True, overwrites already set variables. Else fails. """ global _LOCAL_RANK, _LOCAL_WORLD_SIZE if _LOCAL_RANK >= 0 or _LOCAL_WORLD_SIZE >= 0: raise RuntimeError("Distributed mode has already been enabled") torch_env = _TorchDistributedEnvironment() torch_env.export(overwrite=overwrite) if set_cuda_current_device: torch.cuda.set_device(torch_env.local_rank) if allow_nccl_timeout: # This allows to use torch distributed timeout in a NCCL backend key, value = "NCCL_ASYNC_ERROR_HANDLING", "1" if not overwrite: _check_env_variable(key, value) os.environ[key] = value dist.init_process_group(backend="nccl") dist.barrier() # Finalize setup _LOCAL_RANK = torch_env.local_rank _LOCAL_WORLD_SIZE = torch_env.local_world_size _restrict_print_to_main_process()
dinov2-main
dinov2/distributed/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import math import logging import os from omegaconf import OmegaConf import dinov2.distributed as distributed from dinov2.logging import setup_logging from dinov2.utils import utils from dinov2.configs import dinov2_default_config logger = logging.getLogger("dinov2") def apply_scaling_rules_to_cfg(cfg): # to fix if cfg.optim.scaling_rule == "sqrt_wrt_1024": base_lr = cfg.optim.base_lr cfg.optim.lr = base_lr cfg.optim.lr *= math.sqrt(cfg.train.batch_size_per_gpu * distributed.get_global_size() / 1024.0) logger.info(f"sqrt scaling learning rate; base: {base_lr}, new: {cfg.optim.lr}") else: raise NotImplementedError return cfg def write_config(cfg, output_dir, name="config.yaml"): logger.info(OmegaConf.to_yaml(cfg)) saved_cfg_path = os.path.join(output_dir, name) with open(saved_cfg_path, "w") as f: OmegaConf.save(config=cfg, f=f) return saved_cfg_path def get_cfg_from_args(args): args.output_dir = os.path.abspath(args.output_dir) args.opts += [f"train.output_dir={args.output_dir}"] default_cfg = OmegaConf.create(dinov2_default_config) cfg = OmegaConf.load(args.config_file) cfg = OmegaConf.merge(default_cfg, cfg, OmegaConf.from_cli(args.opts)) return cfg def default_setup(args): distributed.enable(overwrite=True) seed = getattr(args, "seed", 0) rank = distributed.get_global_rank() global logger setup_logging(output=args.output_dir, level=logging.INFO) logger = logging.getLogger("dinov2") utils.fix_random_seeds(seed + rank) logger.info("git:\n {}\n".format(utils.get_sha())) logger.info("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items()))) def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg_from_args(args) os.makedirs(args.output_dir, exist_ok=True) default_setup(args) apply_scaling_rules_to_cfg(cfg) write_config(cfg, args.output_dir) return cfg
dinov2-main
dinov2/utils/config.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from typing import Dict, Union import numpy as np import torch TypeSpec = Union[str, np.dtype, torch.dtype] _NUMPY_TO_TORCH_DTYPE: Dict[np.dtype, torch.dtype] = { np.dtype("bool"): torch.bool, np.dtype("uint8"): torch.uint8, np.dtype("int8"): torch.int8, np.dtype("int16"): torch.int16, np.dtype("int32"): torch.int32, np.dtype("int64"): torch.int64, np.dtype("float16"): torch.float16, np.dtype("float32"): torch.float32, np.dtype("float64"): torch.float64, np.dtype("complex64"): torch.complex64, np.dtype("complex128"): torch.complex128, } def as_torch_dtype(dtype: TypeSpec) -> torch.dtype: if isinstance(dtype, torch.dtype): return dtype if isinstance(dtype, str): dtype = np.dtype(dtype) assert isinstance(dtype, np.dtype), f"Expected an instance of nunpy dtype, got {type(dtype)}" return _NUMPY_TO_TORCH_DTYPE[dtype]
dinov2-main
dinov2/utils/dtype.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree.
dinov2-main
dinov2/utils/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import logging import os import random import subprocess from urllib.parse import urlparse import numpy as np import torch from torch import nn logger = logging.getLogger("dinov2") def load_pretrained_weights(model, pretrained_weights, checkpoint_key): if urlparse(pretrained_weights).scheme: # If it looks like an URL state_dict = torch.hub.load_state_dict_from_url(pretrained_weights, map_location="cpu") else: state_dict = torch.load(pretrained_weights, map_location="cpu") if checkpoint_key is not None and checkpoint_key in state_dict: logger.info(f"Take key {checkpoint_key} in provided checkpoint dict") state_dict = state_dict[checkpoint_key] # remove `module.` prefix state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} # remove `backbone.` prefix induced by multicrop wrapper state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()} msg = model.load_state_dict(state_dict, strict=False) logger.info("Pretrained weights found at {} and loaded with msg: {}".format(pretrained_weights, msg)) def fix_random_seeds(seed=31): """ Fix random seeds. """ torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) def get_sha(): cwd = os.path.dirname(os.path.abspath(__file__)) def _run(command): return subprocess.check_output(command, cwd=cwd).decode("ascii").strip() sha = "N/A" diff = "clean" branch = "N/A" try: sha = _run(["git", "rev-parse", "HEAD"]) subprocess.check_output(["git", "diff"], cwd=cwd) diff = _run(["git", "diff-index", "HEAD"]) diff = "has uncommitted changes" if diff else "clean" branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"]) except Exception: pass message = f"sha: {sha}, status: {diff}, branch: {branch}" return message class CosineScheduler(object): def __init__(self, base_value, final_value, total_iters, warmup_iters=0, start_warmup_value=0, freeze_iters=0): super().__init__() self.final_value = final_value self.total_iters = total_iters freeze_schedule = np.zeros((freeze_iters)) warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(total_iters - warmup_iters - freeze_iters) schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iters / len(iters))) self.schedule = np.concatenate((freeze_schedule, warmup_schedule, schedule)) assert len(self.schedule) == self.total_iters def __getitem__(self, it): if it >= self.total_iters: return self.final_value else: return self.schedule[it] def has_batchnorms(model): bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm) for name, module in model.named_modules(): if isinstance(module, bn_types): return True return False
dinov2-main
dinov2/utils/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from enum import Enum import os from pathlib import Path from typing import Any, Dict, Optional class ClusterType(Enum): AWS = "aws" FAIR = "fair" RSC = "rsc" def _guess_cluster_type() -> ClusterType: uname = os.uname() if uname.sysname == "Linux": if uname.release.endswith("-aws"): # Linux kernel versions on AWS instances are of the form "5.4.0-1051-aws" return ClusterType.AWS elif uname.nodename.startswith("rsc"): # Linux kernel versions on RSC instances are standard ones but hostnames start with "rsc" return ClusterType.RSC return ClusterType.FAIR def get_cluster_type(cluster_type: Optional[ClusterType] = None) -> Optional[ClusterType]: if cluster_type is None: return _guess_cluster_type() return cluster_type def get_checkpoint_path(cluster_type: Optional[ClusterType] = None) -> Optional[Path]: cluster_type = get_cluster_type(cluster_type) if cluster_type is None: return None CHECKPOINT_DIRNAMES = { ClusterType.AWS: "checkpoints", ClusterType.FAIR: "checkpoint", ClusterType.RSC: "checkpoint/dino", } return Path("/") / CHECKPOINT_DIRNAMES[cluster_type] def get_user_checkpoint_path(cluster_type: Optional[ClusterType] = None) -> Optional[Path]: checkpoint_path = get_checkpoint_path(cluster_type) if checkpoint_path is None: return None username = os.environ.get("USER") assert username is not None return checkpoint_path / username def get_slurm_partition(cluster_type: Optional[ClusterType] = None) -> Optional[str]: cluster_type = get_cluster_type(cluster_type) if cluster_type is None: return None SLURM_PARTITIONS = { ClusterType.AWS: "learnlab", ClusterType.FAIR: "learnlab", ClusterType.RSC: "learn", } return SLURM_PARTITIONS[cluster_type] def get_slurm_executor_parameters( nodes: int, num_gpus_per_node: int, cluster_type: Optional[ClusterType] = None, **kwargs ) -> Dict[str, Any]: # create default parameters params = { "mem_gb": 0, # Requests all memory on a node, see https://slurm.schedmd.com/sbatch.html "gpus_per_node": num_gpus_per_node, "tasks_per_node": num_gpus_per_node, # one task per GPU "cpus_per_task": 10, "nodes": nodes, "slurm_partition": get_slurm_partition(cluster_type), } # apply cluster-specific adjustments cluster_type = get_cluster_type(cluster_type) if cluster_type == ClusterType.AWS: params["cpus_per_task"] = 12 del params["mem_gb"] elif cluster_type == ClusterType.RSC: params["cpus_per_task"] = 12 # set additional parameters / apply overrides params.update(kwargs) return params
dinov2-main
dinov2/utils/cluster.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from collections import defaultdict import logging logger = logging.getLogger("dinov2") def get_vit_lr_decay_rate(name, lr_decay_rate=1.0, num_layers=12, force_is_backbone=False, chunked_blocks=False): """ Calculate lr decay rate for different ViT blocks. Args: name (string): parameter name. lr_decay_rate (float): base lr decay rate. num_layers (int): number of ViT blocks. Returns: lr decay rate for the given parameter. """ layer_id = num_layers + 1 if name.startswith("backbone") or force_is_backbone: if ".pos_embed" in name or ".patch_embed" in name or ".mask_token" in name or ".cls_token" in name: layer_id = 0 elif force_is_backbone and ( "pos_embed" in name or "patch_embed" in name or "mask_token" in name or "cls_token" in name ): layer_id = 0 elif ".blocks." in name and ".residual." not in name: layer_id = int(name[name.find(".blocks.") :].split(".")[2]) + 1 elif chunked_blocks and "blocks." in name and "residual." not in name: layer_id = int(name[name.find("blocks.") :].split(".")[2]) + 1 elif "blocks." in name and "residual." not in name: layer_id = int(name[name.find("blocks.") :].split(".")[1]) + 1 return lr_decay_rate ** (num_layers + 1 - layer_id) def get_params_groups_with_decay(model, lr_decay_rate=1.0, patch_embed_lr_mult=1.0): chunked_blocks = False if hasattr(model, "n_blocks"): logger.info("chunked fsdp") n_blocks = model.n_blocks chunked_blocks = model.chunked_blocks elif hasattr(model, "blocks"): logger.info("first code branch") n_blocks = len(model.blocks) elif hasattr(model, "backbone"): logger.info("second code branch") n_blocks = len(model.backbone.blocks) else: logger.info("else code branch") n_blocks = 0 all_param_groups = [] for name, param in model.named_parameters(): name = name.replace("_fsdp_wrapped_module.", "") if not param.requires_grad: continue decay_rate = get_vit_lr_decay_rate( name, lr_decay_rate, num_layers=n_blocks, force_is_backbone=n_blocks > 0, chunked_blocks=chunked_blocks ) d = {"params": param, "is_last_layer": False, "lr_multiplier": decay_rate, "wd_multiplier": 1.0, "name": name} if "last_layer" in name: d.update({"is_last_layer": True}) if name.endswith(".bias") or "norm" in name or "gamma" in name: d.update({"wd_multiplier": 0.0}) if "patch_embed" in name: d.update({"lr_multiplier": d["lr_multiplier"] * patch_embed_lr_mult}) all_param_groups.append(d) logger.info(f"""{name}: lr_multiplier: {d["lr_multiplier"]}, wd_multiplier: {d["wd_multiplier"]}""") return all_param_groups def fuse_params_groups(all_params_groups, keys=("lr_multiplier", "wd_multiplier", "is_last_layer")): fused_params_groups = defaultdict(lambda: {"params": []}) for d in all_params_groups: identifier = "" for k in keys: identifier += k + str(d[k]) + "_" for k in keys: fused_params_groups[identifier][k] = d[k] fused_params_groups[identifier]["params"].append(d["params"]) return fused_params_groups.values()
dinov2-main
dinov2/utils/param_groups.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/main/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py from functools import partial import math import logging from typing import Sequence, Tuple, Union, Callable import torch import torch.nn as nn import torch.utils.checkpoint from torch.nn.init import trunc_normal_ from dinov2.layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block logger = logging.getLogger("dinov2") def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module: if not depth_first and include_root: fn(module=module, name=name) for child_name, child_module in module.named_children(): child_name = ".".join((name, child_name)) if name else child_name named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) if depth_first and include_root: fn(module=module, name=name) return module class BlockChunk(nn.ModuleList): def forward(self, x): for b in self: x = b(x) return x class DinoVisionTransformer(nn.Module): def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, ffn_bias=True, proj_bias=True, drop_path_rate=0.0, drop_path_uniform=False, init_values=None, # for layerscale: None or 0 => no layerscale embed_layer=PatchEmbed, act_layer=nn.GELU, block_fn=Block, ffn_layer="mlp", block_chunks=1, ): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True proj_bias (bool): enable bias for proj in attn if True ffn_bias (bool): enable bias for ffn if True drop_path_rate (float): stochastic depth rate drop_path_uniform (bool): apply uniform drop rate across blocks weight_init (str): weight init scheme init_values (float): layer-scale init values embed_layer (nn.Module): patch embedding layer act_layer (nn.Module): MLP activation layer block_fn (nn.Module): transformer block class ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" block_chunks: (int) split block sequence into block_chunks units for FSDP wrap """ super().__init__() norm_layer = partial(nn.LayerNorm, eps=1e-6) self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_tokens = 1 self.n_blocks = depth self.num_heads = num_heads self.patch_size = patch_size self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) if drop_path_uniform is True: dpr = [drop_path_rate] * depth else: dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule if ffn_layer == "mlp": logger.info("using MLP layer as FFN") ffn_layer = Mlp elif ffn_layer == "swiglufused" or ffn_layer == "swiglu": logger.info("using SwiGLU layer as FFN") ffn_layer = SwiGLUFFNFused elif ffn_layer == "identity": logger.info("using Identity layer as FFN") def f(*args, **kwargs): return nn.Identity() ffn_layer = f else: raise NotImplementedError blocks_list = [ block_fn( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_bias=proj_bias, ffn_bias=ffn_bias, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, ffn_layer=ffn_layer, init_values=init_values, ) for i in range(depth) ] if block_chunks > 0: self.chunked_blocks = True chunked_blocks = [] chunksize = depth // block_chunks for i in range(0, depth, chunksize): # this is to keep the block index consistent if we chunk the block list chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize]) self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks]) else: self.chunked_blocks = False self.blocks = nn.ModuleList(blocks_list) self.norm = norm_layer(embed_dim) self.head = nn.Identity() self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) self.init_weights() def init_weights(self): trunc_normal_(self.pos_embed, std=0.02) nn.init.normal_(self.cls_token, std=1e-6) named_apply(init_weights_vit_timm, self) def interpolate_pos_encoding(self, x, w, h): previous_dtype = x.dtype npatch = x.shape[1] - 1 N = self.pos_embed.shape[1] - 1 if npatch == N and w == h: return self.pos_embed pos_embed = self.pos_embed.float() class_pos_embed = pos_embed[:, 0] patch_pos_embed = pos_embed[:, 1:] dim = x.shape[-1] w0 = w // self.patch_size h0 = h // self.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0 = w0 + 0.1, h0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode="bicubic", ) assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype) def prepare_tokens_with_masks(self, x, masks=None): B, nc, w, h = x.shape x = self.patch_embed(x) if masks is not None: x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x) x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) x = x + self.interpolate_pos_encoding(x, w, h) return x def forward_features_list(self, x_list, masks_list): x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)] for blk in self.blocks: x = blk(x) all_x = x output = [] for x, masks in zip(all_x, masks_list): x_norm = self.norm(x) output.append( { "x_norm_clstoken": x_norm[:, 0], "x_norm_patchtokens": x_norm[:, 1:], "x_prenorm": x, "masks": masks, } ) return output def forward_features(self, x, masks=None): if isinstance(x, list): return self.forward_features_list(x, masks) x = self.prepare_tokens_with_masks(x, masks) for blk in self.blocks: x = blk(x) x_norm = self.norm(x) return { "x_norm_clstoken": x_norm[:, 0], "x_norm_patchtokens": x_norm[:, 1:], "x_prenorm": x, "masks": masks, } def _get_intermediate_layers_not_chunked(self, x, n=1): x = self.prepare_tokens_with_masks(x) # If n is an int, take the n last blocks. If it's a list, take them output, total_block_len = [], len(self.blocks) blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n for i, blk in enumerate(self.blocks): x = blk(x) if i in blocks_to_take: output.append(x) assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" return output def _get_intermediate_layers_chunked(self, x, n=1): x = self.prepare_tokens_with_masks(x) output, i, total_block_len = [], 0, len(self.blocks[-1]) # If n is an int, take the n last blocks. If it's a list, take them blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n for block_chunk in self.blocks: for blk in block_chunk[i:]: # Passing the nn.Identity() x = blk(x) if i in blocks_to_take: output.append(x) i += 1 assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" return output def get_intermediate_layers( self, x: torch.Tensor, n: Union[int, Sequence] = 1, # Layers or n last layers to take reshape: bool = False, return_class_token: bool = False, norm=True, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: if self.chunked_blocks: outputs = self._get_intermediate_layers_chunked(x, n) else: outputs = self._get_intermediate_layers_not_chunked(x, n) if norm: outputs = [self.norm(out) for out in outputs] class_tokens = [out[:, 0] for out in outputs] outputs = [out[:, 1:] for out in outputs] if reshape: B, _, w, h = x.shape outputs = [ out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous() for out in outputs ] if return_class_token: return tuple(zip(outputs, class_tokens)) return tuple(outputs) def forward(self, *args, is_training=False, **kwargs): ret = self.forward_features(*args, **kwargs) if is_training: return ret else: return self.head(ret["x_norm_clstoken"]) def init_weights_vit_timm(module: nn.Module, name: str = ""): """ViT weight initialization, original timm impl (for reproducibility)""" if isinstance(module, nn.Linear): trunc_normal_(module.weight, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) def vit_small(patch_size=16, **kwargs): model = DinoVisionTransformer( patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), **kwargs, ) return model def vit_base(patch_size=16, **kwargs): model = DinoVisionTransformer( patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), **kwargs, ) return model def vit_large(patch_size=16, **kwargs): model = DinoVisionTransformer( patch_size=patch_size, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), **kwargs, ) return model def vit_giant2(patch_size=16, **kwargs): """ Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64 """ model = DinoVisionTransformer( patch_size=patch_size, embed_dim=1536, depth=40, num_heads=24, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), **kwargs, ) return model
dinov2-main
dinov2/models/vision_transformer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import logging from . import vision_transformer as vits logger = logging.getLogger("dinov2") def build_model(args, only_teacher=False, img_size=224): args.arch = args.arch.removesuffix("_memeff") if "vit" in args.arch: vit_kwargs = dict( img_size=img_size, patch_size=args.patch_size, init_values=args.layerscale, ffn_layer=args.ffn_layer, block_chunks=args.block_chunks, qkv_bias=args.qkv_bias, proj_bias=args.proj_bias, ffn_bias=args.ffn_bias, ) teacher = vits.__dict__[args.arch](**vit_kwargs) if only_teacher: return teacher, teacher.embed_dim student = vits.__dict__[args.arch]( **vit_kwargs, drop_path_rate=args.drop_path_rate, drop_path_uniform=args.drop_path_uniform, ) embed_dim = student.embed_dim return student, teacher, embed_dim def build_model_from_cfg(cfg, only_teacher=False): return build_model(cfg.student, only_teacher=only_teacher, img_size=cfg.crops.global_crops_size)
dinov2-main
dinov2/models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import os from typing import Any import torch import dinov2.distributed as distributed from functools import partial from fvcore.common.checkpoint import Checkpointer from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp import ShardingStrategy from torch.distributed.fsdp import MixedPrecision from torch.distributed.fsdp import StateDictType from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.fsdp._runtime_utils import _reshard def get_fsdp_wrapper(model_cfg, modules_to_wrap=set()): sharding_strategy_dict = { "NO_SHARD": ShardingStrategy.NO_SHARD, "SHARD_GRAD_OP": ShardingStrategy.SHARD_GRAD_OP, "FULL_SHARD": ShardingStrategy.FULL_SHARD, } dtype_dict = { "fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16, } mixed_precision_config = MixedPrecision( param_dtype=dtype_dict[model_cfg.mixed_precision.param_dtype], reduce_dtype=dtype_dict[model_cfg.mixed_precision.reduce_dtype], buffer_dtype=dtype_dict[model_cfg.mixed_precision.buffer_dtype], ) sharding_strategy_config = sharding_strategy_dict[model_cfg.sharding_strategy] local_rank = distributed.get_local_rank() fsdp_wrapper = partial( FSDP, sharding_strategy=sharding_strategy_config, mixed_precision=mixed_precision_config, device_id=local_rank, sync_module_states=True, use_orig_params=True, auto_wrap_policy=ModuleWrapPolicy(modules_to_wrap), ) return fsdp_wrapper def is_fsdp(x): return isinstance(x, FSDP) def is_sharded_fsdp(x): return is_fsdp(x) and x.sharding_strategy is not ShardingStrategy.NO_SHARD def free_if_fsdp(x): if is_sharded_fsdp(x): handles = x._handles true_list = [True for h in handles] _reshard(x, handles, true_list) def get_fsdp_modules(x): return FSDP.fsdp_modules(x) def reshard_fsdp_model(x): for m in get_fsdp_modules(x): free_if_fsdp(m) def rankstr(): return f"rank_{distributed.get_global_rank()}" class FSDPCheckpointer(Checkpointer): def save(self, name: str, **kwargs: Any) -> None: """ Dump model and checkpointables to a file. Args: name (str): name of the file. kwargs (dict): extra arbitrary data to save. """ if not self.save_dir or not self.save_to_disk: return data = {} with FSDP.state_dict_type(self.model, StateDictType.LOCAL_STATE_DICT): data["model"] = self.model.state_dict() # data["model"] = self.model.state_dict() for key, obj in self.checkpointables.items(): data[key] = obj.state_dict() data.update(kwargs) basename = f"{name}.{rankstr()}.pth" save_file = os.path.join(self.save_dir, basename) assert os.path.basename(save_file) == basename, basename self.logger.info("Saving checkpoint to {}".format(save_file)) with self.path_manager.open(save_file, "wb") as f: torch.save(data, f) self.tag_last_checkpoint(basename) def load(self, *args, **kwargs): with FSDP.state_dict_type(self.model, StateDictType.LOCAL_STATE_DICT): return super().load(*args, **kwargs) def has_checkpoint(self) -> bool: """ Returns: bool: whether a checkpoint exists in the target directory. """ save_file = os.path.join(self.save_dir, f"last_checkpoint.{rankstr()}") return self.path_manager.exists(save_file) def get_checkpoint_file(self) -> str: """ Returns: str: The latest checkpoint file in target directory. """ save_file = os.path.join(self.save_dir, f"last_checkpoint.{rankstr()}") try: with self.path_manager.open(save_file, "r") as f: last_saved = f.read().strip() except IOError: # if file doesn't exist, maybe because it has just been # deleted by a separate process return "" # pyre-fixme[6]: For 2nd param expected `Union[PathLike[str], str]` but got # `Union[bytes, str]`. return os.path.join(self.save_dir, last_saved) def tag_last_checkpoint(self, last_filename_basename: str) -> None: """ Tag the last checkpoint. Args: last_filename_basename (str): the basename of the last filename. """ if distributed.is_enabled(): torch.distributed.barrier() save_file = os.path.join(self.save_dir, f"last_checkpoint.{rankstr()}") with self.path_manager.open(save_file, "w") as f: f.write(last_filename_basename) # pyre-ignore ShardedGradScaler = ShardedGradScaler
dinov2-main
dinov2/fsdp/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import pathlib from omegaconf import OmegaConf def load_config(config_name: str): config_filename = config_name + ".yaml" return OmegaConf.load(pathlib.Path(__file__).parent.resolve() / config_filename) dinov2_default_config = load_config("ssl_default_config") def load_and_merge_config(config_name: str): default_config = OmegaConf.create(dinov2_default_config) loaded_config = load_config(config_name) return OmegaConf.merge(default_config, loaded_config)
dinov2-main
dinov2/configs/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .train import get_args_parser, main from .ssl_meta_arch import SSLMetaArch
dinov2-main
dinov2/train/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from functools import partial import logging import torch from torch import nn from dinov2.loss import DINOLoss, iBOTPatchLoss, KoLeoLoss from dinov2.models import build_model_from_cfg from dinov2.layers import DINOHead from dinov2.utils.utils import has_batchnorms from dinov2.utils.param_groups import get_params_groups_with_decay, fuse_params_groups from dinov2.fsdp import get_fsdp_wrapper, ShardedGradScaler, get_fsdp_modules, reshard_fsdp_model from dinov2.models.vision_transformer import BlockChunk try: from xformers.ops import fmha except ImportError: raise AssertionError("xFormers is required for training") logger = logging.getLogger("dinov2") class SSLMetaArch(nn.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.fp16_scaler = ShardedGradScaler() if cfg.compute_precision.grad_scaler else None student_model_dict = dict() teacher_model_dict = dict() student_backbone, teacher_backbone, embed_dim = build_model_from_cfg(cfg) student_model_dict["backbone"] = student_backbone teacher_model_dict["backbone"] = teacher_backbone logger.info(f"OPTIONS -- architecture : embed_dim: {embed_dim}") if cfg.student.pretrained_weights: chkpt = torch.load(cfg.student.pretrained_weights) logger.info(f"OPTIONS -- pretrained weights: loading from {cfg.student.pretrained_weights}") student_backbone.load_state_dict(chkpt["model"], strict=False) self.embed_dim = embed_dim self.dino_out_dim = cfg.dino.head_n_prototypes self.do_dino = cfg.dino.loss_weight > 0 self.do_koleo = cfg.dino.koleo_loss_weight > 0 self.do_ibot = cfg.ibot.loss_weight > 0 self.ibot_separate_head = cfg.ibot.separate_head logger.info("OPTIONS -- DINO") if self.do_dino: logger.info(f"OPTIONS -- DINO -- loss_weight: {cfg.dino.loss_weight}") logger.info(f"OPTIONS -- DINO -- head_n_prototypes: {cfg.dino.head_n_prototypes}") logger.info(f"OPTIONS -- DINO -- head_bottleneck_dim: {cfg.dino.head_bottleneck_dim}") logger.info(f"OPTIONS -- DINO -- head_hidden_dim: {cfg.dino.head_hidden_dim}") self.dino_loss_weight = cfg.dino.loss_weight dino_head = partial( DINOHead, in_dim=embed_dim, out_dim=cfg.dino.head_n_prototypes, hidden_dim=cfg.dino.head_hidden_dim, bottleneck_dim=cfg.dino.head_bottleneck_dim, nlayers=cfg.dino.head_nlayers, ) self.dino_loss = DINOLoss(self.dino_out_dim) if self.do_koleo: logger.info("OPTIONS -- DINO -- applying KOLEO regularization") self.koleo_loss = KoLeoLoss() else: logger.info("OPTIONS -- DINO -- not using DINO") if self.do_dino or self.do_ibot: student_model_dict["dino_head"] = dino_head() teacher_model_dict["dino_head"] = dino_head() logger.info("OPTIONS -- IBOT") logger.info(f"OPTIONS -- IBOT -- loss_weight: {cfg.ibot.loss_weight}") logger.info(f"OPTIONS -- IBOT masking -- ibot_mask_ratio_tuple: {cfg.ibot.mask_ratio_min_max}") logger.info(f"OPTIONS -- IBOT masking -- ibot_mask_sample_probability: {cfg.ibot.mask_sample_probability}") if self.do_ibot: self.ibot_loss_weight = cfg.ibot.loss_weight assert max(cfg.ibot.mask_ratio_min_max) > 0, "please provide a positive mask ratio tuple for ibot" assert cfg.ibot.mask_sample_probability > 0, "please provide a positive mask probability for ibot" self.ibot_out_dim = cfg.ibot.head_n_prototypes if self.ibot_separate_head else cfg.dino.head_n_prototypes self.ibot_patch_loss = iBOTPatchLoss(self.ibot_out_dim) if self.ibot_separate_head: logger.info(f"OPTIONS -- IBOT -- loss_weight: {cfg.ibot.loss_weight}") logger.info(f"OPTIONS -- IBOT -- head_n_prototypes: {cfg.ibot.head_n_prototypes}") logger.info(f"OPTIONS -- IBOT -- head_bottleneck_dim: {cfg.ibot.head_bottleneck_dim}") logger.info(f"OPTIONS -- IBOT -- head_hidden_dim: {cfg.ibot.head_hidden_dim}") ibot_head = partial( DINOHead, in_dim=embed_dim, out_dim=cfg.ibot.head_n_prototypes, hidden_dim=cfg.ibot.head_hidden_dim, bottleneck_dim=cfg.ibot.head_bottleneck_dim, nlayers=cfg.ibot.head_nlayers, ) student_model_dict["ibot_head"] = ibot_head() teacher_model_dict["ibot_head"] = ibot_head() else: logger.info("OPTIONS -- IBOT -- head shared with DINO") self.need_to_synchronize_fsdp_streams = True self.student = nn.ModuleDict(student_model_dict) self.teacher = nn.ModuleDict(teacher_model_dict) # there is no backpropagation through the teacher, so no need for gradients for p in self.teacher.parameters(): p.requires_grad = False logger.info(f"Student and Teacher are built: they are both {cfg.student.arch} network.") def forward(self, inputs): raise NotImplementedError def backprop_loss(self, loss): if self.fp16_scaler is not None: self.fp16_scaler.scale(loss).backward() else: loss.backward() def forward_backward(self, images, teacher_temp): n_global_crops = 2 assert n_global_crops == 2 n_local_crops = self.cfg.crops.local_crops_number global_crops = images["collated_global_crops"].cuda(non_blocking=True) local_crops = images["collated_local_crops"].cuda(non_blocking=True) masks = images["collated_masks"].cuda(non_blocking=True) mask_indices_list = images["mask_indices_list"].cuda(non_blocking=True) n_masked_patches_tensor = images["n_masked_patches"].cuda(non_blocking=True) n_masked_patches = mask_indices_list.shape[0] upperbound = images["upperbound"] masks_weight = images["masks_weight"].cuda(non_blocking=True) n_local_crops_loss_terms = max(n_local_crops * n_global_crops, 1) n_global_crops_loss_terms = (n_global_crops - 1) * n_global_crops do_dino = self.do_dino do_ibot = self.do_ibot # loss scales ibot_loss_scale = 1.0 / n_global_crops # teacher output @torch.no_grad() def get_teacher_output(): x, n_global_crops_teacher = global_crops, n_global_crops teacher_backbone_output_dict = self.teacher.backbone(x, is_training=True) teacher_cls_tokens = teacher_backbone_output_dict["x_norm_clstoken"] teacher_cls_tokens = teacher_cls_tokens.chunk(n_global_crops_teacher) # watch out: these are chunked and cat'd in reverse so A is matched to B in the global crops dino loss teacher_cls_tokens = torch.cat((teacher_cls_tokens[1], teacher_cls_tokens[0])) ibot_teacher_patch_tokens = teacher_backbone_output_dict["x_norm_patchtokens"] _dim = ibot_teacher_patch_tokens.shape[-1] n_cls_tokens = teacher_cls_tokens.shape[0] if do_ibot and not self.ibot_separate_head: buffer_tensor_teacher = ibot_teacher_patch_tokens.new_zeros(upperbound + n_cls_tokens, _dim) buffer_tensor_teacher[:n_cls_tokens].copy_(teacher_cls_tokens) torch.index_select( ibot_teacher_patch_tokens.flatten(0, 1), dim=0, index=mask_indices_list, out=buffer_tensor_teacher[n_cls_tokens : n_cls_tokens + n_masked_patches], ) tokens_after_head = self.teacher.dino_head(buffer_tensor_teacher) teacher_cls_tokens_after_head = tokens_after_head[:n_cls_tokens] masked_teacher_patch_tokens_after_head = tokens_after_head[ n_cls_tokens : n_cls_tokens + n_masked_patches ] elif do_ibot and self.ibot_separate_head: buffer_tensor_teacher = ibot_teacher_patch_tokens.new_zeros(upperbound, _dim) torch.index_select( ibot_teacher_patch_tokens.flatten(0, 1), dim=0, index=mask_indices_list, out=buffer_tensor_teacher[:n_masked_patches], ) teacher_cls_tokens_after_head = self.teacher.dino_head(teacher_cls_tokens) masked_teacher_patch_tokens_after_head = self.teacher.ibot_head(buffer_tensor_teacher)[ :n_masked_patches ] else: teacher_cls_tokens_after_head = self.teacher.dino_head(teacher_cls_tokens) masked_teacher_ibot_softmaxed_centered = None if self.cfg.train.centering == "centering": teacher_dino_softmaxed_centered_list = self.dino_loss.softmax_center_teacher( teacher_cls_tokens_after_head, teacher_temp=teacher_temp ).view(n_global_crops_teacher, -1, *teacher_cls_tokens_after_head.shape[1:]) self.dino_loss.update_center(teacher_cls_tokens_after_head) if do_ibot: masked_teacher_patch_tokens_after_head = masked_teacher_patch_tokens_after_head.unsqueeze(0) masked_teacher_ibot_softmaxed_centered = self.ibot_patch_loss.softmax_center_teacher( masked_teacher_patch_tokens_after_head[:, :n_masked_patches], teacher_temp=teacher_temp ) masked_teacher_ibot_softmaxed_centered = masked_teacher_ibot_softmaxed_centered.squeeze(0) self.ibot_patch_loss.update_center(masked_teacher_patch_tokens_after_head[:n_masked_patches]) elif self.cfg.train.centering == "sinkhorn_knopp": teacher_dino_softmaxed_centered_list = self.dino_loss.sinkhorn_knopp_teacher( teacher_cls_tokens_after_head, teacher_temp=teacher_temp ).view(n_global_crops_teacher, -1, *teacher_cls_tokens_after_head.shape[1:]) if do_ibot: masked_teacher_ibot_softmaxed_centered = self.ibot_patch_loss.sinkhorn_knopp_teacher( masked_teacher_patch_tokens_after_head, teacher_temp=teacher_temp, n_masked_patches_tensor=n_masked_patches_tensor, ) else: raise NotImplementedError return teacher_dino_softmaxed_centered_list, masked_teacher_ibot_softmaxed_centered teacher_dino_softmaxed_centered_list, masked_teacher_ibot_softmaxed_centered = get_teacher_output() reshard_fsdp_model(self.teacher) loss_dict = {} loss_accumulator = 0 # for backprop student_global_backbone_output_dict, student_local_backbone_output_dict = self.student.backbone( [global_crops, local_crops], masks=[masks, None], is_training=True ) inputs_for_student_head_list = [] # 1a: local crops cls tokens student_local_cls_tokens = student_local_backbone_output_dict["x_norm_clstoken"] inputs_for_student_head_list.append(student_local_cls_tokens.unsqueeze(0)) # 1b: global crops cls tokens student_global_cls_tokens = student_global_backbone_output_dict["x_norm_clstoken"] inputs_for_student_head_list.append(student_global_cls_tokens.unsqueeze(0)) # 1c: global crops patch tokens if do_ibot: _dim = student_global_backbone_output_dict["x_norm_clstoken"].shape[-1] ibot_student_patch_tokens = student_global_backbone_output_dict["x_norm_patchtokens"] buffer_tensor_patch_tokens = ibot_student_patch_tokens.new_zeros(upperbound, _dim) buffer_tensor_patch_tokens[:n_masked_patches].copy_( torch.index_select(ibot_student_patch_tokens.flatten(0, 1), dim=0, index=mask_indices_list) ) if not self.ibot_separate_head: inputs_for_student_head_list.append(buffer_tensor_patch_tokens.unsqueeze(0)) else: student_global_masked_patch_tokens_after_head = self.student.ibot_head(buffer_tensor_patch_tokens)[ :n_masked_patches ] # 2: run _attn_bias, cat_inputs = fmha.BlockDiagonalMask.from_tensor_list(inputs_for_student_head_list) outputs_list = _attn_bias.split(self.student.dino_head(cat_inputs)) # 3a: local crops cls tokens student_local_cls_tokens_after_head = outputs_list.pop(0).squeeze(0) # 3b: global crops cls tokens student_global_cls_tokens_after_head = outputs_list.pop(0).squeeze(0) # 3c: global crops patch tokens if do_ibot and not self.ibot_separate_head: student_global_masked_patch_tokens_after_head = outputs_list.pop(0).squeeze(0)[:n_masked_patches] if n_local_crops > 0: dino_local_crops_loss = self.dino_loss( student_output_list=student_local_cls_tokens_after_head.chunk(n_local_crops), teacher_out_softmaxed_centered_list=teacher_dino_softmaxed_centered_list, ) / (n_global_crops_loss_terms + n_local_crops_loss_terms) # store for display loss_dict["dino_local_crops_loss"] = dino_local_crops_loss # accumulate loss loss_accumulator += self.dino_loss_weight * dino_local_crops_loss # process global crops loss_scales = 2 # this is here since we process global crops together if do_dino: # compute loss dino_global_crops_loss = ( self.dino_loss( student_output_list=[student_global_cls_tokens_after_head], teacher_out_softmaxed_centered_list=[ teacher_dino_softmaxed_centered_list.flatten(0, 1) ], # these were chunked and stacked in reverse so A is matched to B ) * loss_scales / (n_global_crops_loss_terms + n_local_crops_loss_terms) ) loss_dict["dino_global_crops_loss"] = dino_global_crops_loss # accumulate loss loss_accumulator += self.dino_loss_weight * dino_global_crops_loss student_cls_tokens = student_global_cls_tokens if self.do_koleo: koleo_loss = self.cfg.dino.koleo_loss_weight * sum( self.koleo_loss(p) for p in student_cls_tokens.chunk(2) ) # we don't apply koleo loss between cls tokens of a same image loss_accumulator += koleo_loss loss_dict["koleo_loss"] = ( koleo_loss / loss_scales ) # this is to display the same losses as before but we can remove eventually if do_ibot: # compute loss ibot_patch_loss = ( self.ibot_patch_loss.forward_masked( student_global_masked_patch_tokens_after_head, masked_teacher_ibot_softmaxed_centered, student_masks_flat=masks, n_masked_patches=n_masked_patches, masks_weight=masks_weight, ) * loss_scales * ibot_loss_scale ) # store for display loss_dict["ibot_loss"] = ibot_patch_loss / 2 # accumulate loss loss_accumulator += self.ibot_loss_weight * ibot_patch_loss self.backprop_loss(loss_accumulator) self.fsdp_synchronize_streams() return loss_dict def fsdp_synchronize_streams(self): if self.need_to_synchronize_fsdp_streams: torch.cuda.synchronize() self.student.dino_head._streams = ( self.teacher.dino_head._streams ) = self.student.backbone._streams = self.teacher.backbone._streams self.need_to_synchronize_fsdp_streams = False def update_teacher(self, m): student_param_list = [] teacher_param_list = [] with torch.no_grad(): for k in self.student.keys(): for ms, mt in zip(get_fsdp_modules(self.student[k]), get_fsdp_modules(self.teacher[k])): student_param_list += ms.params teacher_param_list += mt.params torch._foreach_mul_(teacher_param_list, m) torch._foreach_add_(teacher_param_list, student_param_list, alpha=1 - m) def train(self): super().train() self.teacher.eval() def get_maybe_fused_params_for_submodel(self, m): params_groups = get_params_groups_with_decay( model=m, lr_decay_rate=self.cfg.optim.layerwise_decay, patch_embed_lr_mult=self.cfg.optim.patch_embed_lr_mult, ) fused_params_groups = fuse_params_groups(params_groups) logger.info("fusing param groups") for g in fused_params_groups: g["foreach"] = True return fused_params_groups def get_params_groups(self): all_params_groups = [] for m in self.student.values(): all_params_groups += self.get_maybe_fused_params_for_submodel(m) return all_params_groups def prepare_for_distributed_training(self): logger.info("DISTRIBUTED FSDP -- preparing model for distributed training") if has_batchnorms(self.student): raise NotImplementedError # below will synchronize all student subnetworks across gpus: for k, v in self.student.items(): self.teacher[k].load_state_dict(self.student[k].state_dict()) student_model_cfg = self.cfg.compute_precision.student[k] self.student[k] = get_fsdp_wrapper(student_model_cfg, modules_to_wrap={BlockChunk})(self.student[k]) teacher_model_cfg = self.cfg.compute_precision.teacher[k] self.teacher[k] = get_fsdp_wrapper(teacher_model_cfg, modules_to_wrap={BlockChunk})(self.teacher[k])
dinov2-main
dinov2/train/ssl_meta_arch.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import argparse import logging import math import os from functools import partial from fvcore.common.checkpoint import PeriodicCheckpointer import torch from dinov2.data import SamplerType, make_data_loader, make_dataset from dinov2.data import collate_data_and_cast, DataAugmentationDINO, MaskingGenerator import dinov2.distributed as distributed from dinov2.fsdp import FSDPCheckpointer from dinov2.logging import MetricLogger from dinov2.utils.config import setup from dinov2.utils.utils import CosineScheduler from dinov2.train.ssl_meta_arch import SSLMetaArch torch.backends.cuda.matmul.allow_tf32 = True # PyTorch 1.12 sets this to False by default logger = logging.getLogger("dinov2") def get_args_parser(add_help: bool = True): parser = argparse.ArgumentParser("DINOv2 training", add_help=add_help) parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file") parser.add_argument( "--no-resume", action="store_true", help="Whether to not attempt to resume from the checkpoint directory. ", ) parser.add_argument("--eval-only", action="store_true", help="perform evaluation only") parser.add_argument("--eval", type=str, default="", help="Eval type to perform") parser.add_argument( "opts", help=""" Modify config options at the end of the command. For Yacs configs, use space-separated "PATH.KEY VALUE" pairs. For python-based LazyConfig, use "path.key=value". """.strip(), default=None, nargs=argparse.REMAINDER, ) parser.add_argument( "--output-dir", "--output_dir", default="", type=str, help="Output directory to save logs and checkpoints", ) return parser def build_optimizer(cfg, params_groups): return torch.optim.AdamW(params_groups, betas=(cfg.optim.adamw_beta1, cfg.optim.adamw_beta2)) def build_schedulers(cfg): OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH lr = dict( base_value=cfg.optim["lr"], final_value=cfg.optim["min_lr"], total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH, warmup_iters=cfg.optim["warmup_epochs"] * OFFICIAL_EPOCH_LENGTH, start_warmup_value=0, ) wd = dict( base_value=cfg.optim["weight_decay"], final_value=cfg.optim["weight_decay_end"], total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH, ) momentum = dict( base_value=cfg.teacher["momentum_teacher"], final_value=cfg.teacher["final_momentum_teacher"], total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH, ) teacher_temp = dict( base_value=cfg.teacher["teacher_temp"], final_value=cfg.teacher["teacher_temp"], total_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH, warmup_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH, start_warmup_value=cfg.teacher["warmup_teacher_temp"], ) lr_schedule = CosineScheduler(**lr) wd_schedule = CosineScheduler(**wd) momentum_schedule = CosineScheduler(**momentum) teacher_temp_schedule = CosineScheduler(**teacher_temp) last_layer_lr_schedule = CosineScheduler(**lr) last_layer_lr_schedule.schedule[ : cfg.optim["freeze_last_layer_epochs"] * OFFICIAL_EPOCH_LENGTH ] = 0 # mimicking the original schedules logger.info("Schedulers ready.") return ( lr_schedule, wd_schedule, momentum_schedule, teacher_temp_schedule, last_layer_lr_schedule, ) def apply_optim_scheduler(optimizer, lr, wd, last_layer_lr): for param_group in optimizer.param_groups: is_last_layer = param_group["is_last_layer"] lr_multiplier = param_group["lr_multiplier"] wd_multiplier = param_group["wd_multiplier"] param_group["weight_decay"] = wd * wd_multiplier param_group["lr"] = (last_layer_lr if is_last_layer else lr) * lr_multiplier def do_test(cfg, model, iteration): new_state_dict = model.teacher.state_dict() if distributed.is_main_process(): iterstring = str(iteration) eval_dir = os.path.join(cfg.train.output_dir, "eval", iterstring) os.makedirs(eval_dir, exist_ok=True) # save teacher checkpoint teacher_ckp_path = os.path.join(eval_dir, "teacher_checkpoint.pth") torch.save({"teacher": new_state_dict}, teacher_ckp_path) def do_train(cfg, model, resume=False): model.train() inputs_dtype = torch.half fp16_scaler = model.fp16_scaler # for mixed precision training # setup optimizer optimizer = build_optimizer(cfg, model.get_params_groups()) ( lr_schedule, wd_schedule, momentum_schedule, teacher_temp_schedule, last_layer_lr_schedule, ) = build_schedulers(cfg) # checkpointer checkpointer = FSDPCheckpointer(model, cfg.train.output_dir, optimizer=optimizer, save_to_disk=True) start_iter = checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1 OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH max_iter = cfg.optim.epochs * OFFICIAL_EPOCH_LENGTH periodic_checkpointer = PeriodicCheckpointer( checkpointer, period=3 * OFFICIAL_EPOCH_LENGTH, max_iter=max_iter, max_to_keep=3, ) # setup data preprocessing img_size = cfg.crops.global_crops_size patch_size = cfg.student.patch_size n_tokens = (img_size // patch_size) ** 2 mask_generator = MaskingGenerator( input_size=(img_size // patch_size, img_size // patch_size), max_num_patches=0.5 * img_size // patch_size * img_size // patch_size, ) data_transform = DataAugmentationDINO( cfg.crops.global_crops_scale, cfg.crops.local_crops_scale, cfg.crops.local_crops_number, global_crops_size=cfg.crops.global_crops_size, local_crops_size=cfg.crops.local_crops_size, ) collate_fn = partial( collate_data_and_cast, mask_ratio_tuple=cfg.ibot.mask_ratio_min_max, mask_probability=cfg.ibot.mask_sample_probability, n_tokens=n_tokens, mask_generator=mask_generator, dtype=inputs_dtype, ) # setup data loader dataset = make_dataset( dataset_str=cfg.train.dataset_path, transform=data_transform, target_transform=lambda _: (), ) # sampler_type = SamplerType.INFINITE sampler_type = SamplerType.SHARDED_INFINITE data_loader = make_data_loader( dataset=dataset, batch_size=cfg.train.batch_size_per_gpu, num_workers=cfg.train.num_workers, shuffle=True, seed=start_iter, # TODO: Fix this -- cfg.train.seed sampler_type=sampler_type, sampler_advance=0, # TODO(qas): fix this -- start_iter * cfg.train.batch_size_per_gpu, drop_last=True, collate_fn=collate_fn, ) # training loop iteration = start_iter logger.info("Starting training from iteration {}".format(start_iter)) metrics_file = os.path.join(cfg.train.output_dir, "training_metrics.json") metric_logger = MetricLogger(delimiter=" ", output_file=metrics_file) header = "Training" for data in metric_logger.log_every( data_loader, 10, header, max_iter, start_iter, ): current_batch_size = data["collated_global_crops"].shape[0] / 2 if iteration > max_iter: return # apply schedules lr = lr_schedule[iteration] wd = wd_schedule[iteration] mom = momentum_schedule[iteration] teacher_temp = teacher_temp_schedule[iteration] last_layer_lr = last_layer_lr_schedule[iteration] apply_optim_scheduler(optimizer, lr, wd, last_layer_lr) # compute losses optimizer.zero_grad(set_to_none=True) loss_dict = model.forward_backward(data, teacher_temp=teacher_temp) # clip gradients if fp16_scaler is not None: if cfg.optim.clip_grad: fp16_scaler.unscale_(optimizer) for v in model.student.values(): v.clip_grad_norm_(cfg.optim.clip_grad) fp16_scaler.step(optimizer) fp16_scaler.update() else: if cfg.optim.clip_grad: for v in model.student.values(): v.clip_grad_norm_(cfg.optim.clip_grad) optimizer.step() # perform teacher EMA update model.update_teacher(mom) # logging if distributed.get_global_size() > 1: for v in loss_dict.values(): torch.distributed.all_reduce(v) loss_dict_reduced = {k: v.item() / distributed.get_global_size() for k, v in loss_dict.items()} if math.isnan(sum(loss_dict_reduced.values())): logger.info("NaN detected") raise AssertionError losses_reduced = sum(loss for loss in loss_dict_reduced.values()) metric_logger.update(lr=lr) metric_logger.update(wd=wd) metric_logger.update(mom=mom) metric_logger.update(last_layer_lr=last_layer_lr) metric_logger.update(current_batch_size=current_batch_size) metric_logger.update(total_loss=losses_reduced, **loss_dict_reduced) # checkpointing and testing if cfg.evaluation.eval_period_iterations > 0 and (iteration + 1) % cfg.evaluation.eval_period_iterations == 0: do_test(cfg, model, f"training_{iteration}") torch.cuda.synchronize() periodic_checkpointer.step(iteration) iteration = iteration + 1 metric_logger.synchronize_between_processes() return {k: meter.global_avg for k, meter in metric_logger.meters.items()} def main(args): cfg = setup(args) model = SSLMetaArch(cfg).to(torch.device("cuda")) model.prepare_for_distributed_training() logger.info("Model:\n{}".format(model)) if args.eval_only: iteration = ( FSDPCheckpointer(model, save_dir=cfg.train.output_dir) .resume_or_load(cfg.MODEL.WEIGHTS, resume=not args.no_resume) .get("iteration", -1) + 1 ) return do_test(cfg, model, f"manual_{iteration}") do_train(cfg, model, resume=not args.no_resume) if __name__ == "__main__": args = get_args_parser(add_help=True).parse_args() main(args)
dinov2-main
dinov2/train/train.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from enum import Enum import logging from typing import Any, Dict, Optional import torch from torch import Tensor from torchmetrics import Metric, MetricCollection from torchmetrics.classification import MulticlassAccuracy from torchmetrics.utilities.data import dim_zero_cat, select_topk logger = logging.getLogger("dinov2") class MetricType(Enum): MEAN_ACCURACY = "mean_accuracy" MEAN_PER_CLASS_ACCURACY = "mean_per_class_accuracy" PER_CLASS_ACCURACY = "per_class_accuracy" IMAGENET_REAL_ACCURACY = "imagenet_real_accuracy" @property def accuracy_averaging(self): return getattr(AccuracyAveraging, self.name, None) def __str__(self): return self.value class AccuracyAveraging(Enum): MEAN_ACCURACY = "micro" MEAN_PER_CLASS_ACCURACY = "macro" PER_CLASS_ACCURACY = "none" def __str__(self): return self.value def build_metric(metric_type: MetricType, *, num_classes: int, ks: Optional[tuple] = None): if metric_type.accuracy_averaging is not None: return build_topk_accuracy_metric( average_type=metric_type.accuracy_averaging, num_classes=num_classes, ks=(1, 5) if ks is None else ks, ) elif metric_type == MetricType.IMAGENET_REAL_ACCURACY: return build_topk_imagenet_real_accuracy_metric( num_classes=num_classes, ks=(1, 5) if ks is None else ks, ) raise ValueError(f"Unknown metric type {metric_type}") def build_topk_accuracy_metric(average_type: AccuracyAveraging, num_classes: int, ks: tuple = (1, 5)): metrics: Dict[str, Metric] = { f"top-{k}": MulticlassAccuracy(top_k=k, num_classes=int(num_classes), average=average_type.value) for k in ks } return MetricCollection(metrics) def build_topk_imagenet_real_accuracy_metric(num_classes: int, ks: tuple = (1, 5)): metrics: Dict[str, Metric] = {f"top-{k}": ImageNetReaLAccuracy(top_k=k, num_classes=int(num_classes)) for k in ks} return MetricCollection(metrics) class ImageNetReaLAccuracy(Metric): is_differentiable: bool = False higher_is_better: Optional[bool] = None full_state_update: bool = False def __init__( self, num_classes: int, top_k: int = 1, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.num_classes = num_classes self.top_k = top_k self.add_state("tp", [], dist_reduce_fx="cat") def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore # preds [B, D] # target [B, A] # preds_oh [B, D] with 0 and 1 # select top K highest probabilities, use one hot representation preds_oh = select_topk(preds, self.top_k) # target_oh [B, D + 1] with 0 and 1 target_oh = torch.zeros((preds_oh.shape[0], preds_oh.shape[1] + 1), device=target.device, dtype=torch.int32) target = target.long() # for undefined targets (-1) use a fake value `num_classes` target[target == -1] = self.num_classes # fill targets, use one hot representation target_oh.scatter_(1, target, 1) # target_oh [B, D] (remove the fake target at index `num_classes`) target_oh = target_oh[:, :-1] # tp [B] with 0 and 1 tp = (preds_oh * target_oh == 1).sum(dim=1) # at least one match between prediction and target tp.clip_(max=1) # ignore instances where no targets are defined mask = target_oh.sum(dim=1) > 0 tp = tp[mask] self.tp.append(tp) # type: ignore def compute(self) -> Tensor: tp = dim_zero_cat(self.tp) # type: ignore return tp.float().mean()
dinov2-main
dinov2/eval/metrics.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import argparse from functools import partial import json import logging import os import sys from typing import List, Optional import numpy as np import torch import torch.nn as nn from torch.nn.parallel import DistributedDataParallel from fvcore.common.checkpoint import Checkpointer, PeriodicCheckpointer from dinov2.data import SamplerType, make_data_loader, make_dataset from dinov2.data.transforms import make_classification_eval_transform, make_classification_train_transform import dinov2.distributed as distributed from dinov2.eval.metrics import MetricType, build_metric from dinov2.eval.setup import get_args_parser as get_setup_args_parser from dinov2.eval.setup import setup_and_build_model from dinov2.eval.utils import ModelWithIntermediateLayers, evaluate from dinov2.logging import MetricLogger logger = logging.getLogger("dinov2") def get_args_parser( description: Optional[str] = None, parents: Optional[List[argparse.ArgumentParser]] = None, add_help: bool = True, ): parents = parents or [] setup_args_parser = get_setup_args_parser(parents=parents, add_help=False) parents = [setup_args_parser] parser = argparse.ArgumentParser( description=description, parents=parents, add_help=add_help, ) parser.add_argument( "--train-dataset", dest="train_dataset_str", type=str, help="Training dataset", ) parser.add_argument( "--val-dataset", dest="val_dataset_str", type=str, help="Validation dataset", ) parser.add_argument( "--test-datasets", dest="test_dataset_strs", type=str, nargs="+", help="Test datasets, none to reuse the validation dataset", ) parser.add_argument( "--epochs", type=int, help="Number of training epochs", ) parser.add_argument( "--batch-size", type=int, help="Batch Size (per GPU)", ) parser.add_argument( "--num-workers", type=int, help="Number de Workers", ) parser.add_argument( "--epoch-length", type=int, help="Length of an epoch in number of iterations", ) parser.add_argument( "--save-checkpoint-frequency", type=int, help="Number of epochs between two named checkpoint saves.", ) parser.add_argument( "--eval-period-iterations", type=int, help="Number of iterations between two evaluations.", ) parser.add_argument( "--learning-rates", nargs="+", type=float, help="Learning rates to grid search.", ) parser.add_argument( "--no-resume", action="store_true", help="Whether to not resume from existing checkpoints", ) parser.add_argument( "--val-metric-type", type=MetricType, choices=list(MetricType), help="Validation metric", ) parser.add_argument( "--test-metric-types", type=MetricType, choices=list(MetricType), nargs="+", help="Evaluation metric", ) parser.add_argument( "--classifier-fpath", type=str, help="Path to a file containing pretrained linear classifiers", ) parser.add_argument( "--val-class-mapping-fpath", type=str, help="Path to a file containing a mapping to adjust classifier outputs", ) parser.add_argument( "--test-class-mapping-fpaths", nargs="+", type=str, help="Path to a file containing a mapping to adjust classifier outputs", ) parser.set_defaults( train_dataset_str="ImageNet:split=TRAIN", val_dataset_str="ImageNet:split=VAL", test_dataset_strs=None, epochs=10, batch_size=128, num_workers=8, epoch_length=1250, save_checkpoint_frequency=20, eval_period_iterations=1250, learning_rates=[1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2, 0.1], val_metric_type=MetricType.MEAN_ACCURACY, test_metric_types=None, classifier_fpath=None, val_class_mapping_fpath=None, test_class_mapping_fpaths=[None], ) return parser def has_ddp_wrapper(m: nn.Module) -> bool: return isinstance(m, DistributedDataParallel) def remove_ddp_wrapper(m: nn.Module) -> nn.Module: return m.module if has_ddp_wrapper(m) else m def _pad_and_collate(batch): maxlen = max(len(targets) for image, targets in batch) padded_batch = [ (image, np.pad(targets, (0, maxlen - len(targets)), constant_values=-1)) for image, targets in batch ] return torch.utils.data.default_collate(padded_batch) def create_linear_input(x_tokens_list, use_n_blocks, use_avgpool): intermediate_output = x_tokens_list[-use_n_blocks:] output = torch.cat([class_token for _, class_token in intermediate_output], dim=-1) if use_avgpool: output = torch.cat( ( output, torch.mean(intermediate_output[-1][0], dim=1), # patch tokens ), dim=-1, ) output = output.reshape(output.shape[0], -1) return output.float() class LinearClassifier(nn.Module): """Linear layer to train on top of frozen features""" def __init__(self, out_dim, use_n_blocks, use_avgpool, num_classes=1000): super().__init__() self.out_dim = out_dim self.use_n_blocks = use_n_blocks self.use_avgpool = use_avgpool self.num_classes = num_classes self.linear = nn.Linear(out_dim, num_classes) self.linear.weight.data.normal_(mean=0.0, std=0.01) self.linear.bias.data.zero_() def forward(self, x_tokens_list): output = create_linear_input(x_tokens_list, self.use_n_blocks, self.use_avgpool) return self.linear(output) class AllClassifiers(nn.Module): def __init__(self, classifiers_dict): super().__init__() self.classifiers_dict = nn.ModuleDict() self.classifiers_dict.update(classifiers_dict) def forward(self, inputs): return {k: v.forward(inputs) for k, v in self.classifiers_dict.items()} def __len__(self): return len(self.classifiers_dict) class LinearPostprocessor(nn.Module): def __init__(self, linear_classifier, class_mapping=None): super().__init__() self.linear_classifier = linear_classifier self.register_buffer("class_mapping", None if class_mapping is None else torch.LongTensor(class_mapping)) def forward(self, samples, targets): preds = self.linear_classifier(samples) return { "preds": preds[:, self.class_mapping] if self.class_mapping is not None else preds, "target": targets, } def scale_lr(learning_rates, batch_size): return learning_rates * (batch_size * distributed.get_global_size()) / 256.0 def setup_linear_classifiers(sample_output, n_last_blocks_list, learning_rates, batch_size, num_classes=1000): linear_classifiers_dict = nn.ModuleDict() optim_param_groups = [] for n in n_last_blocks_list: for avgpool in [False, True]: for _lr in learning_rates: lr = scale_lr(_lr, batch_size) out_dim = create_linear_input(sample_output, use_n_blocks=n, use_avgpool=avgpool).shape[1] linear_classifier = LinearClassifier( out_dim, use_n_blocks=n, use_avgpool=avgpool, num_classes=num_classes ) linear_classifier = linear_classifier.cuda() linear_classifiers_dict[ f"classifier_{n}_blocks_avgpool_{avgpool}_lr_{lr:.5f}".replace(".", "_") ] = linear_classifier optim_param_groups.append({"params": linear_classifier.parameters(), "lr": lr}) linear_classifiers = AllClassifiers(linear_classifiers_dict) if distributed.is_enabled(): linear_classifiers = nn.parallel.DistributedDataParallel(linear_classifiers) return linear_classifiers, optim_param_groups @torch.no_grad() def evaluate_linear_classifiers( feature_model, linear_classifiers, data_loader, metric_type, metrics_file_path, training_num_classes, iteration, prefixstring="", class_mapping=None, best_classifier_on_val=None, ): logger.info("running validation !") num_classes = len(class_mapping) if class_mapping is not None else training_num_classes metric = build_metric(metric_type, num_classes=num_classes) postprocessors = {k: LinearPostprocessor(v, class_mapping) for k, v in linear_classifiers.classifiers_dict.items()} metrics = {k: metric.clone() for k in linear_classifiers.classifiers_dict} _, results_dict_temp = evaluate( feature_model, data_loader, postprocessors, metrics, torch.cuda.current_device(), ) logger.info("") results_dict = {} max_accuracy = 0 best_classifier = "" for i, (classifier_string, metric) in enumerate(results_dict_temp.items()): logger.info(f"{prefixstring} -- Classifier: {classifier_string} * {metric}") if ( best_classifier_on_val is None and metric["top-1"].item() > max_accuracy ) or classifier_string == best_classifier_on_val: max_accuracy = metric["top-1"].item() best_classifier = classifier_string results_dict["best_classifier"] = {"name": best_classifier, "accuracy": max_accuracy} logger.info(f"best classifier: {results_dict['best_classifier']}") if distributed.is_main_process(): with open(metrics_file_path, "a") as f: f.write(f"iter: {iteration}\n") for k, v in results_dict.items(): f.write(json.dumps({k: v}) + "\n") f.write("\n") return results_dict def eval_linear( *, feature_model, linear_classifiers, train_data_loader, val_data_loader, metrics_file_path, optimizer, scheduler, output_dir, max_iter, checkpoint_period, # In number of iter, creates a new file every period running_checkpoint_period, # Period to update main checkpoint file eval_period, metric_type, training_num_classes, resume=True, classifier_fpath=None, val_class_mapping=None, ): checkpointer = Checkpointer(linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler) start_iter = checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get("iteration", -1) + 1 periodic_checkpointer = PeriodicCheckpointer(checkpointer, checkpoint_period, max_iter=max_iter) iteration = start_iter logger.info("Starting training from iteration {}".format(start_iter)) metric_logger = MetricLogger(delimiter=" ") header = "Training" for data, labels in metric_logger.log_every( train_data_loader, 10, header, max_iter, start_iter, ): data = data.cuda(non_blocking=True) labels = labels.cuda(non_blocking=True) features = feature_model(data) outputs = linear_classifiers(features) losses = {f"loss_{k}": nn.CrossEntropyLoss()(v, labels) for k, v in outputs.items()} loss = sum(losses.values()) # compute the gradients optimizer.zero_grad() loss.backward() # step optimizer.step() scheduler.step() # log if iteration % 10 == 0: torch.cuda.synchronize() metric_logger.update(loss=loss.item()) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) print("lr", optimizer.param_groups[0]["lr"]) if iteration - start_iter > 5: if iteration % running_checkpoint_period == 0: torch.cuda.synchronize() if distributed.is_main_process(): logger.info("Checkpointing running_checkpoint") periodic_checkpointer.save("running_checkpoint_linear_eval", iteration=iteration) torch.cuda.synchronize() periodic_checkpointer.step(iteration) if eval_period > 0 and (iteration + 1) % eval_period == 0 and iteration != max_iter - 1: _ = evaluate_linear_classifiers( feature_model=feature_model, linear_classifiers=remove_ddp_wrapper(linear_classifiers), data_loader=val_data_loader, metrics_file_path=metrics_file_path, prefixstring=f"ITER: {iteration}", metric_type=metric_type, training_num_classes=training_num_classes, iteration=iteration, class_mapping=val_class_mapping, ) torch.cuda.synchronize() iteration = iteration + 1 val_results_dict = evaluate_linear_classifiers( feature_model=feature_model, linear_classifiers=remove_ddp_wrapper(linear_classifiers), data_loader=val_data_loader, metrics_file_path=metrics_file_path, metric_type=metric_type, training_num_classes=training_num_classes, iteration=iteration, class_mapping=val_class_mapping, ) return val_results_dict, feature_model, linear_classifiers, iteration def make_eval_data_loader(test_dataset_str, batch_size, num_workers, metric_type): test_dataset = make_dataset( dataset_str=test_dataset_str, transform=make_classification_eval_transform(), ) test_data_loader = make_data_loader( dataset=test_dataset, batch_size=batch_size, num_workers=num_workers, sampler_type=SamplerType.DISTRIBUTED, drop_last=False, shuffle=False, persistent_workers=False, collate_fn=_pad_and_collate if metric_type == MetricType.IMAGENET_REAL_ACCURACY else None, ) return test_data_loader def test_on_datasets( feature_model, linear_classifiers, test_dataset_strs, batch_size, num_workers, test_metric_types, metrics_file_path, training_num_classes, iteration, best_classifier_on_val, prefixstring="", test_class_mappings=[None], ): results_dict = {} for test_dataset_str, class_mapping, metric_type in zip(test_dataset_strs, test_class_mappings, test_metric_types): logger.info(f"Testing on {test_dataset_str}") test_data_loader = make_eval_data_loader(test_dataset_str, batch_size, num_workers, metric_type) dataset_results_dict = evaluate_linear_classifiers( feature_model, remove_ddp_wrapper(linear_classifiers), test_data_loader, metric_type, metrics_file_path, training_num_classes, iteration, prefixstring="", class_mapping=class_mapping, best_classifier_on_val=best_classifier_on_val, ) results_dict[f"{test_dataset_str}_accuracy"] = 100.0 * dataset_results_dict["best_classifier"]["accuracy"] return results_dict def run_eval_linear( model, output_dir, train_dataset_str, val_dataset_str, batch_size, epochs, epoch_length, num_workers, save_checkpoint_frequency, eval_period_iterations, learning_rates, autocast_dtype, test_dataset_strs=None, resume=True, classifier_fpath=None, val_class_mapping_fpath=None, test_class_mapping_fpaths=[None], val_metric_type=MetricType.MEAN_ACCURACY, test_metric_types=None, ): seed = 0 if test_dataset_strs is None: test_dataset_strs = [val_dataset_str] if test_metric_types is None: test_metric_types = [val_metric_type] * len(test_dataset_strs) else: assert len(test_metric_types) == len(test_dataset_strs) assert len(test_dataset_strs) == len(test_class_mapping_fpaths) train_transform = make_classification_train_transform() train_dataset = make_dataset( dataset_str=train_dataset_str, transform=train_transform, ) training_num_classes = len(torch.unique(torch.Tensor(train_dataset.get_targets().astype(int)))) sampler_type = SamplerType.SHARDED_INFINITE # sampler_type = SamplerType.INFINITE n_last_blocks_list = [1, 4] n_last_blocks = max(n_last_blocks_list) autocast_ctx = partial(torch.cuda.amp.autocast, enabled=True, dtype=autocast_dtype) feature_model = ModelWithIntermediateLayers(model, n_last_blocks, autocast_ctx) sample_output = feature_model(train_dataset[0][0].unsqueeze(0).cuda()) linear_classifiers, optim_param_groups = setup_linear_classifiers( sample_output, n_last_blocks_list, learning_rates, batch_size, training_num_classes, ) optimizer = torch.optim.SGD(optim_param_groups, momentum=0.9, weight_decay=0) max_iter = epochs * epoch_length scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, max_iter, eta_min=0) checkpointer = Checkpointer(linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler) start_iter = checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get("iteration", -1) + 1 train_data_loader = make_data_loader( dataset=train_dataset, batch_size=batch_size, num_workers=num_workers, shuffle=True, seed=seed, sampler_type=sampler_type, sampler_advance=start_iter, drop_last=True, persistent_workers=True, ) val_data_loader = make_eval_data_loader(val_dataset_str, batch_size, num_workers, val_metric_type) checkpoint_period = save_checkpoint_frequency * epoch_length if val_class_mapping_fpath is not None: logger.info(f"Using class mapping from {val_class_mapping_fpath}") val_class_mapping = np.load(val_class_mapping_fpath) else: val_class_mapping = None test_class_mappings = [] for class_mapping_fpath in test_class_mapping_fpaths: if class_mapping_fpath is not None and class_mapping_fpath != "None": logger.info(f"Using class mapping from {class_mapping_fpath}") class_mapping = np.load(class_mapping_fpath) else: class_mapping = None test_class_mappings.append(class_mapping) metrics_file_path = os.path.join(output_dir, "results_eval_linear.json") val_results_dict, feature_model, linear_classifiers, iteration = eval_linear( feature_model=feature_model, linear_classifiers=linear_classifiers, train_data_loader=train_data_loader, val_data_loader=val_data_loader, metrics_file_path=metrics_file_path, optimizer=optimizer, scheduler=scheduler, output_dir=output_dir, max_iter=max_iter, checkpoint_period=checkpoint_period, running_checkpoint_period=epoch_length, eval_period=eval_period_iterations, metric_type=val_metric_type, training_num_classes=training_num_classes, resume=resume, val_class_mapping=val_class_mapping, classifier_fpath=classifier_fpath, ) results_dict = {} if len(test_dataset_strs) > 1 or test_dataset_strs[0] != val_dataset_str: results_dict = test_on_datasets( feature_model, linear_classifiers, test_dataset_strs, batch_size, 0, # num_workers, test_metric_types, metrics_file_path, training_num_classes, iteration, val_results_dict["best_classifier"]["name"], prefixstring="", test_class_mappings=test_class_mappings, ) results_dict["best_classifier"] = val_results_dict["best_classifier"]["name"] results_dict[f"{val_dataset_str}_accuracy"] = 100.0 * val_results_dict["best_classifier"]["accuracy"] logger.info("Test Results Dict " + str(results_dict)) return results_dict def main(args): model, autocast_dtype = setup_and_build_model(args) run_eval_linear( model=model, output_dir=args.output_dir, train_dataset_str=args.train_dataset_str, val_dataset_str=args.val_dataset_str, test_dataset_strs=args.test_dataset_strs, batch_size=args.batch_size, epochs=args.epochs, epoch_length=args.epoch_length, num_workers=args.num_workers, save_checkpoint_frequency=args.save_checkpoint_frequency, eval_period_iterations=args.eval_period_iterations, learning_rates=args.learning_rates, autocast_dtype=autocast_dtype, resume=not args.no_resume, classifier_fpath=args.classifier_fpath, val_metric_type=args.val_metric_type, test_metric_types=args.test_metric_types, val_class_mapping_fpath=args.val_class_mapping_fpath, test_class_mapping_fpaths=args.test_class_mapping_fpaths, ) return 0 if __name__ == "__main__": description = "DINOv2 linear evaluation" args_parser = get_args_parser(description=description) args = args_parser.parse_args() sys.exit(main(args))
dinov2-main
dinov2/eval/linear.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import argparse import gc import logging import sys import time from typing import List, Optional from cuml.linear_model import LogisticRegression import torch import torch.backends.cudnn as cudnn import torch.distributed from torch import nn from torch.utils.data import TensorDataset from torchmetrics import MetricTracker from dinov2.data import make_dataset from dinov2.data.transforms import make_classification_eval_transform from dinov2.distributed import get_global_rank, get_global_size from dinov2.eval.metrics import MetricType, build_metric from dinov2.eval.setup import get_args_parser as get_setup_args_parser from dinov2.eval.setup import setup_and_build_model from dinov2.eval.utils import evaluate, extract_features from dinov2.utils.dtype import as_torch_dtype logger = logging.getLogger("dinov2") DEFAULT_MAX_ITER = 1_000 C_POWER_RANGE = torch.linspace(-6, 5, 45) _CPU_DEVICE = torch.device("cpu") def get_args_parser( description: Optional[str] = None, parents: Optional[List[argparse.ArgumentParser]] = None, add_help: bool = True, ): parents = parents or [] setup_args_parser = get_setup_args_parser(parents=parents, add_help=False) parents = [setup_args_parser] parser = argparse.ArgumentParser( description=description, parents=parents, add_help=add_help, ) parser.add_argument( "--train-dataset", dest="train_dataset_str", type=str, help="Training dataset", ) parser.add_argument( "--val-dataset", dest="val_dataset_str", type=str, help="Validation dataset", ) parser.add_argument( "--finetune-dataset-str", dest="finetune_dataset_str", type=str, help="Fine-tuning dataset", ) parser.add_argument( "--finetune-on-val", action="store_true", help="If there is no finetune dataset, whether to choose the " "hyperparameters on the val set instead of 10%% of the train dataset", ) parser.add_argument( "--metric-type", type=MetricType, choices=list(MetricType), help="Metric type", ) parser.add_argument( "--train-features-device", type=str, help="Device to gather train features (cpu, cuda, cuda:0, etc.), default: %(default)s", ) parser.add_argument( "--train-dtype", type=str, help="Data type to convert the train features to (default: %(default)s)", ) parser.add_argument( "--max-train-iters", type=int, help="Maximum number of train iterations (default: %(default)s)", ) parser.set_defaults( train_dataset_str="ImageNet:split=TRAIN", val_dataset_str="ImageNet:split=VAL", finetune_dataset_str=None, metric_type=MetricType.MEAN_ACCURACY, train_features_device="cpu", train_dtype="float64", max_train_iters=DEFAULT_MAX_ITER, finetune_on_val=False, ) return parser class LogRegModule(nn.Module): def __init__( self, C, max_iter=DEFAULT_MAX_ITER, dtype=torch.float64, device=_CPU_DEVICE, ): super().__init__() self.dtype = dtype self.device = device self.estimator = LogisticRegression( penalty="l2", C=C, max_iter=max_iter, output_type="numpy", tol=1e-12, linesearch_max_iter=50, ) def forward(self, samples, targets): samples_device = samples.device samples = samples.to(dtype=self.dtype, device=self.device) if self.device == _CPU_DEVICE: samples = samples.numpy() probas = self.estimator.predict_proba(samples) return {"preds": torch.from_numpy(probas).to(samples_device), "target": targets} def fit(self, train_features, train_labels): train_features = train_features.to(dtype=self.dtype, device=self.device) train_labels = train_labels.to(dtype=self.dtype, device=self.device) if self.device == _CPU_DEVICE: # both cuML and sklearn only work with numpy arrays on CPU train_features = train_features.numpy() train_labels = train_labels.numpy() self.estimator.fit(train_features, train_labels) def evaluate_model(*, logreg_model, logreg_metric, test_data_loader, device): postprocessors = {"metrics": logreg_model} metrics = {"metrics": logreg_metric} return evaluate(nn.Identity(), test_data_loader, postprocessors, metrics, device) def train_for_C(*, C, max_iter, train_features, train_labels, dtype=torch.float64, device=_CPU_DEVICE): logreg_model = LogRegModule(C, max_iter=max_iter, dtype=dtype, device=device) logreg_model.fit(train_features, train_labels) return logreg_model def train_and_evaluate( *, C, max_iter, train_features, train_labels, logreg_metric, test_data_loader, train_dtype=torch.float64, train_features_device, eval_device, ): logreg_model = train_for_C( C=C, max_iter=max_iter, train_features=train_features, train_labels=train_labels, dtype=train_dtype, device=train_features_device, ) return evaluate_model( logreg_model=logreg_model, logreg_metric=logreg_metric, test_data_loader=test_data_loader, device=eval_device, ) def sweep_C_values( *, train_features, train_labels, test_data_loader, metric_type, num_classes, train_dtype=torch.float64, train_features_device=_CPU_DEVICE, max_train_iters=DEFAULT_MAX_ITER, ): if metric_type == MetricType.PER_CLASS_ACCURACY: # If we want to output per-class accuracy, we select the hyperparameters with mean per class metric_type = MetricType.MEAN_PER_CLASS_ACCURACY logreg_metric = build_metric(metric_type, num_classes=num_classes) metric_tracker = MetricTracker(logreg_metric, maximize=True) ALL_C = 10**C_POWER_RANGE logreg_models = {} train_features = train_features.to(dtype=train_dtype, device=train_features_device) train_labels = train_labels.to(device=train_features_device) for i in range(get_global_rank(), len(ALL_C), get_global_size()): C = ALL_C[i].item() logger.info( f"Training for C = {C:.5f}, dtype={train_dtype}, " f"features: {train_features.shape}, {train_features.dtype}, " f"labels: {train_labels.shape}, {train_labels.dtype}" ) logreg_models[C] = train_for_C( C=C, max_iter=max_train_iters, train_features=train_features, train_labels=train_labels, dtype=train_dtype, device=train_features_device, ) gather_list = [None for _ in range(get_global_size())] torch.distributed.all_gather_object(gather_list, logreg_models) logreg_models_gathered = {} for logreg_dict in gather_list: logreg_models_gathered.update(logreg_dict) for i in range(len(ALL_C)): metric_tracker.increment() C = ALL_C[i].item() evals = evaluate_model( logreg_model=logreg_models_gathered[C], logreg_metric=metric_tracker, test_data_loader=test_data_loader, device=torch.cuda.current_device(), ) logger.info(f"Trained for C = {C:.5f}, accuracies = {evals}") best_stats, which_epoch = metric_tracker.best_metric(return_step=True) best_stats_100 = {k: 100.0 * v for k, v in best_stats.items()} if which_epoch["top-1"] == i: best_C = C logger.info(f"Sweep best {best_stats_100}, best C = {best_C:.6f}") return best_stats, best_C def eval_log_regression( *, model, train_dataset, val_dataset, finetune_dataset, metric_type, batch_size, num_workers, finetune_on_val=False, train_dtype=torch.float64, train_features_device=_CPU_DEVICE, max_train_iters=DEFAULT_MAX_ITER, ): """ Implements the "standard" process for log regression evaluation: The value of C is chosen by training on train_dataset and evaluating on finetune_dataset. Then, the final model is trained on a concatenation of train_dataset and finetune_dataset, and is evaluated on val_dataset. If there is no finetune_dataset, the value of C is the one that yields the best results on a random 10% subset of the train dataset """ start = time.time() train_features, train_labels = extract_features( model, train_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE) ) val_features, val_labels = extract_features( model, val_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE) ) val_data_loader = torch.utils.data.DataLoader( TensorDataset(val_features, val_labels), batch_size=batch_size, drop_last=False, num_workers=0, persistent_workers=False, ) if finetune_dataset is None and finetune_on_val: logger.info("Choosing hyperparameters on the val dataset") finetune_features, finetune_labels = val_features, val_labels elif finetune_dataset is None and not finetune_on_val: logger.info("Choosing hyperparameters on 10% of the train dataset") torch.manual_seed(0) indices = torch.randperm(len(train_features), device=train_features.device) finetune_index = indices[: len(train_features) // 10] train_index = indices[len(train_features) // 10 :] finetune_features, finetune_labels = train_features[finetune_index], train_labels[finetune_index] train_features, train_labels = train_features[train_index], train_labels[train_index] else: logger.info("Choosing hyperparameters on the finetune dataset") finetune_features, finetune_labels = extract_features( model, finetune_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE) ) # release the model - free GPU memory del model gc.collect() torch.cuda.empty_cache() finetune_data_loader = torch.utils.data.DataLoader( TensorDataset(finetune_features, finetune_labels), batch_size=batch_size, drop_last=False, ) if len(train_labels.shape) > 1: num_classes = train_labels.shape[1] else: num_classes = train_labels.max() + 1 logger.info("Using cuML for logistic regression") best_stats, best_C = sweep_C_values( train_features=train_features, train_labels=train_labels, test_data_loader=finetune_data_loader, metric_type=metric_type, num_classes=num_classes, train_dtype=train_dtype, train_features_device=train_features_device, max_train_iters=max_train_iters, ) if not finetune_on_val: logger.info("Best parameter found, concatenating features") train_features = torch.cat((train_features, finetune_features)) train_labels = torch.cat((train_labels, finetune_labels)) logger.info("Training final model") logreg_metric = build_metric(metric_type, num_classes=num_classes) evals = train_and_evaluate( C=best_C, max_iter=max_train_iters, train_features=train_features, train_labels=train_labels, logreg_metric=logreg_metric.clone(), test_data_loader=val_data_loader, eval_device=torch.cuda.current_device(), train_dtype=train_dtype, train_features_device=train_features_device, ) best_stats = evals[1]["metrics"] best_stats["best_C"] = best_C logger.info(f"Log regression evaluation done in {int(time.time() - start)}s") return best_stats def eval_log_regression_with_model( model, train_dataset_str="ImageNet:split=TRAIN", val_dataset_str="ImageNet:split=VAL", finetune_dataset_str=None, autocast_dtype=torch.float, finetune_on_val=False, metric_type=MetricType.MEAN_ACCURACY, train_dtype=torch.float64, train_features_device=_CPU_DEVICE, max_train_iters=DEFAULT_MAX_ITER, ): cudnn.benchmark = True transform = make_classification_eval_transform(resize_size=224) target_transform = None train_dataset = make_dataset(dataset_str=train_dataset_str, transform=transform, target_transform=target_transform) val_dataset = make_dataset(dataset_str=val_dataset_str, transform=transform, target_transform=target_transform) if finetune_dataset_str is not None: finetune_dataset = make_dataset( dataset_str=finetune_dataset_str, transform=transform, target_transform=target_transform ) else: finetune_dataset = None with torch.cuda.amp.autocast(dtype=autocast_dtype): results_dict_logreg = eval_log_regression( model=model, train_dataset=train_dataset, val_dataset=val_dataset, finetune_dataset=finetune_dataset, metric_type=metric_type, batch_size=256, num_workers=0, # 5, finetune_on_val=finetune_on_val, train_dtype=train_dtype, train_features_device=train_features_device, max_train_iters=max_train_iters, ) results_dict = { "top-1": results_dict_logreg["top-1"].cpu().numpy() * 100.0, "top-5": results_dict_logreg.get("top-5", torch.tensor(0.0)).cpu().numpy() * 100.0, "best_C": results_dict_logreg["best_C"], } logger.info( "\n".join( [ "Training of the supervised logistic regression on frozen features completed.\n" "Top-1 test accuracy: {acc:.1f}".format(acc=results_dict["top-1"]), "Top-5 test accuracy: {acc:.1f}".format(acc=results_dict["top-5"]), "obtained for C = {c:.6f}".format(c=results_dict["best_C"]), ] ) ) torch.distributed.barrier() return results_dict def main(args): model, autocast_dtype = setup_and_build_model(args) eval_log_regression_with_model( model=model, train_dataset_str=args.train_dataset_str, val_dataset_str=args.val_dataset_str, finetune_dataset_str=args.finetune_dataset_str, autocast_dtype=autocast_dtype, finetune_on_val=args.finetune_on_val, metric_type=args.metric_type, train_dtype=as_torch_dtype(args.train_dtype), train_features_device=torch.device(args.train_features_device), max_train_iters=args.max_train_iters, ) return 0 if __name__ == "__main__": description = "DINOv2 logistic regression evaluation" args_parser = get_args_parser(description=description) args = args_parser.parse_args() sys.exit(main(args))
dinov2-main
dinov2/eval/log_regression.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree.
dinov2-main
dinov2/eval/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import argparse from typing import Any, List, Optional, Tuple import torch import torch.backends.cudnn as cudnn from dinov2.models import build_model_from_cfg from dinov2.utils.config import setup import dinov2.utils.utils as dinov2_utils def get_args_parser( description: Optional[str] = None, parents: Optional[List[argparse.ArgumentParser]] = None, add_help: bool = True, ): parser = argparse.ArgumentParser( description=description, parents=parents or [], add_help=add_help, ) parser.add_argument( "--config-file", type=str, help="Model configuration file", ) parser.add_argument( "--pretrained-weights", type=str, help="Pretrained model weights", ) parser.add_argument( "--output-dir", default="", type=str, help="Output directory to write results and logs", ) parser.add_argument( "--opts", help="Extra configuration options", default=[], nargs="+", ) return parser def get_autocast_dtype(config): teacher_dtype_str = config.compute_precision.teacher.backbone.mixed_precision.param_dtype if teacher_dtype_str == "fp16": return torch.half elif teacher_dtype_str == "bf16": return torch.bfloat16 else: return torch.float def build_model_for_eval(config, pretrained_weights): model, _ = build_model_from_cfg(config, only_teacher=True) dinov2_utils.load_pretrained_weights(model, pretrained_weights, "teacher") model.eval() model.cuda() return model def setup_and_build_model(args) -> Tuple[Any, torch.dtype]: cudnn.benchmark = True config = setup(args) model = build_model_for_eval(config, args.pretrained_weights) autocast_dtype = get_autocast_dtype(config) return model, autocast_dtype
dinov2-main
dinov2/eval/setup.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import logging from typing import Dict, Optional import torch from torch import nn from torchmetrics import MetricCollection from dinov2.data import DatasetWithEnumeratedTargets, SamplerType, make_data_loader import dinov2.distributed as distributed from dinov2.logging import MetricLogger logger = logging.getLogger("dinov2") class ModelWithNormalize(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, samples): return nn.functional.normalize(self.model(samples), dim=1, p=2) class ModelWithIntermediateLayers(nn.Module): def __init__(self, feature_model, n_last_blocks, autocast_ctx): super().__init__() self.feature_model = feature_model self.feature_model.eval() self.n_last_blocks = n_last_blocks self.autocast_ctx = autocast_ctx def forward(self, images): with torch.inference_mode(): with self.autocast_ctx(): features = self.feature_model.get_intermediate_layers( images, self.n_last_blocks, return_class_token=True ) return features @torch.inference_mode() def evaluate( model: nn.Module, data_loader, postprocessors: Dict[str, nn.Module], metrics: Dict[str, MetricCollection], device: torch.device, criterion: Optional[nn.Module] = None, ): model.eval() if criterion is not None: criterion.eval() for metric in metrics.values(): metric = metric.to(device) metric_logger = MetricLogger(delimiter=" ") header = "Test:" for samples, targets, *_ in metric_logger.log_every(data_loader, 10, header): outputs = model(samples.to(device)) targets = targets.to(device) if criterion is not None: loss = criterion(outputs, targets) metric_logger.update(loss=loss.item()) for k, metric in metrics.items(): metric_inputs = postprocessors[k](outputs, targets) metric.update(**metric_inputs) metric_logger.synchronize_between_processes() logger.info(f"Averaged stats: {metric_logger}") stats = {k: metric.compute() for k, metric in metrics.items()} metric_logger_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()} return metric_logger_stats, stats def all_gather_and_flatten(tensor_rank): tensor_all_ranks = torch.empty( distributed.get_global_size(), *tensor_rank.shape, dtype=tensor_rank.dtype, device=tensor_rank.device, ) tensor_list = list(tensor_all_ranks.unbind(0)) torch.distributed.all_gather(tensor_list, tensor_rank.contiguous()) return tensor_all_ranks.flatten(end_dim=1) def extract_features(model, dataset, batch_size, num_workers, gather_on_cpu=False): dataset_with_enumerated_targets = DatasetWithEnumeratedTargets(dataset) sample_count = len(dataset_with_enumerated_targets) data_loader = make_data_loader( dataset=dataset_with_enumerated_targets, batch_size=batch_size, num_workers=num_workers, sampler_type=SamplerType.DISTRIBUTED, drop_last=False, shuffle=False, ) return extract_features_with_dataloader(model, data_loader, sample_count, gather_on_cpu) @torch.inference_mode() def extract_features_with_dataloader(model, data_loader, sample_count, gather_on_cpu=False): gather_device = torch.device("cpu") if gather_on_cpu else torch.device("cuda") metric_logger = MetricLogger(delimiter=" ") features, all_labels = None, None for samples, (index, labels_rank) in metric_logger.log_every(data_loader, 10): samples = samples.cuda(non_blocking=True) labels_rank = labels_rank.cuda(non_blocking=True) index = index.cuda(non_blocking=True) features_rank = model(samples).float() # init storage feature matrix if features is None: features = torch.zeros(sample_count, features_rank.shape[-1], device=gather_device) labels_shape = list(labels_rank.shape) labels_shape[0] = sample_count all_labels = torch.full(labels_shape, fill_value=-1, device=gather_device) logger.info(f"Storing features into tensor of shape {features.shape}") # share indexes, features and labels between processes index_all = all_gather_and_flatten(index).to(gather_device) features_all_ranks = all_gather_and_flatten(features_rank).to(gather_device) labels_all_ranks = all_gather_and_flatten(labels_rank).to(gather_device) # update storage feature matrix if len(index_all) > 0: features.index_copy_(0, index_all, features_all_ranks) all_labels.index_copy_(0, index_all, labels_all_ranks) logger.info(f"Features shape: {tuple(features.shape)}") logger.info(f"Labels shape: {tuple(all_labels.shape)}") assert torch.all(all_labels > -1) return features, all_labels
dinov2-main
dinov2/eval/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import argparse from functools import partial import json import logging import os import sys from typing import List, Optional import torch from torch.nn.functional import one_hot, softmax import dinov2.distributed as distributed from dinov2.data import SamplerType, make_data_loader, make_dataset from dinov2.data.transforms import make_classification_eval_transform from dinov2.eval.metrics import AccuracyAveraging, build_topk_accuracy_metric from dinov2.eval.setup import get_args_parser as get_setup_args_parser from dinov2.eval.setup import setup_and_build_model from dinov2.eval.utils import ModelWithNormalize, evaluate, extract_features logger = logging.getLogger("dinov2") def get_args_parser( description: Optional[str] = None, parents: Optional[List[argparse.ArgumentParser]] = None, add_help: bool = True, ): parents = parents or [] setup_args_parser = get_setup_args_parser(parents=parents, add_help=False) parents = [setup_args_parser] parser = argparse.ArgumentParser( description=description, parents=parents, add_help=add_help, ) parser.add_argument( "--train-dataset", dest="train_dataset_str", type=str, help="Training dataset", ) parser.add_argument( "--val-dataset", dest="val_dataset_str", type=str, help="Validation dataset", ) parser.add_argument( "--nb_knn", nargs="+", type=int, help="Number of NN to use. 20 is usually working the best.", ) parser.add_argument( "--temperature", type=float, help="Temperature used in the voting coefficient", ) parser.add_argument( "--gather-on-cpu", action="store_true", help="Whether to gather the train features on cpu, slower" "but useful to avoid OOM for large datasets (e.g. ImageNet22k).", ) parser.add_argument( "--batch-size", type=int, help="Batch size.", ) parser.add_argument( "--n-per-class-list", nargs="+", type=int, help="Number to take per class", ) parser.add_argument( "--n-tries", type=int, help="Number of tries", ) parser.set_defaults( train_dataset_str="ImageNet:split=TRAIN", val_dataset_str="ImageNet:split=VAL", nb_knn=[10, 20, 100, 200], temperature=0.07, batch_size=256, n_per_class_list=[-1], n_tries=1, ) return parser class KnnModule(torch.nn.Module): """ Gets knn of test features from all processes on a chunk of the train features Each rank gets a chunk of the train features as well as a chunk of the test features. In `compute_neighbors`, for each rank one after the other, its chunk of test features is sent to all devices, partial knns are computed with each chunk of train features then collated back on the original device. """ def __init__(self, train_features, train_labels, nb_knn, T, device, num_classes=1000): super().__init__() self.global_rank = distributed.get_global_rank() self.global_size = distributed.get_global_size() self.device = device self.train_features_rank_T = train_features.chunk(self.global_size)[self.global_rank].T.to(self.device) self.candidates = train_labels.chunk(self.global_size)[self.global_rank].view(1, -1).to(self.device) self.nb_knn = nb_knn self.max_k = max(self.nb_knn) self.T = T self.num_classes = num_classes def _get_knn_sims_and_labels(self, similarity, train_labels): topk_sims, indices = similarity.topk(self.max_k, largest=True, sorted=True) neighbors_labels = torch.gather(train_labels, 1, indices) return topk_sims, neighbors_labels def _similarity_for_rank(self, features_rank, source_rank): # Send the features from `source_rank` to all ranks broadcast_shape = torch.tensor(features_rank.shape).to(self.device) torch.distributed.broadcast(broadcast_shape, source_rank) broadcasted = features_rank if self.global_rank != source_rank: broadcasted = torch.zeros(*broadcast_shape, dtype=features_rank.dtype, device=self.device) torch.distributed.broadcast(broadcasted, source_rank) # Compute the neighbors for `source_rank` among `train_features_rank_T` similarity_rank = torch.mm(broadcasted, self.train_features_rank_T) candidate_labels = self.candidates.expand(len(similarity_rank), -1) return self._get_knn_sims_and_labels(similarity_rank, candidate_labels) def _gather_all_knn_for_rank(self, topk_sims, neighbors_labels, target_rank): # Gather all neighbors for `target_rank` topk_sims_rank = retrieved_rank = None if self.global_rank == target_rank: topk_sims_rank = [torch.zeros_like(topk_sims) for _ in range(self.global_size)] retrieved_rank = [torch.zeros_like(neighbors_labels) for _ in range(self.global_size)] torch.distributed.gather(topk_sims, topk_sims_rank, dst=target_rank) torch.distributed.gather(neighbors_labels, retrieved_rank, dst=target_rank) if self.global_rank == target_rank: # Perform a second top-k on the k * global_size retrieved neighbors topk_sims_rank = torch.cat(topk_sims_rank, dim=1) retrieved_rank = torch.cat(retrieved_rank, dim=1) results = self._get_knn_sims_and_labels(topk_sims_rank, retrieved_rank) return results return None def compute_neighbors(self, features_rank): for rank in range(self.global_size): topk_sims, neighbors_labels = self._similarity_for_rank(features_rank, rank) results = self._gather_all_knn_for_rank(topk_sims, neighbors_labels, rank) if results is not None: topk_sims_rank, neighbors_labels_rank = results return topk_sims_rank, neighbors_labels_rank def forward(self, features_rank): """ Compute the results on all values of `self.nb_knn` neighbors from the full `self.max_k` """ assert all(k <= self.max_k for k in self.nb_knn) topk_sims, neighbors_labels = self.compute_neighbors(features_rank) batch_size = neighbors_labels.shape[0] topk_sims_transform = softmax(topk_sims / self.T, 1) matmul = torch.mul( one_hot(neighbors_labels, num_classes=self.num_classes), topk_sims_transform.view(batch_size, -1, 1), ) probas_for_k = {k: torch.sum(matmul[:, :k, :], 1) for k in self.nb_knn} return probas_for_k class DictKeysModule(torch.nn.Module): def __init__(self, keys): super().__init__() self.keys = keys def forward(self, features_dict, targets): for k in self.keys: features_dict = features_dict[k] return {"preds": features_dict, "target": targets} def create_module_dict(*, module, n_per_class_list, n_tries, nb_knn, train_features, train_labels): modules = {} mapping = create_class_indices_mapping(train_labels) for npc in n_per_class_list: if npc < 0: # Only one try needed when using the full data full_module = module( train_features=train_features, train_labels=train_labels, nb_knn=nb_knn, ) modules["full"] = ModuleDictWithForward({"1": full_module}) continue all_tries = {} for t in range(n_tries): final_indices = filter_train(mapping, npc, seed=t) k_list = list(set(nb_knn + [npc])) k_list = sorted([el for el in k_list if el <= npc]) all_tries[str(t)] = module( train_features=train_features[final_indices], train_labels=train_labels[final_indices], nb_knn=k_list, ) modules[f"{npc} per class"] = ModuleDictWithForward(all_tries) return ModuleDictWithForward(modules) def filter_train(mapping, n_per_class, seed): torch.manual_seed(seed) final_indices = [] for k in mapping.keys(): index = torch.randperm(len(mapping[k]))[:n_per_class] final_indices.append(mapping[k][index]) return torch.cat(final_indices).squeeze() def create_class_indices_mapping(labels): unique_labels, inverse = torch.unique(labels, return_inverse=True) mapping = {unique_labels[i]: (inverse == i).nonzero() for i in range(len(unique_labels))} return mapping class ModuleDictWithForward(torch.nn.ModuleDict): def forward(self, *args, **kwargs): return {k: module(*args, **kwargs) for k, module in self._modules.items()} def eval_knn( model, train_dataset, val_dataset, accuracy_averaging, nb_knn, temperature, batch_size, num_workers, gather_on_cpu, n_per_class_list=[-1], n_tries=1, ): model = ModelWithNormalize(model) logger.info("Extracting features for train set...") train_features, train_labels = extract_features( model, train_dataset, batch_size, num_workers, gather_on_cpu=gather_on_cpu ) logger.info(f"Train features created, shape {train_features.shape}.") val_dataloader = make_data_loader( dataset=val_dataset, batch_size=batch_size, num_workers=num_workers, sampler_type=SamplerType.DISTRIBUTED, drop_last=False, shuffle=False, persistent_workers=True, ) num_classes = train_labels.max() + 1 metric_collection = build_topk_accuracy_metric(accuracy_averaging, num_classes=num_classes) device = torch.cuda.current_device() partial_module = partial(KnnModule, T=temperature, device=device, num_classes=num_classes) knn_module_dict = create_module_dict( module=partial_module, n_per_class_list=n_per_class_list, n_tries=n_tries, nb_knn=nb_knn, train_features=train_features, train_labels=train_labels, ) postprocessors, metrics = {}, {} for n_per_class, knn_module in knn_module_dict.items(): for t, knn_try in knn_module.items(): postprocessors = { **postprocessors, **{(n_per_class, t, k): DictKeysModule([n_per_class, t, k]) for k in knn_try.nb_knn}, } metrics = {**metrics, **{(n_per_class, t, k): metric_collection.clone() for k in knn_try.nb_knn}} model_with_knn = torch.nn.Sequential(model, knn_module_dict) # ============ evaluation ... ============ logger.info("Start the k-NN classification.") _, results_dict = evaluate(model_with_knn, val_dataloader, postprocessors, metrics, device) # Averaging the results over the n tries for each value of n_per_class for n_per_class, knn_module in knn_module_dict.items(): first_try = list(knn_module.keys())[0] k_list = knn_module[first_try].nb_knn for k in k_list: keys = results_dict[(n_per_class, first_try, k)].keys() # keys are e.g. `top-1` and `top-5` results_dict[(n_per_class, k)] = { key: torch.mean(torch.stack([results_dict[(n_per_class, t, k)][key] for t in knn_module.keys()])) for key in keys } for t in knn_module.keys(): del results_dict[(n_per_class, t, k)] return results_dict def eval_knn_with_model( model, output_dir, train_dataset_str="ImageNet:split=TRAIN", val_dataset_str="ImageNet:split=VAL", nb_knn=(10, 20, 100, 200), temperature=0.07, autocast_dtype=torch.float, accuracy_averaging=AccuracyAveraging.MEAN_ACCURACY, transform=None, gather_on_cpu=False, batch_size=256, num_workers=5, n_per_class_list=[-1], n_tries=1, ): transform = transform or make_classification_eval_transform() train_dataset = make_dataset( dataset_str=train_dataset_str, transform=transform, ) val_dataset = make_dataset( dataset_str=val_dataset_str, transform=transform, ) with torch.cuda.amp.autocast(dtype=autocast_dtype): results_dict_knn = eval_knn( model=model, train_dataset=train_dataset, val_dataset=val_dataset, accuracy_averaging=accuracy_averaging, nb_knn=nb_knn, temperature=temperature, batch_size=batch_size, num_workers=num_workers, gather_on_cpu=gather_on_cpu, n_per_class_list=n_per_class_list, n_tries=n_tries, ) results_dict = {} if distributed.is_main_process(): for knn_ in results_dict_knn.keys(): top1 = results_dict_knn[knn_]["top-1"].item() * 100.0 top5 = results_dict_knn[knn_]["top-5"].item() * 100.0 results_dict[f"{knn_} Top 1"] = top1 results_dict[f"{knn_} Top 5"] = top5 logger.info(f"{knn_} classifier result: Top1: {top1:.2f} Top5: {top5:.2f}") metrics_file_path = os.path.join(output_dir, "results_eval_knn.json") with open(metrics_file_path, "a") as f: for k, v in results_dict.items(): f.write(json.dumps({k: v}) + "\n") if distributed.is_enabled(): torch.distributed.barrier() return results_dict def main(args): model, autocast_dtype = setup_and_build_model(args) eval_knn_with_model( model=model, output_dir=args.output_dir, train_dataset_str=args.train_dataset_str, val_dataset_str=args.val_dataset_str, nb_knn=args.nb_knn, temperature=args.temperature, autocast_dtype=autocast_dtype, accuracy_averaging=AccuracyAveraging.MEAN_ACCURACY, transform=None, gather_on_cpu=args.gather_on_cpu, batch_size=args.batch_size, num_workers=5, n_per_class_list=args.n_per_class_list, n_tries=args.n_tries, ) return 0 if __name__ == "__main__": description = "DINOv2 k-NN evaluation" args_parser = get_args_parser(description=description) args = args_parser.parse_args() sys.exit(main(args))
dinov2-main
dinov2/eval/knn.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree.
dinov2-main
dinov2/eval/depth/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .backbones import * # noqa: F403 from .builder import BACKBONES, DEPTHER, HEADS, LOSSES, build_backbone, build_depther, build_head, build_loss from .decode_heads import * # noqa: F403 from .depther import * # noqa: F403 from .losses import * # noqa: F403
dinov2-main
dinov2/eval/depth/models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import warnings from mmcv.cnn import MODELS as MMCV_MODELS from mmcv.cnn.bricks.registry import ATTENTION as MMCV_ATTENTION from mmcv.utils import Registry MODELS = Registry("models", parent=MMCV_MODELS) ATTENTION = Registry("attention", parent=MMCV_ATTENTION) BACKBONES = MODELS NECKS = MODELS HEADS = MODELS LOSSES = MODELS DEPTHER = MODELS def build_backbone(cfg): """Build backbone.""" return BACKBONES.build(cfg) def build_neck(cfg): """Build neck.""" return NECKS.build(cfg) def build_head(cfg): """Build head.""" return HEADS.build(cfg) def build_loss(cfg): """Build loss.""" return LOSSES.build(cfg) def build_depther(cfg, train_cfg=None, test_cfg=None): """Build depther.""" if train_cfg is not None or test_cfg is not None: warnings.warn("train_cfg and test_cfg is deprecated, " "please specify them in model", UserWarning) assert cfg.get("train_cfg") is None or train_cfg is None, "train_cfg specified in both outer field and model field " assert cfg.get("test_cfg") is None or test_cfg is None, "test_cfg specified in both outer field and model field " return DEPTHER.build(cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg))
dinov2-main
dinov2/eval/depth/models/builder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from ...models.builder import LOSSES @LOSSES.register_module() class SigLoss(nn.Module): """SigLoss. This follows `AdaBins <https://arxiv.org/abs/2011.14141>`_. Args: valid_mask (bool): Whether filter invalid gt (gt > 0). Default: True. loss_weight (float): Weight of the loss. Default: 1.0. max_depth (int): When filtering invalid gt, set a max threshold. Default: None. warm_up (bool): A simple warm up stage to help convergence. Default: False. warm_iter (int): The number of warm up stage. Default: 100. """ def __init__( self, valid_mask=True, loss_weight=1.0, max_depth=None, warm_up=False, warm_iter=100, loss_name="sigloss" ): super(SigLoss, self).__init__() self.valid_mask = valid_mask self.loss_weight = loss_weight self.max_depth = max_depth self.loss_name = loss_name self.eps = 0.001 # avoid grad explode # HACK: a hack implementation for warmup sigloss self.warm_up = warm_up self.warm_iter = warm_iter self.warm_up_counter = 0 def sigloss(self, input, target): if self.valid_mask: valid_mask = target > 0 if self.max_depth is not None: valid_mask = torch.logical_and(target > 0, target <= self.max_depth) input = input[valid_mask] target = target[valid_mask] if self.warm_up: if self.warm_up_counter < self.warm_iter: g = torch.log(input + self.eps) - torch.log(target + self.eps) g = 0.15 * torch.pow(torch.mean(g), 2) self.warm_up_counter += 1 return torch.sqrt(g) g = torch.log(input + self.eps) - torch.log(target + self.eps) Dg = torch.var(g) + 0.15 * torch.pow(torch.mean(g), 2) return torch.sqrt(Dg) def forward(self, depth_pred, depth_gt): """Forward function.""" loss_depth = self.loss_weight * self.sigloss(depth_pred, depth_gt) return loss_depth
dinov2-main
dinov2/eval/depth/models/losses/sigloss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .gradientloss import GradientLoss from .sigloss import SigLoss
dinov2-main
dinov2/eval/depth/models/losses/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from ...models.builder import LOSSES @LOSSES.register_module() class GradientLoss(nn.Module): """GradientLoss. Adapted from https://www.cs.cornell.edu/projects/megadepth/ Args: valid_mask (bool): Whether filter invalid gt (gt > 0). Default: True. loss_weight (float): Weight of the loss. Default: 1.0. max_depth (int): When filtering invalid gt, set a max threshold. Default: None. """ def __init__(self, valid_mask=True, loss_weight=1.0, max_depth=None, loss_name="loss_grad"): super(GradientLoss, self).__init__() self.valid_mask = valid_mask self.loss_weight = loss_weight self.max_depth = max_depth self.loss_name = loss_name self.eps = 0.001 # avoid grad explode def gradientloss(self, input, target): input_downscaled = [input] + [input[:: 2 * i, :: 2 * i] for i in range(1, 4)] target_downscaled = [target] + [target[:: 2 * i, :: 2 * i] for i in range(1, 4)] gradient_loss = 0 for input, target in zip(input_downscaled, target_downscaled): if self.valid_mask: mask = target > 0 if self.max_depth is not None: mask = torch.logical_and(target > 0, target <= self.max_depth) N = torch.sum(mask) else: mask = torch.ones_like(target) N = input.numel() input_log = torch.log(input + self.eps) target_log = torch.log(target + self.eps) log_d_diff = input_log - target_log log_d_diff = torch.mul(log_d_diff, mask) v_gradient = torch.abs(log_d_diff[0:-2, :] - log_d_diff[2:, :]) v_mask = torch.mul(mask[0:-2, :], mask[2:, :]) v_gradient = torch.mul(v_gradient, v_mask) h_gradient = torch.abs(log_d_diff[:, 0:-2] - log_d_diff[:, 2:]) h_mask = torch.mul(mask[:, 0:-2], mask[:, 2:]) h_gradient = torch.mul(h_gradient, h_mask) gradient_loss += (torch.sum(h_gradient) + torch.sum(v_gradient)) / N return gradient_loss def forward(self, depth_pred, depth_gt): """Forward function.""" gradient_loss = self.loss_weight * self.gradientloss(depth_pred, depth_gt) return gradient_loss
dinov2-main
dinov2/eval/depth/models/losses/gradientloss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from ...models import builder from ...models.builder import DEPTHER from ...ops import resize from .base import BaseDepther def add_prefix(inputs, prefix): """Add prefix for dict. Args: inputs (dict): The input dict with str keys. prefix (str): The prefix to add. Returns: dict: The dict with keys updated with ``prefix``. """ outputs = dict() for name, value in inputs.items(): outputs[f"{prefix}.{name}"] = value return outputs @DEPTHER.register_module() class DepthEncoderDecoder(BaseDepther): """Encoder Decoder depther. EncoderDecoder typically consists of backbone, (neck) and decode_head. """ def __init__(self, backbone, decode_head, neck=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(DepthEncoderDecoder, self).__init__(init_cfg) if pretrained is not None: assert backbone.get("pretrained") is None, "both backbone and depther set pretrained weight" backbone.pretrained = pretrained self.backbone = builder.build_backbone(backbone) self._init_decode_head(decode_head) if neck is not None: self.neck = builder.build_neck(neck) self.train_cfg = train_cfg self.test_cfg = test_cfg assert self.with_decode_head def _init_decode_head(self, decode_head): """Initialize ``decode_head``""" self.decode_head = builder.build_head(decode_head) self.align_corners = self.decode_head.align_corners def extract_feat(self, img): """Extract features from images.""" x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def encode_decode(self, img, img_metas, rescale=True, size=None): """Encode images with backbone and decode into a depth estimation map of the same size as input.""" x = self.extract_feat(img) out = self._decode_head_forward_test(x, img_metas) # crop the pred depth to the certain range. out = torch.clamp(out, min=self.decode_head.min_depth, max=self.decode_head.max_depth) if rescale: if size is None: if img_metas is not None: size = img_metas[0]["ori_shape"][:2] else: size = img.shape[2:] out = resize(input=out, size=size, mode="bilinear", align_corners=self.align_corners) return out def _decode_head_forward_train(self, img, x, img_metas, depth_gt, **kwargs): """Run forward function and calculate loss for decode head in training.""" losses = dict() loss_decode = self.decode_head.forward_train(img, x, img_metas, depth_gt, self.train_cfg, **kwargs) losses.update(add_prefix(loss_decode, "decode")) return losses def _decode_head_forward_test(self, x, img_metas): """Run forward function and calculate loss for decode head in inference.""" depth_pred = self.decode_head.forward_test(x, img_metas, self.test_cfg) return depth_pred def forward_dummy(self, img): """Dummy forward function.""" depth = self.encode_decode(img, None) return depth def forward_train(self, img, img_metas, depth_gt, **kwargs): """Forward function for training. Args: img (Tensor): Input images. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `depth/datasets/pipelines/formatting.py:Collect`. depth_gt (Tensor): Depth gt used if the architecture supports depth estimation task. Returns: dict[str, Tensor]: a dictionary of loss components """ x = self.extract_feat(img) losses = dict() # the last of x saves the info from neck loss_decode = self._decode_head_forward_train(img, x, img_metas, depth_gt, **kwargs) losses.update(loss_decode) return losses def whole_inference(self, img, img_meta, rescale, size=None): """Inference with full image.""" depth_pred = self.encode_decode(img, img_meta, rescale, size=size) return depth_pred def slide_inference(self, img, img_meta, rescale): """Inference by sliding-window with overlap. If h_crop > h_img or w_crop > w_img, the small patch will be used to decode without padding. """ h_stride, w_stride = self.test_cfg.stride h_crop, w_crop = self.test_cfg.crop_size batch_size, _, h_img, w_img = img.size() h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 preds = img.new_zeros((batch_size, 1, h_img, w_img)) count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) for h_idx in range(h_grids): for w_idx in range(w_grids): y1 = h_idx * h_stride x1 = w_idx * w_stride y2 = min(y1 + h_crop, h_img) x2 = min(x1 + w_crop, w_img) y1 = max(y2 - h_crop, 0) x1 = max(x2 - w_crop, 0) crop_img = img[:, :, y1:y2, x1:x2] depth_pred = self.encode_decode(crop_img, img_meta, rescale) preds += F.pad(depth_pred, (int(x1), int(preds.shape[3] - x2), int(y1), int(preds.shape[2] - y2))) count_mat[:, :, y1:y2, x1:x2] += 1 assert (count_mat == 0).sum() == 0 if torch.onnx.is_in_onnx_export(): # cast count_mat to constant while exporting to ONNX count_mat = torch.from_numpy(count_mat.cpu().detach().numpy()).to(device=img.device) preds = preds / count_mat return preds def inference(self, img, img_meta, rescale, size=None): """Inference with slide/whole style. Args: img (Tensor): The input image of shape (N, 3, H, W). img_meta (dict): Image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `depth/datasets/pipelines/formatting.py:Collect`. rescale (bool): Whether rescale back to original shape. Returns: Tensor: The output depth map. """ assert self.test_cfg.mode in ["slide", "whole"] ori_shape = img_meta[0]["ori_shape"] assert all(_["ori_shape"] == ori_shape for _ in img_meta) if self.test_cfg.mode == "slide": depth_pred = self.slide_inference(img, img_meta, rescale) else: depth_pred = self.whole_inference(img, img_meta, rescale, size=size) output = depth_pred flip = img_meta[0]["flip"] if flip: flip_direction = img_meta[0]["flip_direction"] assert flip_direction in ["horizontal", "vertical"] if flip_direction == "horizontal": output = output.flip(dims=(3,)) elif flip_direction == "vertical": output = output.flip(dims=(2,)) return output def simple_test(self, img, img_meta, rescale=True): """Simple test with single image.""" depth_pred = self.inference(img, img_meta, rescale) if torch.onnx.is_in_onnx_export(): # our inference backend only support 4D output depth_pred = depth_pred.unsqueeze(0) return depth_pred depth_pred = depth_pred.cpu().numpy() # unravel batch dim depth_pred = list(depth_pred) return depth_pred def aug_test(self, imgs, img_metas, rescale=True): """Test with augmentations. Only rescale=True is supported. """ # aug_test rescale all imgs back to ori_shape for now assert rescale # to save memory, we get augmented depth logit inplace depth_pred = self.inference(imgs[0], img_metas[0], rescale) for i in range(1, len(imgs)): cur_depth_pred = self.inference(imgs[i], img_metas[i], rescale, size=depth_pred.shape[-2:]) depth_pred += cur_depth_pred depth_pred /= len(imgs) depth_pred = depth_pred.cpu().numpy() # unravel batch dim depth_pred = list(depth_pred) return depth_pred
dinov2-main
dinov2/eval/depth/models/depther/encoder_decoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .base import BaseDepther from .encoder_decoder import DepthEncoderDecoder
dinov2-main
dinov2/eval/depth/models/depther/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from abc import ABCMeta, abstractmethod from collections import OrderedDict import torch import torch.distributed as dist from mmcv.runner import BaseModule, auto_fp16 class BaseDepther(BaseModule, metaclass=ABCMeta): """Base class for depther.""" def __init__(self, init_cfg=None): super(BaseDepther, self).__init__(init_cfg) self.fp16_enabled = False @property def with_neck(self): """bool: whether the depther has neck""" return hasattr(self, "neck") and self.neck is not None @property def with_auxiliary_head(self): """bool: whether the depther has auxiliary head""" return hasattr(self, "auxiliary_head") and self.auxiliary_head is not None @property def with_decode_head(self): """bool: whether the depther has decode head""" return hasattr(self, "decode_head") and self.decode_head is not None @abstractmethod def extract_feat(self, imgs): """Placeholder for extract features from images.""" pass @abstractmethod def encode_decode(self, img, img_metas): """Placeholder for encode images with backbone and decode into a semantic depth map of the same size as input.""" pass @abstractmethod def forward_train(self, imgs, img_metas, **kwargs): """Placeholder for Forward function for training.""" pass @abstractmethod def simple_test(self, img, img_meta, **kwargs): """Placeholder for single image test.""" pass @abstractmethod def aug_test(self, imgs, img_metas, **kwargs): """Placeholder for augmentation test.""" pass def forward_test(self, imgs, img_metas, **kwargs): """ Args: imgs (List[Tensor]): the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains all images in the batch. img_metas (List[List[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. """ for var, name in [(imgs, "imgs"), (img_metas, "img_metas")]: if not isinstance(var, list): raise TypeError(f"{name} must be a list, but got " f"{type(var)}") num_augs = len(imgs) if num_augs != len(img_metas): raise ValueError(f"num of augmentations ({len(imgs)}) != " f"num of image meta ({len(img_metas)})") # all images in the same aug batch all of the same ori_shape and pad # shape for img_meta in img_metas: ori_shapes = [_["ori_shape"] for _ in img_meta] assert all(shape == ori_shapes[0] for shape in ori_shapes) img_shapes = [_["img_shape"] for _ in img_meta] assert all(shape == img_shapes[0] for shape in img_shapes) pad_shapes = [_["pad_shape"] for _ in img_meta] assert all(shape == pad_shapes[0] for shape in pad_shapes) if num_augs == 1: return self.simple_test(imgs[0], img_metas[0], **kwargs) else: return self.aug_test(imgs, img_metas, **kwargs) @auto_fp16(apply_to=("img",)) def forward(self, img, img_metas, return_loss=True, **kwargs): """Calls either :func:`forward_train` or :func:`forward_test` depending on whether ``return_loss`` is ``True``. Note this setting will change the expected inputs. When ``return_loss=True``, img and img_meta are single-nested (i.e. Tensor and List[dict]), and when ``resturn_loss=False``, img and img_meta should be double nested (i.e. List[Tensor], List[List[dict]]), with the outer list indicating test time augmentations. """ if return_loss: return self.forward_train(img, img_metas, **kwargs) else: return self.forward_test(img, img_metas, **kwargs) def train_step(self, data_batch, optimizer, **kwargs): """The iteration step during training. This method defines an iteration step during training, except for the back propagation and optimizer updating, which are done in an optimizer hook. Note that in some complicated cases or models, the whole process including back propagation and optimizer updating is also defined in this method, such as GAN. Args: data (dict): The output of dataloader. optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of runner is passed to ``train_step()``. This argument is unused and reserved. Returns: dict: It should contain at least 3 keys: ``loss``, ``log_vars``, ``num_samples``. ``loss`` is a tensor for back propagation, which can be a weighted sum of multiple losses. ``log_vars`` contains all the variables to be sent to the logger. ``num_samples`` indicates the batch size (when the model is DDP, it means the batch size on each GPU), which is used for averaging the logs. """ losses = self(**data_batch) # split losses and images real_losses = {} log_imgs = {} for k, v in losses.items(): if "img" in k: log_imgs[k] = v else: real_losses[k] = v loss, log_vars = self._parse_losses(real_losses) outputs = dict(loss=loss, log_vars=log_vars, num_samples=len(data_batch["img_metas"]), log_imgs=log_imgs) return outputs def val_step(self, data_batch, **kwargs): """The iteration step during validation. This method shares the same signature as :func:`train_step`, but used during val epochs. Note that the evaluation after training epochs is not implemented with this method, but an evaluation hook. """ output = self(**data_batch, **kwargs) return output @staticmethod def _parse_losses(losses): """Parse the raw outputs (losses) of the network. Args: losses (dict): Raw output of the network, which usually contain losses and other necessary information. Returns: tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor which may be a weighted sum of all losses, log_vars contains all the variables to be sent to the logger. """ log_vars = OrderedDict() for loss_name, loss_value in losses.items(): if isinstance(loss_value, torch.Tensor): log_vars[loss_name] = loss_value.mean() elif isinstance(loss_value, list): log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) else: raise TypeError(f"{loss_name} is not a tensor or list of tensors") loss = sum(_value for _key, _value in log_vars.items() if "loss" in _key) log_vars["loss"] = loss for loss_name, loss_value in log_vars.items(): # reduce loss when distributed training if dist.is_available() and dist.is_initialized(): loss_value = loss_value.data.clone() dist.all_reduce(loss_value.div_(dist.get_world_size())) log_vars[loss_name] = loss_value.item() return loss, log_vars
dinov2-main
dinov2/eval/depth/models/depther/base.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from mmcv.runner import BaseModule from ..builder import BACKBONES @BACKBONES.register_module() class DinoVisionTransformer(BaseModule): """Vision Transformer.""" def __init__(self, *args, **kwargs): super().__init__()
dinov2-main
dinov2/eval/depth/models/backbones/vision_transformer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .vision_transformer import DinoVisionTransformer
dinov2-main
dinov2/eval/depth/models/backbones/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .dpt_head import DPTHead from .linear_head import BNHead
dinov2-main
dinov2/eval/depth/models/decode_heads/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from ...ops import resize from ..builder import HEADS from .decode_head import DepthBaseDecodeHead @HEADS.register_module() class BNHead(DepthBaseDecodeHead): """Just a batchnorm.""" def __init__(self, input_transform="resize_concat", in_index=(0, 1, 2, 3), upsample=1, **kwargs): super().__init__(**kwargs) self.input_transform = input_transform self.in_index = in_index self.upsample = upsample # self.bn = nn.SyncBatchNorm(self.in_channels) if self.classify: self.conv_depth = nn.Conv2d(self.channels, self.n_bins, kernel_size=1, padding=0, stride=1) else: self.conv_depth = nn.Conv2d(self.channels, 1, kernel_size=1, padding=0, stride=1) def _transform_inputs(self, inputs): """Transform inputs for decoder. Args: inputs (list[Tensor]): List of multi-level img features. Returns: Tensor: The transformed inputs """ if "concat" in self.input_transform: inputs = [inputs[i] for i in self.in_index] if "resize" in self.input_transform: inputs = [ resize( input=x, size=[s * self.upsample for s in inputs[0].shape[2:]], mode="bilinear", align_corners=self.align_corners, ) for x in inputs ] inputs = torch.cat(inputs, dim=1) elif self.input_transform == "multiple_select": inputs = [inputs[i] for i in self.in_index] else: inputs = inputs[self.in_index] return inputs def _forward_feature(self, inputs, img_metas=None, **kwargs): """Forward function for feature maps before classifying each pixel with ``self.cls_seg`` fc. Args: inputs (list[Tensor]): List of multi-level img features. Returns: feats (Tensor): A tensor of shape (batch_size, self.channels, H, W) which is feature map for last layer of decoder head. """ # accept lists (for cls token) inputs = list(inputs) for i, x in enumerate(inputs): if len(x) == 2: x, cls_token = x[0], x[1] if len(x.shape) == 2: x = x[:, :, None, None] cls_token = cls_token[:, :, None, None].expand_as(x) inputs[i] = torch.cat((x, cls_token), 1) else: x = x[0] if len(x.shape) == 2: x = x[:, :, None, None] inputs[i] = x x = self._transform_inputs(inputs) # feats = self.bn(x) return x def forward(self, inputs, img_metas=None, **kwargs): """Forward function.""" output = self._forward_feature(inputs, img_metas=img_metas, **kwargs) output = self.depth_pred(output) return output
dinov2-main
dinov2/eval/depth/models/decode_heads/linear_head.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn from mmcv.cnn import ConvModule, Linear, build_activation_layer from mmcv.runner import BaseModule from ...ops import resize from ..builder import HEADS from .decode_head import DepthBaseDecodeHead class Interpolate(nn.Module): def __init__(self, scale_factor, mode, align_corners=False): super(Interpolate, self).__init__() self.interp = nn.functional.interpolate self.scale_factor = scale_factor self.mode = mode self.align_corners = align_corners def forward(self, x): x = self.interp(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners) return x class HeadDepth(nn.Module): def __init__(self, features): super(HeadDepth, self).__init__() self.head = nn.Sequential( nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), Interpolate(scale_factor=2, mode="bilinear", align_corners=True), nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), ) def forward(self, x): x = self.head(x) return x class ReassembleBlocks(BaseModule): """ViTPostProcessBlock, process cls_token in ViT backbone output and rearrange the feature vector to feature map. Args: in_channels (int): ViT feature channels. Default: 768. out_channels (List): output channels of each stage. Default: [96, 192, 384, 768]. readout_type (str): Type of readout operation. Default: 'ignore'. patch_size (int): The patch size. Default: 16. init_cfg (dict, optional): Initialization config dict. Default: None. """ def __init__( self, in_channels=768, out_channels=[96, 192, 384, 768], readout_type="ignore", patch_size=16, init_cfg=None ): super(ReassembleBlocks, self).__init__(init_cfg) assert readout_type in ["ignore", "add", "project"] self.readout_type = readout_type self.patch_size = patch_size self.projects = nn.ModuleList( [ ConvModule( in_channels=in_channels, out_channels=out_channel, kernel_size=1, act_cfg=None, ) for out_channel in out_channels ] ) self.resize_layers = nn.ModuleList( [ nn.ConvTranspose2d( in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0 ), nn.ConvTranspose2d( in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0 ), nn.Identity(), nn.Conv2d( in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1 ), ] ) if self.readout_type == "project": self.readout_projects = nn.ModuleList() for _ in range(len(self.projects)): self.readout_projects.append( nn.Sequential(Linear(2 * in_channels, in_channels), build_activation_layer(dict(type="GELU"))) ) def forward(self, inputs): assert isinstance(inputs, list) out = [] for i, x in enumerate(inputs): assert len(x) == 2 x, cls_token = x[0], x[1] feature_shape = x.shape if self.readout_type == "project": x = x.flatten(2).permute((0, 2, 1)) readout = cls_token.unsqueeze(1).expand_as(x) x = self.readout_projects[i](torch.cat((x, readout), -1)) x = x.permute(0, 2, 1).reshape(feature_shape) elif self.readout_type == "add": x = x.flatten(2) + cls_token.unsqueeze(-1) x = x.reshape(feature_shape) else: pass x = self.projects[i](x) x = self.resize_layers[i](x) out.append(x) return out class PreActResidualConvUnit(BaseModule): """ResidualConvUnit, pre-activate residual unit. Args: in_channels (int): number of channels in the input feature map. act_cfg (dict): dictionary to construct and config activation layer. norm_cfg (dict): dictionary to construct and config norm layer. stride (int): stride of the first block. Default: 1 dilation (int): dilation rate for convs layers. Default: 1. init_cfg (dict, optional): Initialization config dict. Default: None. """ def __init__(self, in_channels, act_cfg, norm_cfg, stride=1, dilation=1, init_cfg=None): super(PreActResidualConvUnit, self).__init__(init_cfg) self.conv1 = ConvModule( in_channels, in_channels, 3, stride=stride, padding=dilation, dilation=dilation, norm_cfg=norm_cfg, act_cfg=act_cfg, bias=False, order=("act", "conv", "norm"), ) self.conv2 = ConvModule( in_channels, in_channels, 3, padding=1, norm_cfg=norm_cfg, act_cfg=act_cfg, bias=False, order=("act", "conv", "norm"), ) def forward(self, inputs): inputs_ = inputs.clone() x = self.conv1(inputs) x = self.conv2(x) return x + inputs_ class FeatureFusionBlock(BaseModule): """FeatureFusionBlock, merge feature map from different stages. Args: in_channels (int): Input channels. act_cfg (dict): The activation config for ResidualConvUnit. norm_cfg (dict): Config dict for normalization layer. expand (bool): Whether expand the channels in post process block. Default: False. align_corners (bool): align_corner setting for bilinear upsample. Default: True. init_cfg (dict, optional): Initialization config dict. Default: None. """ def __init__(self, in_channels, act_cfg, norm_cfg, expand=False, align_corners=True, init_cfg=None): super(FeatureFusionBlock, self).__init__(init_cfg) self.in_channels = in_channels self.expand = expand self.align_corners = align_corners self.out_channels = in_channels if self.expand: self.out_channels = in_channels // 2 self.project = ConvModule(self.in_channels, self.out_channels, kernel_size=1, act_cfg=None, bias=True) self.res_conv_unit1 = PreActResidualConvUnit(in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg) self.res_conv_unit2 = PreActResidualConvUnit(in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg) def forward(self, *inputs): x = inputs[0] if len(inputs) == 2: if x.shape != inputs[1].shape: res = resize(inputs[1], size=(x.shape[2], x.shape[3]), mode="bilinear", align_corners=False) else: res = inputs[1] x = x + self.res_conv_unit1(res) x = self.res_conv_unit2(x) x = resize(x, scale_factor=2, mode="bilinear", align_corners=self.align_corners) x = self.project(x) return x @HEADS.register_module() class DPTHead(DepthBaseDecodeHead): """Vision Transformers for Dense Prediction. This head is implemented of `DPT <https://arxiv.org/abs/2103.13413>`_. Args: embed_dims (int): The embed dimension of the ViT backbone. Default: 768. post_process_channels (List): Out channels of post process conv layers. Default: [96, 192, 384, 768]. readout_type (str): Type of readout operation. Default: 'ignore'. patch_size (int): The patch size. Default: 16. expand_channels (bool): Whether expand the channels in post process block. Default: False. """ def __init__( self, embed_dims=768, post_process_channels=[96, 192, 384, 768], readout_type="ignore", patch_size=16, expand_channels=False, **kwargs ): super(DPTHead, self).__init__(**kwargs) self.in_channels = self.in_channels self.expand_channels = expand_channels self.reassemble_blocks = ReassembleBlocks(embed_dims, post_process_channels, readout_type, patch_size) self.post_process_channels = [ channel * math.pow(2, i) if expand_channels else channel for i, channel in enumerate(post_process_channels) ] self.convs = nn.ModuleList() for channel in self.post_process_channels: self.convs.append(ConvModule(channel, self.channels, kernel_size=3, padding=1, act_cfg=None, bias=False)) self.fusion_blocks = nn.ModuleList() for _ in range(len(self.convs)): self.fusion_blocks.append(FeatureFusionBlock(self.channels, self.act_cfg, self.norm_cfg)) self.fusion_blocks[0].res_conv_unit1 = None self.project = ConvModule(self.channels, self.channels, kernel_size=3, padding=1, norm_cfg=self.norm_cfg) self.num_fusion_blocks = len(self.fusion_blocks) self.num_reassemble_blocks = len(self.reassemble_blocks.resize_layers) self.num_post_process_channels = len(self.post_process_channels) assert self.num_fusion_blocks == self.num_reassemble_blocks assert self.num_reassemble_blocks == self.num_post_process_channels self.conv_depth = HeadDepth(self.channels) def forward(self, inputs, img_metas): assert len(inputs) == self.num_reassemble_blocks x = [inp for inp in inputs] x = self.reassemble_blocks(x) x = [self.convs[i](feature) for i, feature in enumerate(x)] out = self.fusion_blocks[0](x[-1]) for i in range(1, len(self.fusion_blocks)): out = self.fusion_blocks[i](out, x[-(i + 1)]) out = self.project(out) out = self.depth_pred(out) return out
dinov2-main
dinov2/eval/depth/models/decode_heads/dpt_head.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import copy from abc import ABCMeta, abstractmethod import mmcv import numpy as np import torch import torch.nn as nn from mmcv.runner import BaseModule, auto_fp16, force_fp32 from ...ops import resize from ..builder import build_loss class DepthBaseDecodeHead(BaseModule, metaclass=ABCMeta): """Base class for BaseDecodeHead. Args: in_channels (List): Input channels. channels (int): Channels after modules, before conv_depth. conv_cfg (dict|None): Config of conv layers. Default: None. act_cfg (dict): Config of activation layers. Default: dict(type='ReLU') loss_decode (dict): Config of decode loss. Default: dict(type='SigLoss'). sampler (dict|None): The config of depth map sampler. Default: None. align_corners (bool): align_corners argument of F.interpolate. Default: False. min_depth (int): Min depth in dataset setting. Default: 1e-3. max_depth (int): Max depth in dataset setting. Default: None. norm_cfg (dict|None): Config of norm layers. Default: None. classify (bool): Whether predict depth in a cls.-reg. manner. Default: False. n_bins (int): The number of bins used in cls. step. Default: 256. bins_strategy (str): The discrete strategy used in cls. step. Default: 'UD'. norm_strategy (str): The norm strategy on cls. probability distribution. Default: 'linear' scale_up (str): Whether predict depth in a scale-up manner. Default: False. """ def __init__( self, in_channels, channels=96, conv_cfg=None, act_cfg=dict(type="ReLU"), loss_decode=dict(type="SigLoss", valid_mask=True, loss_weight=10), sampler=None, align_corners=False, min_depth=1e-3, max_depth=None, norm_cfg=None, classify=False, n_bins=256, bins_strategy="UD", norm_strategy="linear", scale_up=False, ): super(DepthBaseDecodeHead, self).__init__() self.in_channels = in_channels self.channels = channels self.conv_cfg = conv_cfg self.act_cfg = act_cfg if isinstance(loss_decode, dict): self.loss_decode = build_loss(loss_decode) elif isinstance(loss_decode, (list, tuple)): self.loss_decode = nn.ModuleList() for loss in loss_decode: self.loss_decode.append(build_loss(loss)) self.align_corners = align_corners self.min_depth = min_depth self.max_depth = max_depth self.norm_cfg = norm_cfg self.classify = classify self.n_bins = n_bins self.scale_up = scale_up if self.classify: assert bins_strategy in ["UD", "SID"], "Support bins_strategy: UD, SID" assert norm_strategy in ["linear", "softmax", "sigmoid"], "Support norm_strategy: linear, softmax, sigmoid" self.bins_strategy = bins_strategy self.norm_strategy = norm_strategy self.softmax = nn.Softmax(dim=1) self.conv_depth = nn.Conv2d(channels, n_bins, kernel_size=3, padding=1, stride=1) else: self.conv_depth = nn.Conv2d(channels, 1, kernel_size=3, padding=1, stride=1) self.fp16_enabled = False self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def extra_repr(self): """Extra repr.""" s = f"align_corners={self.align_corners}" return s @auto_fp16() @abstractmethod def forward(self, inputs, img_metas): """Placeholder of forward function.""" pass def forward_train(self, img, inputs, img_metas, depth_gt, train_cfg): """Forward function for training. Args: inputs (list[Tensor]): List of multi-level img features. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `depth/datasets/pipelines/formatting.py:Collect`. depth_gt (Tensor): GT depth train_cfg (dict): The training config. Returns: dict[str, Tensor]: a dictionary of loss components """ depth_pred = self.forward(inputs, img_metas) losses = self.losses(depth_pred, depth_gt) log_imgs = self.log_images(img[0], depth_pred[0], depth_gt[0], img_metas[0]) losses.update(**log_imgs) return losses def forward_test(self, inputs, img_metas, test_cfg): """Forward function for testing. Args: inputs (list[Tensor]): List of multi-level img features. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `depth/datasets/pipelines/formatting.py:Collect`. test_cfg (dict): The testing config. Returns: Tensor: Output depth map. """ return self.forward(inputs, img_metas) def depth_pred(self, feat): """Prediction each pixel.""" if self.classify: logit = self.conv_depth(feat) if self.bins_strategy == "UD": bins = torch.linspace(self.min_depth, self.max_depth, self.n_bins, device=feat.device) elif self.bins_strategy == "SID": bins = torch.logspace(self.min_depth, self.max_depth, self.n_bins, device=feat.device) # following Adabins, default linear if self.norm_strategy == "linear": logit = torch.relu(logit) eps = 0.1 logit = logit + eps logit = logit / logit.sum(dim=1, keepdim=True) elif self.norm_strategy == "softmax": logit = torch.softmax(logit, dim=1) elif self.norm_strategy == "sigmoid": logit = torch.sigmoid(logit) logit = logit / logit.sum(dim=1, keepdim=True) output = torch.einsum("ikmn,k->imn", [logit, bins]).unsqueeze(dim=1) else: if self.scale_up: output = self.sigmoid(self.conv_depth(feat)) * self.max_depth else: output = self.relu(self.conv_depth(feat)) + self.min_depth return output @force_fp32(apply_to=("depth_pred",)) def losses(self, depth_pred, depth_gt): """Compute depth loss.""" loss = dict() depth_pred = resize( input=depth_pred, size=depth_gt.shape[2:], mode="bilinear", align_corners=self.align_corners, warning=False ) if not isinstance(self.loss_decode, nn.ModuleList): losses_decode = [self.loss_decode] else: losses_decode = self.loss_decode for loss_decode in losses_decode: if loss_decode.loss_name not in loss: loss[loss_decode.loss_name] = loss_decode(depth_pred, depth_gt) else: loss[loss_decode.loss_name] += loss_decode(depth_pred, depth_gt) return loss def log_images(self, img_path, depth_pred, depth_gt, img_meta): show_img = copy.deepcopy(img_path.detach().cpu().permute(1, 2, 0)) show_img = show_img.numpy().astype(np.float32) show_img = mmcv.imdenormalize( show_img, img_meta["img_norm_cfg"]["mean"], img_meta["img_norm_cfg"]["std"], img_meta["img_norm_cfg"]["to_rgb"], ) show_img = np.clip(show_img, 0, 255) show_img = show_img.astype(np.uint8) show_img = show_img[:, :, ::-1] show_img = show_img.transpose(0, 2, 1) show_img = show_img.transpose(1, 0, 2) depth_pred = depth_pred / torch.max(depth_pred) depth_gt = depth_gt / torch.max(depth_gt) depth_pred_color = copy.deepcopy(depth_pred.detach().cpu()) depth_gt_color = copy.deepcopy(depth_gt.detach().cpu()) return {"img_rgb": show_img, "img_depth_pred": depth_pred_color, "img_depth_gt": depth_gt_color}
dinov2-main
dinov2/eval/depth/models/decode_heads/decode_head.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .wrappers import resize
dinov2-main
dinov2/eval/depth/ops/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import warnings import torch.nn.functional as F def resize(input, size=None, scale_factor=None, mode="nearest", align_corners=None, warning=False): if warning: if size is not None and align_corners: input_h, input_w = tuple(int(x) for x in input.shape[2:]) output_h, output_w = tuple(int(x) for x in size) if output_h > input_h or output_w > output_h: if ( (output_h > 1 and output_w > 1 and input_h > 1 and input_w > 1) and (output_h - 1) % (input_h - 1) and (output_w - 1) % (input_w - 1) ): warnings.warn( f"When align_corners={align_corners}, " "the output would more aligned if " f"input size {(input_h, input_w)} is `x+1` and " f"out size {(output_h, output_w)} is `nx+1`" ) return F.interpolate(input, size, scale_factor, mode, align_corners)
dinov2-main
dinov2/eval/depth/ops/wrappers.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree.
dinov2-main
dinov2/eval/segmentation/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree.
dinov2-main
dinov2/eval/segmentation/utils/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. ADE20K_COLORMAP = [ (0, 0, 0), (120, 120, 120), (180, 120, 120), (6, 230, 230), (80, 50, 50), (4, 200, 3), (120, 120, 80), (140, 140, 140), (204, 5, 255), (230, 230, 230), (4, 250, 7), (224, 5, 255), (235, 255, 7), (150, 5, 61), (120, 120, 70), (8, 255, 51), (255, 6, 82), (143, 255, 140), (204, 255, 4), (255, 51, 7), (204, 70, 3), (0, 102, 200), (61, 230, 250), (255, 6, 51), (11, 102, 255), (255, 7, 71), (255, 9, 224), (9, 7, 230), (220, 220, 220), (255, 9, 92), (112, 9, 255), (8, 255, 214), (7, 255, 224), (255, 184, 6), (10, 255, 71), (255, 41, 10), (7, 255, 255), (224, 255, 8), (102, 8, 255), (255, 61, 6), (255, 194, 7), (255, 122, 8), (0, 255, 20), (255, 8, 41), (255, 5, 153), (6, 51, 255), (235, 12, 255), (160, 150, 20), (0, 163, 255), (140, 140, 140), (250, 10, 15), (20, 255, 0), (31, 255, 0), (255, 31, 0), (255, 224, 0), (153, 255, 0), (0, 0, 255), (255, 71, 0), (0, 235, 255), (0, 173, 255), (31, 0, 255), (11, 200, 200), (255, 82, 0), (0, 255, 245), (0, 61, 255), (0, 255, 112), (0, 255, 133), (255, 0, 0), (255, 163, 0), (255, 102, 0), (194, 255, 0), (0, 143, 255), (51, 255, 0), (0, 82, 255), (0, 255, 41), (0, 255, 173), (10, 0, 255), (173, 255, 0), (0, 255, 153), (255, 92, 0), (255, 0, 255), (255, 0, 245), (255, 0, 102), (255, 173, 0), (255, 0, 20), (255, 184, 184), (0, 31, 255), (0, 255, 61), (0, 71, 255), (255, 0, 204), (0, 255, 194), (0, 255, 82), (0, 10, 255), (0, 112, 255), (51, 0, 255), (0, 194, 255), (0, 122, 255), (0, 255, 163), (255, 153, 0), (0, 255, 10), (255, 112, 0), (143, 255, 0), (82, 0, 255), (163, 255, 0), (255, 235, 0), (8, 184, 170), (133, 0, 255), (0, 255, 92), (184, 0, 255), (255, 0, 31), (0, 184, 255), (0, 214, 255), (255, 0, 112), (92, 255, 0), (0, 224, 255), (112, 224, 255), (70, 184, 160), (163, 0, 255), (153, 0, 255), (71, 255, 0), (255, 0, 163), (255, 204, 0), (255, 0, 143), (0, 255, 235), (133, 255, 0), (255, 0, 235), (245, 0, 255), (255, 0, 122), (255, 245, 0), (10, 190, 212), (214, 255, 0), (0, 204, 255), (20, 0, 255), (255, 255, 0), (0, 153, 255), (0, 41, 255), (0, 255, 204), (41, 0, 255), (41, 255, 0), (173, 0, 255), (0, 245, 255), (71, 0, 255), (122, 0, 255), (0, 255, 184), (0, 92, 255), (184, 255, 0), (0, 133, 255), (255, 214, 0), (25, 194, 194), (102, 255, 0), (92, 0, 255), ] ADE20K_CLASS_NAMES = [ "", "wall", "building;edifice", "sky", "floor;flooring", "tree", "ceiling", "road;route", "bed", "windowpane;window", "grass", "cabinet", "sidewalk;pavement", "person;individual;someone;somebody;mortal;soul", "earth;ground", "door;double;door", "table", "mountain;mount", "plant;flora;plant;life", "curtain;drape;drapery;mantle;pall", "chair", "car;auto;automobile;machine;motorcar", "water", "painting;picture", "sofa;couch;lounge", "shelf", "house", "sea", "mirror", "rug;carpet;carpeting", "field", "armchair", "seat", "fence;fencing", "desk", "rock;stone", "wardrobe;closet;press", "lamp", "bathtub;bathing;tub;bath;tub", "railing;rail", "cushion", "base;pedestal;stand", "box", "column;pillar", "signboard;sign", "chest;of;drawers;chest;bureau;dresser", "counter", "sand", "sink", "skyscraper", "fireplace;hearth;open;fireplace", "refrigerator;icebox", "grandstand;covered;stand", "path", "stairs;steps", "runway", "case;display;case;showcase;vitrine", "pool;table;billiard;table;snooker;table", "pillow", "screen;door;screen", "stairway;staircase", "river", "bridge;span", "bookcase", "blind;screen", "coffee;table;cocktail;table", "toilet;can;commode;crapper;pot;potty;stool;throne", "flower", "book", "hill", "bench", "countertop", "stove;kitchen;stove;range;kitchen;range;cooking;stove", "palm;palm;tree", "kitchen;island", "computer;computing;machine;computing;device;data;processor;electronic;computer;information;processing;system", "swivel;chair", "boat", "bar", "arcade;machine", "hovel;hut;hutch;shack;shanty", "bus;autobus;coach;charabanc;double-decker;jitney;motorbus;motorcoach;omnibus;passenger;vehicle", "towel", "light;light;source", "truck;motortruck", "tower", "chandelier;pendant;pendent", "awning;sunshade;sunblind", "streetlight;street;lamp", "booth;cubicle;stall;kiosk", "television;television;receiver;television;set;tv;tv;set;idiot;box;boob;tube;telly;goggle;box", "airplane;aeroplane;plane", "dirt;track", "apparel;wearing;apparel;dress;clothes", "pole", "land;ground;soil", "bannister;banister;balustrade;balusters;handrail", "escalator;moving;staircase;moving;stairway", "ottoman;pouf;pouffe;puff;hassock", "bottle", "buffet;counter;sideboard", "poster;posting;placard;notice;bill;card", "stage", "van", "ship", "fountain", "conveyer;belt;conveyor;belt;conveyer;conveyor;transporter", "canopy", "washer;automatic;washer;washing;machine", "plaything;toy", "swimming;pool;swimming;bath;natatorium", "stool", "barrel;cask", "basket;handbasket", "waterfall;falls", "tent;collapsible;shelter", "bag", "minibike;motorbike", "cradle", "oven", "ball", "food;solid;food", "step;stair", "tank;storage;tank", "trade;name;brand;name;brand;marque", "microwave;microwave;oven", "pot;flowerpot", "animal;animate;being;beast;brute;creature;fauna", "bicycle;bike;wheel;cycle", "lake", "dishwasher;dish;washer;dishwashing;machine", "screen;silver;screen;projection;screen", "blanket;cover", "sculpture", "hood;exhaust;hood", "sconce", "vase", "traffic;light;traffic;signal;stoplight", "tray", "ashcan;trash;can;garbage;can;wastebin;ash;bin;ash-bin;ashbin;dustbin;trash;barrel;trash;bin", "fan", "pier;wharf;wharfage;dock", "crt;screen", "plate", "monitor;monitoring;device", "bulletin;board;notice;board", "shower", "radiator", "glass;drinking;glass", "clock", "flag", ] VOC2012_COLORMAP = [ (0, 0, 0), (128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128), (0, 128, 128), (128, 128, 128), (64, 0, 0), (192, 0, 0), (64, 128, 0), (192, 128, 0), (64, 0, 128), (192, 0, 128), (64, 128, 128), (192, 128, 128), (0, 64, 0), (128, 64, 0), (0, 192, 0), (128, 192, 0), (0, 64, 128), ] VOC2012_CLASS_NAMES = [ "", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor", ]
dinov2-main
dinov2/eval/segmentation/utils/colormaps.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .backbones import * # noqa: F403 from .decode_heads import * # noqa: F403
dinov2-main
dinov2/eval/segmentation/models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from mmcv.runner import BaseModule from mmseg.models.builder import BACKBONES @BACKBONES.register_module() class DinoVisionTransformer(BaseModule): """Vision Transformer.""" def __init__( self, *args, **kwargs, ): super().__init__()
dinov2-main
dinov2/eval/segmentation/models/backbones/vision_transformer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .vision_transformer import DinoVisionTransformer
dinov2-main
dinov2/eval/segmentation/models/backbones/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .linear_head import BNHead
dinov2-main
dinov2/eval/segmentation/models/decode_heads/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from mmseg.models.builder import HEADS from mmseg.models.decode_heads.decode_head import BaseDecodeHead from mmseg.ops import resize @HEADS.register_module() class BNHead(BaseDecodeHead): """Just a batchnorm.""" def __init__(self, resize_factors=None, **kwargs): super().__init__(**kwargs) assert self.in_channels == self.channels self.bn = nn.SyncBatchNorm(self.in_channels) self.resize_factors = resize_factors def _forward_feature(self, inputs): """Forward function for feature maps before classifying each pixel with ``self.cls_seg`` fc. Args: inputs (list[Tensor]): List of multi-level img features. Returns: feats (Tensor): A tensor of shape (batch_size, self.channels, H, W) which is feature map for last layer of decoder head. """ # print("inputs", [i.shape for i in inputs]) x = self._transform_inputs(inputs) # print("x", x.shape) feats = self.bn(x) # print("feats", feats.shape) return feats def _transform_inputs(self, inputs): """Transform inputs for decoder. Args: inputs (list[Tensor]): List of multi-level img features. Returns: Tensor: The transformed inputs """ if self.input_transform == "resize_concat": # accept lists (for cls token) input_list = [] for x in inputs: if isinstance(x, list): input_list.extend(x) else: input_list.append(x) inputs = input_list # an image descriptor can be a local descriptor with resolution 1x1 for i, x in enumerate(inputs): if len(x.shape) == 2: inputs[i] = x[:, :, None, None] # select indices inputs = [inputs[i] for i in self.in_index] # Resizing shenanigans # print("before", *(x.shape for x in inputs)) if self.resize_factors is not None: assert len(self.resize_factors) == len(inputs), (len(self.resize_factors), len(inputs)) inputs = [ resize(input=x, scale_factor=f, mode="bilinear" if f >= 1 else "area") for x, f in zip(inputs, self.resize_factors) ] # print("after", *(x.shape for x in inputs)) upsampled_inputs = [ resize(input=x, size=inputs[0].shape[2:], mode="bilinear", align_corners=self.align_corners) for x in inputs ] inputs = torch.cat(upsampled_inputs, dim=1) elif self.input_transform == "multiple_select": inputs = [inputs[i] for i in self.in_index] else: inputs = inputs[self.in_index] return inputs def forward(self, inputs): """Forward function.""" output = self._forward_feature(inputs) output = self.cls_seg(output) return output
dinov2-main
dinov2/eval/segmentation/models/decode_heads/linear_head.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .optimizer import DistOptimizerHook
dinov2-main
dinov2/eval/segmentation/hooks/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. try: import apex except ImportError: print("apex is not installed") from mmcv.runner import OptimizerHook, HOOKS @HOOKS.register_module() class DistOptimizerHook(OptimizerHook): """Optimizer hook for distributed training.""" def __init__(self, update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False): self.grad_clip = grad_clip self.coalesce = coalesce self.bucket_size_mb = bucket_size_mb self.update_interval = update_interval self.use_fp16 = use_fp16 def before_run(self, runner): runner.optimizer.zero_grad() def after_train_iter(self, runner): runner.outputs["loss"] /= self.update_interval if self.use_fp16: # runner.outputs['loss'].backward() with apex.amp.scale_loss(runner.outputs["loss"], runner.optimizer) as scaled_loss: scaled_loss.backward() else: runner.outputs["loss"].backward() if self.every_n_iters(runner, self.update_interval): if self.grad_clip is not None: self.clip_grads(runner.model.parameters()) runner.optimizer.step() runner.optimizer.zero_grad()
dinov2-main
dinov2/eval/segmentation/hooks/optimizer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .core import * # noqa: F403 from .models import * # noqa: F403 from .ops import * # noqa: F403
dinov2-main
dinov2/eval/segmentation_m2f/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from mmseg.core.evaluation import * # noqa: F403 from mmseg.core.seg import * # noqa: F403 from .anchor import * # noqa: F403 from .box import * # noqa: F403 from .utils import * # noqa: F403
dinov2-main
dinov2/eval/segmentation_m2f/core/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .builder import * # noqa: F403 from .samplers import MaskPseudoSampler # noqa: F403
dinov2-main
dinov2/eval/segmentation_m2f/core/box/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from mmcv.utils import Registry, build_from_cfg BBOX_SAMPLERS = Registry("bbox_sampler") BBOX_CODERS = Registry("bbox_coder") def build_sampler(cfg, **default_args): """Builder of box sampler.""" return build_from_cfg(cfg, BBOX_SAMPLERS, default_args) def build_bbox_coder(cfg, **default_args): """Builder of box coder.""" return build_from_cfg(cfg, BBOX_CODERS, default_args)
dinov2-main
dinov2/eval/segmentation_m2f/core/box/builder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/ZwwWayne/K-Net/blob/main/knet/det/mask_pseudo_sampler.py import torch from .sampling_result import SamplingResult class MaskSamplingResult(SamplingResult): """Mask sampling result.""" def __init__(self, pos_inds, neg_inds, masks, gt_masks, assign_result, gt_flags): self.pos_inds = pos_inds self.neg_inds = neg_inds self.pos_masks = masks[pos_inds] self.neg_masks = masks[neg_inds] self.pos_is_gt = gt_flags[pos_inds] self.num_gts = gt_masks.shape[0] self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 if gt_masks.numel() == 0: # hack for index error case assert self.pos_assigned_gt_inds.numel() == 0 self.pos_gt_masks = torch.empty_like(gt_masks) else: self.pos_gt_masks = gt_masks[self.pos_assigned_gt_inds, :] if assign_result.labels is not None: self.pos_gt_labels = assign_result.labels[pos_inds] else: self.pos_gt_labels = None @property def masks(self): """torch.Tensor: concatenated positive and negative boxes""" return torch.cat([self.pos_masks, self.neg_masks]) def __nice__(self): data = self.info.copy() data["pos_masks"] = data.pop("pos_masks").shape data["neg_masks"] = data.pop("neg_masks").shape parts = [f"'{k}': {v!r}" for k, v in sorted(data.items())] body = " " + ",\n ".join(parts) return "{\n" + body + "\n}" @property def info(self): """Returns a dictionary of info about the object.""" return { "pos_inds": self.pos_inds, "neg_inds": self.neg_inds, "pos_masks": self.pos_masks, "neg_masks": self.neg_masks, "pos_is_gt": self.pos_is_gt, "num_gts": self.num_gts, "pos_assigned_gt_inds": self.pos_assigned_gt_inds, }
dinov2-main
dinov2/eval/segmentation_m2f/core/box/samplers/mask_sampling_result.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from abc import ABCMeta, abstractmethod import torch from .sampling_result import SamplingResult class BaseSampler(metaclass=ABCMeta): """Base class of samplers.""" def __init__(self, num, pos_fraction, neg_pos_ub=-1, add_gt_as_proposals=True, **kwargs): self.num = num self.pos_fraction = pos_fraction self.neg_pos_ub = neg_pos_ub self.add_gt_as_proposals = add_gt_as_proposals self.pos_sampler = self self.neg_sampler = self @abstractmethod def _sample_pos(self, assign_result, num_expected, **kwargs): """Sample positive samples.""" pass @abstractmethod def _sample_neg(self, assign_result, num_expected, **kwargs): """Sample negative samples.""" pass def sample(self, assign_result, bboxes, gt_bboxes, gt_labels=None, **kwargs): """Sample positive and negative bboxes. This is a simple implementation of bbox sampling given candidates, assigning results and ground truth bboxes. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. bboxes (Tensor): Boxes to be sampled from. gt_bboxes (Tensor): Ground truth bboxes. gt_labels (Tensor, optional): Class labels of ground truth bboxes. Returns: :obj:`SamplingResult`: Sampling result. Example: >>> from mmdet.core.bbox import RandomSampler >>> from mmdet.core.bbox import AssignResult >>> from mmdet.core.bbox.demodata import ensure_rng, random_boxes >>> rng = ensure_rng(None) >>> assign_result = AssignResult.random(rng=rng) >>> bboxes = random_boxes(assign_result.num_preds, rng=rng) >>> gt_bboxes = random_boxes(assign_result.num_gts, rng=rng) >>> gt_labels = None >>> self = RandomSampler(num=32, pos_fraction=0.5, neg_pos_ub=-1, >>> add_gt_as_proposals=False) >>> self = self.sample(assign_result, bboxes, gt_bboxes, gt_labels) """ if len(bboxes.shape) < 2: bboxes = bboxes[None, :] bboxes = bboxes[:, :4] gt_flags = bboxes.new_zeros((bboxes.shape[0],), dtype=torch.uint8) if self.add_gt_as_proposals and len(gt_bboxes) > 0: if gt_labels is None: raise ValueError("gt_labels must be given when add_gt_as_proposals is True") bboxes = torch.cat([gt_bboxes, bboxes], dim=0) assign_result.add_gt_(gt_labels) gt_ones = bboxes.new_ones(gt_bboxes.shape[0], dtype=torch.uint8) gt_flags = torch.cat([gt_ones, gt_flags]) num_expected_pos = int(self.num * self.pos_fraction) pos_inds = self.pos_sampler._sample_pos(assign_result, num_expected_pos, bboxes=bboxes, **kwargs) # We found that sampled indices have duplicated items occasionally. # (may be a bug of PyTorch) pos_inds = pos_inds.unique() num_sampled_pos = pos_inds.numel() num_expected_neg = self.num - num_sampled_pos if self.neg_pos_ub >= 0: _pos = max(1, num_sampled_pos) neg_upper_bound = int(self.neg_pos_ub * _pos) if num_expected_neg > neg_upper_bound: num_expected_neg = neg_upper_bound neg_inds = self.neg_sampler._sample_neg(assign_result, num_expected_neg, bboxes=bboxes, **kwargs) neg_inds = neg_inds.unique() sampling_result = SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, gt_flags) return sampling_result
dinov2-main
dinov2/eval/segmentation_m2f/core/box/samplers/base_sampler.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .mask_pseudo_sampler import MaskPseudoSampler # noqa: F403
dinov2-main
dinov2/eval/segmentation_m2f/core/box/samplers/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/ZwwWayne/K-Net/blob/main/knet/det/mask_pseudo_sampler.py import torch from ..builder import BBOX_SAMPLERS from .base_sampler import BaseSampler from .mask_sampling_result import MaskSamplingResult @BBOX_SAMPLERS.register_module() class MaskPseudoSampler(BaseSampler): """A pseudo sampler that does not do sampling actually.""" def __init__(self, **kwargs): pass def _sample_pos(self, **kwargs): """Sample positive samples.""" raise NotImplementedError def _sample_neg(self, **kwargs): """Sample negative samples.""" raise NotImplementedError def sample(self, assign_result, masks, gt_masks, **kwargs): """Directly returns the positive and negative indices of samples. Args: assign_result (:obj:`AssignResult`): Assigned results masks (torch.Tensor): Bounding boxes gt_masks (torch.Tensor): Ground truth boxes Returns: :obj:`SamplingResult`: sampler results """ pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() gt_flags = masks.new_zeros(masks.shape[0], dtype=torch.uint8) sampling_result = MaskSamplingResult(pos_inds, neg_inds, masks, gt_masks, assign_result, gt_flags) return sampling_result
dinov2-main
dinov2/eval/segmentation_m2f/core/box/samplers/mask_pseudo_sampler.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch class SamplingResult: """Bbox sampling result. Example: >>> # xdoctest: +IGNORE_WANT >>> from mmdet.core.bbox.samplers.sampling_result import * # NOQA >>> self = SamplingResult.random(rng=10) >>> print(f'self = {self}') self = <SamplingResult({ 'neg_bboxes': torch.Size([12, 4]), 'neg_inds': tensor([ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12]), 'num_gts': 4, 'pos_assigned_gt_inds': tensor([], dtype=torch.int64), 'pos_bboxes': torch.Size([0, 4]), 'pos_inds': tensor([], dtype=torch.int64), 'pos_is_gt': tensor([], dtype=torch.uint8) })> """ def __init__(self, pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, gt_flags): self.pos_inds = pos_inds self.neg_inds = neg_inds self.pos_bboxes = bboxes[pos_inds] self.neg_bboxes = bboxes[neg_inds] self.pos_is_gt = gt_flags[pos_inds] self.num_gts = gt_bboxes.shape[0] self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 if gt_bboxes.numel() == 0: # hack for index error case assert self.pos_assigned_gt_inds.numel() == 0 self.pos_gt_bboxes = torch.empty_like(gt_bboxes).view(-1, 4) else: if len(gt_bboxes.shape) < 2: gt_bboxes = gt_bboxes.view(-1, 4) self.pos_gt_bboxes = gt_bboxes[self.pos_assigned_gt_inds.long(), :] if assign_result.labels is not None: self.pos_gt_labels = assign_result.labels[pos_inds] else: self.pos_gt_labels = None @property def bboxes(self): """torch.Tensor: concatenated positive and negative boxes""" return torch.cat([self.pos_bboxes, self.neg_bboxes]) def to(self, device): """Change the device of the data inplace. Example: >>> self = SamplingResult.random() >>> print(f'self = {self.to(None)}') >>> # xdoctest: +REQUIRES(--gpu) >>> print(f'self = {self.to(0)}') """ _dict = self.__dict__ for key, value in _dict.items(): if isinstance(value, torch.Tensor): _dict[key] = value.to(device) return self def __nice__(self): data = self.info.copy() data["pos_bboxes"] = data.pop("pos_bboxes").shape data["neg_bboxes"] = data.pop("neg_bboxes").shape parts = [f"'{k}': {v!r}" for k, v in sorted(data.items())] body = " " + ",\n ".join(parts) return "{\n" + body + "\n}" @property def info(self): """Returns a dictionary of info about the object.""" return { "pos_inds": self.pos_inds, "neg_inds": self.neg_inds, "pos_bboxes": self.pos_bboxes, "neg_bboxes": self.neg_bboxes, "pos_is_gt": self.pos_is_gt, "num_gts": self.num_gts, "pos_assigned_gt_inds": self.pos_assigned_gt_inds, } @classmethod def random(cls, rng=None, **kwargs): """ Args: rng (None | int | numpy.random.RandomState): seed or state. kwargs (keyword arguments): - num_preds: number of predicted boxes - num_gts: number of true boxes - p_ignore (float): probability of a predicted box assigned to \ an ignored truth. - p_assigned (float): probability of a predicted box not being \ assigned. - p_use_label (float | bool): with labels or not. Returns: :obj:`SamplingResult`: Randomly generated sampling result. Example: >>> from mmdet.core.bbox.samplers.sampling_result import * # NOQA >>> self = SamplingResult.random() >>> print(self.__dict__) """ from mmdet.core.bbox import demodata from mmdet.core.bbox.assigners.assign_result import AssignResult from mmdet.core.bbox.samplers.random_sampler import RandomSampler rng = demodata.ensure_rng(rng) # make probabalistic? num = 32 pos_fraction = 0.5 neg_pos_ub = -1 assign_result = AssignResult.random(rng=rng, **kwargs) # Note we could just compute an assignment bboxes = demodata.random_boxes(assign_result.num_preds, rng=rng) gt_bboxes = demodata.random_boxes(assign_result.num_gts, rng=rng) if rng.rand() > 0.2: # sometimes algorithms squeeze their data, be robust to that gt_bboxes = gt_bboxes.squeeze() bboxes = bboxes.squeeze() if assign_result.labels is None: gt_labels = None else: gt_labels = None if gt_labels is None: add_gt_as_proposals = False else: add_gt_as_proposals = True # make probabalistic? sampler = RandomSampler( num, pos_fraction, neg_pos_ub=neg_pos_ub, add_gt_as_proposals=add_gt_as_proposals, rng=rng ) self = sampler.sample(assign_result, bboxes, gt_bboxes, gt_labels) return self
dinov2-main
dinov2/eval/segmentation_m2f/core/box/samplers/sampling_result.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from functools import partial def multi_apply(func, *args, **kwargs): """Apply function to a list of arguments. Note: This function applies the ``func`` to multiple inputs and map the multiple outputs of the ``func`` into different list. Each list contains the same type of outputs corresponding to different inputs. Args: func (Function): A function that will be applied to a list of arguments Returns: tuple(list): A tuple containing multiple list, each list contains \ a kind of returned results by the function """ pfunc = partial(func, **kwargs) if kwargs else func map_results = map(pfunc, *args) return tuple(map(list, zip(*map_results))) def add_prefix(inputs, prefix): """Add prefix for dict. Args: inputs (dict): The input dict with str keys. prefix (str): The prefix to add. Returns: dict: The dict with keys updated with ``prefix``. """ outputs = dict() for name, value in inputs.items(): outputs[f"{prefix}.{name}"] = value return outputs
dinov2-main
dinov2/eval/segmentation_m2f/core/utils/misc.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .dist_utils import reduce_mean from .misc import add_prefix, multi_apply
dinov2-main
dinov2/eval/segmentation_m2f/core/utils/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch.distributed as dist def reduce_mean(tensor): """ "Obtain the mean of tensor on different GPUs.""" if not (dist.is_available() and dist.is_initialized()): return tensor tensor = tensor.clone() dist.all_reduce(tensor.div_(dist.get_world_size()), op=dist.ReduceOp.SUM) return tensor
dinov2-main
dinov2/eval/segmentation_m2f/core/utils/dist_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .point_generator import MlvlPointGenerator # noqa: F403
dinov2-main
dinov2/eval/segmentation_m2f/core/anchor/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import numpy as np import torch from torch.nn.modules.utils import _pair from .builder import PRIOR_GENERATORS @PRIOR_GENERATORS.register_module() class MlvlPointGenerator: """Standard points generator for multi-level (Mlvl) feature maps in 2D points-based detectors. Args: strides (list[int] | list[tuple[int, int]]): Strides of anchors in multiple feature levels in order (w, h). offset (float): The offset of points, the value is normalized with corresponding stride. Defaults to 0.5. """ def __init__(self, strides, offset=0.5): self.strides = [_pair(stride) for stride in strides] self.offset = offset @property def num_levels(self): """int: number of feature levels that the generator will be applied""" return len(self.strides) @property def num_base_priors(self): """list[int]: The number of priors (points) at a point on the feature grid""" return [1 for _ in range(len(self.strides))] def _meshgrid(self, x, y, row_major=True): yy, xx = torch.meshgrid(y, x) if row_major: # warning .flatten() would cause error in ONNX exporting # have to use reshape here return xx.reshape(-1), yy.reshape(-1) else: return yy.reshape(-1), xx.reshape(-1) def grid_priors(self, featmap_sizes, dtype=torch.float32, device="cuda", with_stride=False): """Generate grid points of multiple feature levels. Args: featmap_sizes (list[tuple]): List of feature map sizes in multiple feature levels, each size arrange as as (h, w). dtype (:obj:`dtype`): Dtype of priors. Default: torch.float32. device (str): The device where the anchors will be put on. with_stride (bool): Whether to concatenate the stride to the last dimension of points. Return: list[torch.Tensor]: Points of multiple feature levels. The sizes of each tensor should be (N, 2) when with stride is ``False``, where N = width * height, width and height are the sizes of the corresponding feature level, and the last dimension 2 represent (coord_x, coord_y), otherwise the shape should be (N, 4), and the last dimension 4 represent (coord_x, coord_y, stride_w, stride_h). """ assert self.num_levels == len(featmap_sizes) multi_level_priors = [] for i in range(self.num_levels): priors = self.single_level_grid_priors( featmap_sizes[i], level_idx=i, dtype=dtype, device=device, with_stride=with_stride ) multi_level_priors.append(priors) return multi_level_priors def single_level_grid_priors(self, featmap_size, level_idx, dtype=torch.float32, device="cuda", with_stride=False): """Generate grid Points of a single level. Note: This function is usually called by method ``self.grid_priors``. Args: featmap_size (tuple[int]): Size of the feature maps, arrange as (h, w). level_idx (int): The index of corresponding feature map level. dtype (:obj:`dtype`): Dtype of priors. Default: torch.float32. device (str, optional): The device the tensor will be put on. Defaults to 'cuda'. with_stride (bool): Concatenate the stride to the last dimension of points. Return: Tensor: Points of single feature levels. The shape of tensor should be (N, 2) when with stride is ``False``, where N = width * height, width and height are the sizes of the corresponding feature level, and the last dimension 2 represent (coord_x, coord_y), otherwise the shape should be (N, 4), and the last dimension 4 represent (coord_x, coord_y, stride_w, stride_h). """ feat_h, feat_w = featmap_size stride_w, stride_h = self.strides[level_idx] shift_x = (torch.arange(0, feat_w, device=device) + self.offset) * stride_w # keep featmap_size as Tensor instead of int, so that we # can convert to ONNX correctly shift_x = shift_x.to(dtype) shift_y = (torch.arange(0, feat_h, device=device) + self.offset) * stride_h # keep featmap_size as Tensor instead of int, so that we # can convert to ONNX correctly shift_y = shift_y.to(dtype) shift_xx, shift_yy = self._meshgrid(shift_x, shift_y) if not with_stride: shifts = torch.stack([shift_xx, shift_yy], dim=-1) else: # use `shape[0]` instead of `len(shift_xx)` for ONNX export stride_w = shift_xx.new_full((shift_xx.shape[0],), stride_w).to(dtype) stride_h = shift_xx.new_full((shift_yy.shape[0],), stride_h).to(dtype) shifts = torch.stack([shift_xx, shift_yy, stride_w, stride_h], dim=-1) all_points = shifts.to(device) return all_points def valid_flags(self, featmap_sizes, pad_shape, device="cuda"): """Generate valid flags of points of multiple feature levels. Args: featmap_sizes (list(tuple)): List of feature map sizes in multiple feature levels, each size arrange as as (h, w). pad_shape (tuple(int)): The padded shape of the image, arrange as (h, w). device (str): The device where the anchors will be put on. Return: list(torch.Tensor): Valid flags of points of multiple levels. """ assert self.num_levels == len(featmap_sizes) multi_level_flags = [] for i in range(self.num_levels): point_stride = self.strides[i] feat_h, feat_w = featmap_sizes[i] h, w = pad_shape[:2] valid_feat_h = min(int(np.ceil(h / point_stride[1])), feat_h) valid_feat_w = min(int(np.ceil(w / point_stride[0])), feat_w) flags = self.single_level_valid_flags((feat_h, feat_w), (valid_feat_h, valid_feat_w), device=device) multi_level_flags.append(flags) return multi_level_flags def single_level_valid_flags(self, featmap_size, valid_size, device="cuda"): """Generate the valid flags of points of a single feature map. Args: featmap_size (tuple[int]): The size of feature maps, arrange as as (h, w). valid_size (tuple[int]): The valid size of the feature maps. The size arrange as as (h, w). device (str, optional): The device where the flags will be put on. Defaults to 'cuda'. Returns: torch.Tensor: The valid flags of each points in a single level \ feature map. """ feat_h, feat_w = featmap_size valid_h, valid_w = valid_size assert valid_h <= feat_h and valid_w <= feat_w valid_x = torch.zeros(feat_w, dtype=torch.bool, device=device) valid_y = torch.zeros(feat_h, dtype=torch.bool, device=device) valid_x[:valid_w] = 1 valid_y[:valid_h] = 1 valid_xx, valid_yy = self._meshgrid(valid_x, valid_y) valid = valid_xx & valid_yy return valid def sparse_priors(self, prior_idxs, featmap_size, level_idx, dtype=torch.float32, device="cuda"): """Generate sparse points according to the ``prior_idxs``. Args: prior_idxs (Tensor): The index of corresponding anchors in the feature map. featmap_size (tuple[int]): feature map size arrange as (w, h). level_idx (int): The level index of corresponding feature map. dtype (obj:`torch.dtype`): Date type of points. Defaults to ``torch.float32``. device (obj:`torch.device`): The device where the points is located. Returns: Tensor: Anchor with shape (N, 2), N should be equal to the length of ``prior_idxs``. And last dimension 2 represent (coord_x, coord_y). """ height, width = featmap_size x = (prior_idxs % width + self.offset) * self.strides[level_idx][0] y = ((prior_idxs // width) % height + self.offset) * self.strides[level_idx][1] prioris = torch.stack([x, y], 1).to(dtype) prioris = prioris.to(device) return prioris
dinov2-main
dinov2/eval/segmentation_m2f/core/anchor/point_generator.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import warnings from mmcv.utils import Registry, build_from_cfg PRIOR_GENERATORS = Registry("Generator for anchors and points") ANCHOR_GENERATORS = PRIOR_GENERATORS def build_prior_generator(cfg, default_args=None): return build_from_cfg(cfg, PRIOR_GENERATORS, default_args) def build_anchor_generator(cfg, default_args=None): warnings.warn("``build_anchor_generator`` would be deprecated soon, please use " "``build_prior_generator`` ") return build_prior_generator(cfg, default_args=default_args)
dinov2-main
dinov2/eval/segmentation_m2f/core/anchor/builder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .backbones import * # noqa: F403 from .builder import MASK_ASSIGNERS, MATCH_COST, TRANSFORMER, build_assigner, build_match_cost from .decode_heads import * # noqa: F403 from .losses import * # noqa: F403 from .plugins import * # noqa: F403 from .segmentors import * # noqa: F403
dinov2-main
dinov2/eval/segmentation_m2f/models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from mmcv.utils import Registry TRANSFORMER = Registry("Transformer") MASK_ASSIGNERS = Registry("mask_assigner") MATCH_COST = Registry("match_cost") def build_match_cost(cfg): """Build Match Cost.""" return MATCH_COST.build(cfg) def build_assigner(cfg): """Build Assigner.""" return MASK_ASSIGNERS.build(cfg) def build_transformer(cfg): """Build Transformer.""" return TRANSFORMER.build(cfg)
dinov2-main
dinov2/eval/segmentation_m2f/models/builder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from mmseg.models.builder import LOSSES from mmseg.models.losses.utils import weight_reduce_loss def dice_loss(pred, target, weight=None, eps=1e-3, reduction="mean", avg_factor=None): """Calculate dice loss, which is proposed in `V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_. Args: pred (torch.Tensor): The prediction, has a shape (n, *) target (torch.Tensor): The learning label of the prediction, shape (n, *), same shape of pred. weight (torch.Tensor, optional): The weight of loss for each prediction, has a shape (n,). Defaults to None. eps (float): Avoid dividing by zero. Default: 1e-3. reduction (str, optional): The method used to reduce the loss into a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. """ input = pred.flatten(1) target = target.flatten(1).float() a = torch.sum(input * target, 1) b = torch.sum(input * input, 1) + eps c = torch.sum(target * target, 1) + eps d = (2 * a) / (b + c) loss = 1 - d if weight is not None: assert weight.ndim == loss.ndim assert len(weight) == len(pred) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss def naive_dice_loss(pred, target, weight=None, eps=1e-3, reduction="mean", avg_factor=None): """Calculate naive dice loss, the coefficient in the denominator is the first power instead of the second power. Args: pred (torch.Tensor): The prediction, has a shape (n, *) target (torch.Tensor): The learning label of the prediction, shape (n, *), same shape of pred. weight (torch.Tensor, optional): The weight of loss for each prediction, has a shape (n,). Defaults to None. eps (float): Avoid dividing by zero. Default: 1e-3. reduction (str, optional): The method used to reduce the loss into a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. """ input = pred.flatten(1) target = target.flatten(1).float() a = torch.sum(input * target, 1) b = torch.sum(input, 1) c = torch.sum(target, 1) d = (2 * a + eps) / (b + c + eps) loss = 1 - d if weight is not None: assert weight.ndim == loss.ndim assert len(weight) == len(pred) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss @LOSSES.register_module(force=True) class DiceLoss(nn.Module): def __init__(self, use_sigmoid=True, activate=True, reduction="mean", naive_dice=False, loss_weight=1.0, eps=1e-3): """Dice Loss, there are two forms of dice loss is supported: - the one proposed in `V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_. - the dice loss in which the power of the number in the denominator is the first power instead of the second power. Args: use_sigmoid (bool, optional): Whether to the prediction is used for sigmoid or softmax. Defaults to True. activate (bool): Whether to activate the predictions inside, this will disable the inside sigmoid operation. Defaults to True. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". Defaults to 'mean'. naive_dice (bool, optional): If false, use the dice loss defined in the V-Net paper, otherwise, use the naive dice loss in which the power of the number in the denominator is the first power instead of the second power.Defaults to False. loss_weight (float, optional): Weight of loss. Defaults to 1.0. eps (float): Avoid dividing by zero. Defaults to 1e-3. """ super(DiceLoss, self).__init__() self.use_sigmoid = use_sigmoid self.reduction = reduction self.naive_dice = naive_dice self.loss_weight = loss_weight self.eps = eps self.activate = activate def forward(self, pred, target, weight=None, reduction_override=None, avg_factor=None): """Forward function. Args: pred (torch.Tensor): The prediction, has a shape (n, *). target (torch.Tensor): The label of the prediction, shape (n, *), same shape of pred. weight (torch.Tensor, optional): The weight of loss for each prediction, has a shape (n,). Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Options are "none", "mean" and "sum". Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, "none", "mean", "sum") reduction = reduction_override if reduction_override else self.reduction if self.activate: if self.use_sigmoid: pred = pred.sigmoid() else: raise NotImplementedError if self.naive_dice: loss = self.loss_weight * naive_dice_loss( pred, target, weight, eps=self.eps, reduction=reduction, avg_factor=avg_factor ) else: loss = self.loss_weight * dice_loss( pred, target, weight, eps=self.eps, reduction=reduction, avg_factor=avg_factor ) return loss
dinov2-main
dinov2/eval/segmentation_m2f/models/losses/dice_loss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .cross_entropy_loss import CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy from .dice_loss import DiceLoss from .match_costs import ClassificationCost, CrossEntropyLossCost, DiceCost
dinov2-main
dinov2/eval/segmentation_m2f/models/losses/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import warnings import torch import torch.nn as nn import torch.nn.functional as F from mmseg.models.builder import LOSSES from mmseg.models.losses.utils import get_class_weight, weight_reduce_loss def cross_entropy( pred, label, weight=None, class_weight=None, reduction="mean", avg_factor=None, ignore_index=-100, avg_non_ignore=False, ): """cross_entropy. The wrapper function for :func:`F.cross_entropy` Args: pred (torch.Tensor): The prediction with shape (N, 1). label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. Default: None. class_weight (list[float], optional): The weight for each class. Default: None. reduction (str, optional): The method used to reduce the loss. Options are 'none', 'mean' and 'sum'. Default: 'mean'. avg_factor (int, optional): Average factor that is used to average the loss. Default: None. ignore_index (int): Specifies a target value that is ignored and does not contribute to the input gradients. When ``avg_non_ignore `` is ``True``, and the ``reduction`` is ``''mean''``, the loss is averaged over non-ignored targets. Defaults: -100. avg_non_ignore (bool): The flag decides to whether the loss is only averaged over non-ignored targets. Default: False. `New in version 0.23.0.` """ # class_weight is a manual rescaling weight given to each class. # If given, has to be a Tensor of size C element-wise losses loss = F.cross_entropy(pred, label, weight=class_weight, reduction="none", ignore_index=ignore_index) # apply weights and do the reduction # average loss over non-ignored elements # pytorch's official cross_entropy average loss over non-ignored elements # refer to https://github.com/pytorch/pytorch/blob/56b43f4fec1f76953f15a627694d4bba34588969/torch/nn/functional.py#L2660 # noqa if (avg_factor is None) and avg_non_ignore and reduction == "mean": avg_factor = label.numel() - (label == ignore_index).sum().item() if weight is not None: weight = weight.float() loss = weight_reduce_loss(loss, weight=weight, reduction=reduction, avg_factor=avg_factor) return loss def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index): """Expand onehot labels to match the size of prediction.""" bin_labels = labels.new_zeros(target_shape) valid_mask = (labels >= 0) & (labels != ignore_index) inds = torch.nonzero(valid_mask, as_tuple=True) if inds[0].numel() > 0: if labels.dim() == 3: bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1 else: bin_labels[inds[0], labels[valid_mask]] = 1 valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float() if label_weights is None: bin_label_weights = valid_mask else: bin_label_weights = label_weights.unsqueeze(1).expand(target_shape) bin_label_weights = bin_label_weights * valid_mask return bin_labels, bin_label_weights, valid_mask def binary_cross_entropy( pred, label, weight=None, reduction="mean", avg_factor=None, class_weight=None, ignore_index=-100, avg_non_ignore=False, **kwargs, ): """Calculate the binary CrossEntropy loss. Args: pred (torch.Tensor): The prediction with shape (N, 1). label (torch.Tensor): The learning label of the prediction. Note: In bce loss, label < 0 is invalid. weight (torch.Tensor, optional): Sample-wise loss weight. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (int): The label index to be ignored. Default: -100. avg_non_ignore (bool): The flag decides to whether the loss is only averaged over non-ignored targets. Default: False. `New in version 0.23.0.` Returns: torch.Tensor: The calculated loss """ if pred.size(1) == 1: # For binary class segmentation, the shape of pred is # [N, 1, H, W] and that of label is [N, H, W]. assert label.max() <= 1, "For pred with shape [N, 1, H, W], its label must have at " "most 2 classes" pred = pred.squeeze() if pred.dim() != label.dim(): assert (pred.dim() == 2 and label.dim() == 1) or (pred.dim() == 4 and label.dim() == 3), ( "Only pred shape [N, C], label shape [N] or pred shape [N, C, " "H, W], label shape [N, H, W] are supported" ) # `weight` returned from `_expand_onehot_labels` # has been treated for valid (non-ignore) pixels label, weight, valid_mask = _expand_onehot_labels(label, weight, pred.shape, ignore_index) else: # should mask out the ignored elements valid_mask = ((label >= 0) & (label != ignore_index)).float() if weight is not None: weight = weight * valid_mask else: weight = valid_mask # average loss over non-ignored and valid elements if reduction == "mean" and avg_factor is None and avg_non_ignore: avg_factor = valid_mask.sum().item() loss = F.binary_cross_entropy_with_logits(pred, label.float(), pos_weight=class_weight, reduction="none") # do the reduction for the weighted loss loss = weight_reduce_loss(loss, weight, reduction=reduction, avg_factor=avg_factor) return loss def mask_cross_entropy( pred, target, label, reduction="mean", avg_factor=None, class_weight=None, ignore_index=None, **kwargs ): """Calculate the CrossEntropy loss for masks. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes. target (torch.Tensor): The learning label of the prediction. label (torch.Tensor): ``label`` indicates the class label of the mask' corresponding object. This will be used to select the mask in the of the class which the object belongs to when the mask prediction if not class-agnostic. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (None): Placeholder, to be consistent with other loss. Default: None. Returns: torch.Tensor: The calculated loss """ assert ignore_index is None, "BCE loss does not support ignore_index" assert reduction == "mean" and avg_factor is None num_rois = pred.size()[0] inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) pred_slice = pred[inds, label].squeeze(1) return F.binary_cross_entropy_with_logits(pred_slice, target, weight=class_weight, reduction="mean")[None] @LOSSES.register_module(force=True) class CrossEntropyLoss(nn.Module): """CrossEntropyLoss. Args: use_sigmoid (bool, optional): Whether the prediction uses sigmoid of softmax. Defaults to False. use_mask (bool, optional): Whether to use mask cross entropy loss. Defaults to False. reduction (str, optional): . Defaults to 'mean'. Options are "none", "mean" and "sum". class_weight (list[float] | str, optional): Weight of each class. If in str format, read them from a file. Defaults to None. loss_weight (float, optional): Weight of the loss. Defaults to 1.0. loss_name (str, optional): Name of the loss item. If you want this loss item to be included into the backward graph, `loss_` must be the prefix of the name. Defaults to 'loss_ce'. avg_non_ignore (bool): The flag decides to whether the loss is only averaged over non-ignored targets. Default: False. `New in version 0.23.0.` """ def __init__( self, use_sigmoid=False, use_mask=False, reduction="mean", class_weight=None, loss_weight=1.0, loss_name="loss_ce", avg_non_ignore=False, ): super(CrossEntropyLoss, self).__init__() assert (use_sigmoid is False) or (use_mask is False) self.use_sigmoid = use_sigmoid self.use_mask = use_mask self.reduction = reduction self.loss_weight = loss_weight self.class_weight = get_class_weight(class_weight) self.avg_non_ignore = avg_non_ignore if not self.avg_non_ignore and self.reduction == "mean": warnings.warn( "Default ``avg_non_ignore`` is False, if you would like to " "ignore the certain label and average loss over non-ignore " "labels, which is the same with PyTorch official " "cross_entropy, set ``avg_non_ignore=True``." ) if self.use_sigmoid: self.cls_criterion = binary_cross_entropy elif self.use_mask: self.cls_criterion = mask_cross_entropy else: self.cls_criterion = cross_entropy self._loss_name = loss_name def extra_repr(self): """Extra repr.""" s = f"avg_non_ignore={self.avg_non_ignore}" return s def forward( self, cls_score, label, weight=None, avg_factor=None, reduction_override=None, ignore_index=-100, **kwargs ): """Forward function.""" assert reduction_override in (None, "none", "mean", "sum") reduction = reduction_override if reduction_override else self.reduction if self.class_weight is not None: class_weight = cls_score.new_tensor(self.class_weight) else: class_weight = None # Note: for BCE loss, label < 0 is invalid. loss_cls = self.loss_weight * self.cls_criterion( cls_score, label, weight, class_weight=class_weight, reduction=reduction, avg_factor=avg_factor, avg_non_ignore=self.avg_non_ignore, ignore_index=ignore_index, **kwargs, ) return loss_cls @property def loss_name(self): """Loss Name. This function must be implemented and will return the name of this loss function. This name will be used to combine different loss items by simple sum operation. In addition, if you want this loss item to be included into the backward graph, `loss_` must be the prefix of the name. Returns: str: The name of this loss item. """ return self._loss_name
dinov2-main
dinov2/eval/segmentation_m2f/models/losses/cross_entropy_loss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from ..builder import MATCH_COST @MATCH_COST.register_module() class ClassificationCost: """ClsSoftmaxCost.Borrow from mmdet.core.bbox.match_costs.match_cost.ClassificationCost. Args: weight (int | float, optional): loss_weight Examples: >>> import torch >>> self = ClassificationCost() >>> cls_pred = torch.rand(4, 3) >>> gt_labels = torch.tensor([0, 1, 2]) >>> factor = torch.tensor([10, 8, 10, 8]) >>> self(cls_pred, gt_labels) tensor([[-0.3430, -0.3525, -0.3045], [-0.3077, -0.2931, -0.3992], [-0.3664, -0.3455, -0.2881], [-0.3343, -0.2701, -0.3956]]) """ def __init__(self, weight=1.0): self.weight = weight def __call__(self, cls_pred, gt_labels): """ Args: cls_pred (Tensor): Predicted classification logits, shape [num_query, num_class]. gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,). Returns: torch.Tensor: cls_cost value with weight """ # Following the official DETR repo, contrary to the loss that # NLL is used, we approximate it in 1 - cls_score[gt_label]. # The 1 is a constant that doesn't change the matching, # so it can be omitted. cls_score = cls_pred.softmax(-1) cls_cost = -cls_score[:, gt_labels] return cls_cost * self.weight @MATCH_COST.register_module() class DiceCost: """Cost of mask assignments based on dice losses. Args: weight (int | float, optional): loss_weight. Defaults to 1. pred_act (bool, optional): Whether to apply sigmoid to mask_pred. Defaults to False. eps (float, optional): default 1e-12. """ def __init__(self, weight=1.0, pred_act=False, eps=1e-3): self.weight = weight self.pred_act = pred_act self.eps = eps def binary_mask_dice_loss(self, mask_preds, gt_masks): """ Args: mask_preds (Tensor): Mask prediction in shape (N1, H, W). gt_masks (Tensor): Ground truth in shape (N2, H, W) store 0 or 1, 0 for negative class and 1 for positive class. Returns: Tensor: Dice cost matrix in shape (N1, N2). """ mask_preds = mask_preds.reshape((mask_preds.shape[0], -1)) gt_masks = gt_masks.reshape((gt_masks.shape[0], -1)).float() numerator = 2 * torch.einsum("nc,mc->nm", mask_preds, gt_masks) denominator = mask_preds.sum(-1)[:, None] + gt_masks.sum(-1)[None, :] loss = 1 - (numerator + self.eps) / (denominator + self.eps) return loss def __call__(self, mask_preds, gt_masks): """ Args: mask_preds (Tensor): Mask prediction logits in shape (N1, H, W). gt_masks (Tensor): Ground truth in shape (N2, H, W). Returns: Tensor: Dice cost matrix in shape (N1, N2). """ if self.pred_act: mask_preds = mask_preds.sigmoid() dice_cost = self.binary_mask_dice_loss(mask_preds, gt_masks) return dice_cost * self.weight @MATCH_COST.register_module() class CrossEntropyLossCost: """CrossEntropyLossCost. Args: weight (int | float, optional): loss weight. Defaults to 1. use_sigmoid (bool, optional): Whether the prediction uses sigmoid of softmax. Defaults to True. """ def __init__(self, weight=1.0, use_sigmoid=True): assert use_sigmoid, "use_sigmoid = False is not supported yet." self.weight = weight self.use_sigmoid = use_sigmoid def _binary_cross_entropy(self, cls_pred, gt_labels): """ Args: cls_pred (Tensor): The prediction with shape (num_query, 1, *) or (num_query, *). gt_labels (Tensor): The learning label of prediction with shape (num_gt, *). Returns: Tensor: Cross entropy cost matrix in shape (num_query, num_gt). """ cls_pred = cls_pred.flatten(1).float() gt_labels = gt_labels.flatten(1).float() n = cls_pred.shape[1] pos = F.binary_cross_entropy_with_logits(cls_pred, torch.ones_like(cls_pred), reduction="none") neg = F.binary_cross_entropy_with_logits(cls_pred, torch.zeros_like(cls_pred), reduction="none") cls_cost = torch.einsum("nc,mc->nm", pos, gt_labels) + torch.einsum("nc,mc->nm", neg, 1 - gt_labels) cls_cost = cls_cost / n return cls_cost def __call__(self, cls_pred, gt_labels): """ Args: cls_pred (Tensor): Predicted classification logits. gt_labels (Tensor): Labels. Returns: Tensor: Cross entropy cost matrix with weight in shape (num_query, num_gt). """ if self.use_sigmoid: cls_cost = self._binary_cross_entropy(cls_pred, gt_labels) else: raise NotImplementedError return cls_cost * self.weight
dinov2-main
dinov2/eval/segmentation_m2f/models/losses/match_costs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import PLUGIN_LAYERS, Conv2d, ConvModule, caffe2_xavier_init, normal_init, xavier_init from mmcv.cnn.bricks.transformer import build_positional_encoding, build_transformer_layer_sequence from mmcv.runner import BaseModule, ModuleList from ...core.anchor import MlvlPointGenerator from ..utils.transformer import MultiScaleDeformableAttention @PLUGIN_LAYERS.register_module() class MSDeformAttnPixelDecoder(BaseModule): """Pixel decoder with multi-scale deformable attention. Args: in_channels (list[int] | tuple[int]): Number of channels in the input feature maps. strides (list[int] | tuple[int]): Output strides of feature from backbone. feat_channels (int): Number of channels for feature. out_channels (int): Number of channels for output. num_outs (int): Number of output scales. norm_cfg (:obj:`mmcv.ConfigDict` | dict): Config for normalization. Defaults to dict(type='GN', num_groups=32). act_cfg (:obj:`mmcv.ConfigDict` | dict): Config for activation. Defaults to dict(type='ReLU'). encoder (:obj:`mmcv.ConfigDict` | dict): Config for transformer encoder. Defaults to `DetrTransformerEncoder`. positional_encoding (:obj:`mmcv.ConfigDict` | dict): Config for transformer encoder position encoding. Defaults to dict(type='SinePositionalEncoding', num_feats=128, normalize=True). init_cfg (:obj:`mmcv.ConfigDict` | dict): Initialization config dict. """ def __init__( self, in_channels=[256, 512, 1024, 2048], strides=[4, 8, 16, 32], feat_channels=256, out_channels=256, num_outs=3, norm_cfg=dict(type="GN", num_groups=32), act_cfg=dict(type="ReLU"), encoder=dict( type="DetrTransformerEncoder", num_layers=6, transformerlayers=dict( type="BaseTransformerLayer", attn_cfgs=dict( type="MultiScaleDeformableAttention", embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None, ), feedforward_channels=1024, ffn_dropout=0.0, operation_order=("self_attn", "norm", "ffn", "norm"), ), init_cfg=None, ), positional_encoding=dict(type="SinePositionalEncoding", num_feats=128, normalize=True), init_cfg=None, ): super().__init__(init_cfg=init_cfg) self.strides = strides self.num_input_levels = len(in_channels) self.num_encoder_levels = encoder.transformerlayers.attn_cfgs.num_levels assert self.num_encoder_levels >= 1, "num_levels in attn_cfgs must be at least one" input_conv_list = [] # from top to down (low to high resolution) for i in range(self.num_input_levels - 1, self.num_input_levels - self.num_encoder_levels - 1, -1): input_conv = ConvModule( in_channels[i], feat_channels, kernel_size=1, norm_cfg=norm_cfg, act_cfg=None, bias=True ) input_conv_list.append(input_conv) self.input_convs = ModuleList(input_conv_list) self.encoder = build_transformer_layer_sequence(encoder) self.postional_encoding = build_positional_encoding(positional_encoding) # high resolution to low resolution self.level_encoding = nn.Embedding(self.num_encoder_levels, feat_channels) # fpn-like structure self.lateral_convs = ModuleList() self.output_convs = ModuleList() self.use_bias = norm_cfg is None # from top to down (low to high resolution) # fpn for the rest features that didn't pass in encoder for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1, -1): lateral_conv = ConvModule( in_channels[i], feat_channels, kernel_size=1, bias=self.use_bias, norm_cfg=norm_cfg, act_cfg=None ) output_conv = ConvModule( feat_channels, feat_channels, kernel_size=3, stride=1, padding=1, bias=self.use_bias, norm_cfg=norm_cfg, act_cfg=act_cfg, ) self.lateral_convs.append(lateral_conv) self.output_convs.append(output_conv) self.mask_feature = Conv2d(feat_channels, out_channels, kernel_size=1, stride=1, padding=0) self.num_outs = num_outs self.point_generator = MlvlPointGenerator(strides) def init_weights(self): """Initialize weights.""" for i in range(0, self.num_encoder_levels): xavier_init(self.input_convs[i].conv, gain=1, bias=0, distribution="uniform") for i in range(0, self.num_input_levels - self.num_encoder_levels): caffe2_xavier_init(self.lateral_convs[i].conv, bias=0) caffe2_xavier_init(self.output_convs[i].conv, bias=0) caffe2_xavier_init(self.mask_feature, bias=0) normal_init(self.level_encoding, mean=0, std=1) for p in self.encoder.parameters(): if p.dim() > 1: nn.init.xavier_normal_(p) # init_weights defined in MultiScaleDeformableAttention for layer in self.encoder.layers: for attn in layer.attentions: if isinstance(attn, MultiScaleDeformableAttention): attn.init_weights() def forward(self, feats): """ Args: feats (list[Tensor]): Feature maps of each level. Each has shape of (batch_size, c, h, w). Returns: tuple: A tuple containing the following: - mask_feature (Tensor): shape (batch_size, c, h, w). - multi_scale_features (list[Tensor]): Multi scale \ features, each in shape (batch_size, c, h, w). """ # generate padding mask for each level, for each image batch_size = feats[0].shape[0] encoder_input_list = [] padding_mask_list = [] level_positional_encoding_list = [] spatial_shapes = [] reference_points_list = [] for i in range(self.num_encoder_levels): level_idx = self.num_input_levels - i - 1 feat = feats[level_idx] feat_projected = self.input_convs[i](feat) h, w = feat.shape[-2:] # no padding padding_mask_resized = feat.new_zeros((batch_size,) + feat.shape[-2:], dtype=torch.bool) pos_embed = self.postional_encoding(padding_mask_resized) level_embed = self.level_encoding.weight[i] level_pos_embed = level_embed.view(1, -1, 1, 1) + pos_embed # (h_i * w_i, 2) reference_points = self.point_generator.single_level_grid_priors( feat.shape[-2:], level_idx, device=feat.device ) # normalize factor = feat.new_tensor([[w, h]]) * self.strides[level_idx] reference_points = reference_points / factor # shape (batch_size, c, h_i, w_i) -> (h_i * w_i, batch_size, c) feat_projected = feat_projected.flatten(2).permute(2, 0, 1) level_pos_embed = level_pos_embed.flatten(2).permute(2, 0, 1) padding_mask_resized = padding_mask_resized.flatten(1) encoder_input_list.append(feat_projected) padding_mask_list.append(padding_mask_resized) level_positional_encoding_list.append(level_pos_embed) spatial_shapes.append(feat.shape[-2:]) reference_points_list.append(reference_points) # shape (batch_size, total_num_query), # total_num_query=sum([., h_i * w_i,.]) padding_masks = torch.cat(padding_mask_list, dim=1) # shape (total_num_query, batch_size, c) encoder_inputs = torch.cat(encoder_input_list, dim=0) level_positional_encodings = torch.cat(level_positional_encoding_list, dim=0) device = encoder_inputs.device # shape (num_encoder_levels, 2), from low # resolution to high resolution spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=device) # shape (0, h_0*w_0, h_0*w_0+h_1*w_1, ...) level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) reference_points = torch.cat(reference_points_list, dim=0) reference_points = reference_points[None, :, None].repeat(batch_size, 1, self.num_encoder_levels, 1) valid_radios = reference_points.new_ones((batch_size, self.num_encoder_levels, 2)) # shape (num_total_query, batch_size, c) memory = self.encoder( query=encoder_inputs, key=None, value=None, query_pos=level_positional_encodings, key_pos=None, attn_masks=None, key_padding_mask=None, query_key_padding_mask=padding_masks, spatial_shapes=spatial_shapes, reference_points=reference_points, level_start_index=level_start_index, valid_radios=valid_radios, ) # (num_total_query, batch_size, c) -> (batch_size, c, num_total_query) memory = memory.permute(1, 2, 0) # from low resolution to high resolution num_query_per_level = [e[0] * e[1] for e in spatial_shapes] outs = torch.split(memory, num_query_per_level, dim=-1) outs = [x.reshape(batch_size, -1, spatial_shapes[i][0], spatial_shapes[i][1]) for i, x in enumerate(outs)] for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1, -1): x = feats[i] cur_feat = self.lateral_convs[i](x) y = cur_feat + F.interpolate(outs[-1], size=cur_feat.shape[-2:], mode="bilinear", align_corners=False) y = self.output_convs[i](y) outs.append(y) multi_scale_features = outs[: self.num_outs] mask_feature = self.mask_feature(outs[-1]) return mask_feature, multi_scale_features
dinov2-main
dinov2/eval/segmentation_m2f/models/plugins/msdeformattn_pixel_decoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .msdeformattn_pixel_decoder import MSDeformAttnPixelDecoder
dinov2-main
dinov2/eval/segmentation_m2f/models/plugins/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch from mmcv.ops import point_sample def get_uncertainty(mask_pred, labels): """Estimate uncertainty based on pred logits. We estimate uncertainty as L1 distance between 0.0 and the logits prediction in 'mask_pred' for the foreground class in `classes`. Args: mask_pred (Tensor): mask predication logits, shape (num_rois, num_classes, mask_height, mask_width). labels (list[Tensor]): Either predicted or ground truth label for each predicted mask, of length num_rois. Returns: scores (Tensor): Uncertainty scores with the most uncertain locations having the highest uncertainty score, shape (num_rois, 1, mask_height, mask_width) """ if mask_pred.shape[1] == 1: gt_class_logits = mask_pred.clone() else: inds = torch.arange(mask_pred.shape[0], device=mask_pred.device) gt_class_logits = mask_pred[inds, labels].unsqueeze(1) return -torch.abs(gt_class_logits) def get_uncertain_point_coords_with_randomness( mask_pred, labels, num_points, oversample_ratio, importance_sample_ratio ): """Get ``num_points`` most uncertain points with random points during train. Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The uncertainties are calculated for each point using 'get_uncertainty()' function that takes point's logit prediction as input. Args: mask_pred (Tensor): A tensor of shape (num_rois, num_classes, mask_height, mask_width) for class-specific or class-agnostic prediction. labels (list): The ground truth class for each instance. num_points (int): The number of points to sample. oversample_ratio (int): Oversampling parameter. importance_sample_ratio (float): Ratio of points that are sampled via importnace sampling. Returns: point_coords (Tensor): A tensor of shape (num_rois, num_points, 2) that contains the coordinates sampled points. """ assert oversample_ratio >= 1 assert 0 <= importance_sample_ratio <= 1 batch_size = mask_pred.shape[0] num_sampled = int(num_points * oversample_ratio) point_coords = torch.rand(batch_size, num_sampled, 2, device=mask_pred.device) point_logits = point_sample(mask_pred, point_coords) # It is crucial to calculate uncertainty based on the sampled # prediction value for the points. Calculating uncertainties of the # coarse predictions first and sampling them for points leads to # incorrect results. To illustrate this: assume uncertainty func( # logits)=-abs(logits), a sampled point between two coarse # predictions with -1 and 1 logits has 0 logits, and therefore 0 # uncertainty value. However, if we calculate uncertainties for the # coarse predictions first, both will have -1 uncertainty, # and sampled point will get -1 uncertainty. point_uncertainties = get_uncertainty(point_logits, labels) num_uncertain_points = int(importance_sample_ratio * num_points) num_random_points = num_points - num_uncertain_points idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] shift = num_sampled * torch.arange(batch_size, dtype=torch.long, device=mask_pred.device) idx += shift[:, None] point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view(batch_size, num_uncertain_points, 2) if num_random_points > 0: rand_roi_coords = torch.rand(batch_size, num_random_points, 2, device=mask_pred.device) point_coords = torch.cat((point_coords, rand_roi_coords), dim=1) return point_coords
dinov2-main
dinov2/eval/segmentation_m2f/models/utils/point_sample.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. from .assigner import MaskHungarianAssigner from .point_sample import get_uncertain_point_coords_with_randomness from .positional_encoding import LearnedPositionalEncoding, SinePositionalEncoding from .transformer import DetrTransformerDecoder, DetrTransformerDecoderLayer, DynamicConv, Transformer
dinov2-main
dinov2/eval/segmentation_m2f/models/utils/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import math import warnings from typing import Sequence import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from mmcv.cnn import Linear, build_activation_layer, build_norm_layer, xavier_init from mmcv.cnn.bricks.drop import build_dropout from mmcv.cnn.bricks.registry import FEEDFORWARD_NETWORK, TRANSFORMER_LAYER, TRANSFORMER_LAYER_SEQUENCE from mmcv.cnn.bricks.transformer import BaseTransformerLayer, TransformerLayerSequence, build_transformer_layer_sequence from mmcv.runner.base_module import BaseModule, Sequential from mmcv.utils import deprecated_api_warning, to_2tuple from torch.nn.init import normal_ from ..builder import TRANSFORMER try: from mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention except ImportError: warnings.warn( "`MultiScaleDeformableAttention` in MMCV has been moved to " "`mmcv.ops.multi_scale_deform_attn`, please update your MMCV" ) from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention class AdaptivePadding(nn.Module): """Applies padding to input (if needed) so that input can get fully covered by filter you specified. It support two modes "same" and "corner". The "same" mode is same with "SAME" padding mode in TensorFlow, pad zero around input. The "corner" mode would pad zero to bottom right. Args: kernel_size (int | tuple): Size of the kernel: stride (int | tuple): Stride of the filter. Default: 1: dilation (int | tuple): Spacing between kernel elements. Default: 1 padding (str): Support "same" and "corner", "corner" mode would pad zero to bottom right, and "same" mode would pad zero around input. Default: "corner". Example: >>> kernel_size = 16 >>> stride = 16 >>> dilation = 1 >>> input = torch.rand(1, 1, 15, 17) >>> adap_pad = AdaptivePadding( >>> kernel_size=kernel_size, >>> stride=stride, >>> dilation=dilation, >>> padding="corner") >>> out = adap_pad(input) >>> assert (out.shape[2], out.shape[3]) == (16, 32) >>> input = torch.rand(1, 1, 16, 17) >>> out = adap_pad(input) >>> assert (out.shape[2], out.shape[3]) == (16, 32) """ def __init__(self, kernel_size=1, stride=1, dilation=1, padding="corner"): super(AdaptivePadding, self).__init__() assert padding in ("same", "corner") kernel_size = to_2tuple(kernel_size) stride = to_2tuple(stride) padding = to_2tuple(padding) dilation = to_2tuple(dilation) self.padding = padding self.kernel_size = kernel_size self.stride = stride self.dilation = dilation def get_pad_shape(self, input_shape): input_h, input_w = input_shape kernel_h, kernel_w = self.kernel_size stride_h, stride_w = self.stride output_h = math.ceil(input_h / stride_h) output_w = math.ceil(input_w / stride_w) pad_h = max((output_h - 1) * stride_h + (kernel_h - 1) * self.dilation[0] + 1 - input_h, 0) pad_w = max((output_w - 1) * stride_w + (kernel_w - 1) * self.dilation[1] + 1 - input_w, 0) return pad_h, pad_w def forward(self, x): pad_h, pad_w = self.get_pad_shape(x.size()[-2:]) if pad_h > 0 or pad_w > 0: if self.padding == "corner": x = F.pad(x, [0, pad_w, 0, pad_h]) elif self.padding == "same": x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) return x class PatchMerging(BaseModule): """Merge patch feature map. This layer groups feature map by kernel_size, and applies norm and linear layers to the grouped feature map. Our implementation uses `nn.Unfold` to merge patch, which is about 25% faster than original implementation. Instead, we need to modify pretrained models for compatibility. Args: in_channels (int): The num of input channels. to gets fully covered by filter and stride you specified.. Default: True. out_channels (int): The num of output channels. kernel_size (int | tuple, optional): the kernel size in the unfold layer. Defaults to 2. stride (int | tuple, optional): the stride of the sliding blocks in the unfold layer. Default: None. (Would be set as `kernel_size`) padding (int | tuple | string ): The padding length of embedding conv. When it is a string, it means the mode of adaptive padding, support "same" and "corner" now. Default: "corner". dilation (int | tuple, optional): dilation parameter in the unfold layer. Default: 1. bias (bool, optional): Whether to add bias in linear layer or not. Defaults: False. norm_cfg (dict, optional): Config dict for normalization layer. Default: dict(type='LN'). init_cfg (dict, optional): The extra config for initialization. Default: None. """ def __init__( self, in_channels, out_channels, kernel_size=2, stride=None, padding="corner", dilation=1, bias=False, norm_cfg=dict(type="LN"), init_cfg=None, ): super().__init__(init_cfg=init_cfg) self.in_channels = in_channels self.out_channels = out_channels if stride: stride = stride else: stride = kernel_size kernel_size = to_2tuple(kernel_size) stride = to_2tuple(stride) dilation = to_2tuple(dilation) if isinstance(padding, str): self.adap_padding = AdaptivePadding( kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding ) # disable the padding of unfold padding = 0 else: self.adap_padding = None padding = to_2tuple(padding) self.sampler = nn.Unfold(kernel_size=kernel_size, dilation=dilation, padding=padding, stride=stride) sample_dim = kernel_size[0] * kernel_size[1] * in_channels if norm_cfg is not None: self.norm = build_norm_layer(norm_cfg, sample_dim)[1] else: self.norm = None self.reduction = nn.Linear(sample_dim, out_channels, bias=bias) def forward(self, x, input_size): """ Args: x (Tensor): Has shape (B, H*W, C_in). input_size (tuple[int]): The spatial shape of x, arrange as (H, W). Default: None. Returns: tuple: Contains merged results and its spatial shape. - x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) - out_size (tuple[int]): Spatial shape of x, arrange as (Merged_H, Merged_W). """ B, L, C = x.shape assert isinstance(input_size, Sequence), f"Expect " f"input_size is " f"`Sequence` " f"but get {input_size}" H, W = input_size assert L == H * W, "input feature has wrong size" x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W # Use nn.Unfold to merge patch. About 25% faster than original method, # but need to modify pretrained model for compatibility if self.adap_padding: x = self.adap_padding(x) H, W = x.shape[-2:] x = self.sampler(x) # if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2) out_h = ( H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] * (self.sampler.kernel_size[0] - 1) - 1 ) // self.sampler.stride[0] + 1 out_w = ( W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] * (self.sampler.kernel_size[1] - 1) - 1 ) // self.sampler.stride[1] + 1 output_size = (out_h, out_w) x = x.transpose(1, 2) # B, H/2*W/2, 4*C x = self.norm(x) if self.norm else x x = self.reduction(x) return x, output_size def inverse_sigmoid(x, eps=1e-5): """Inverse function of sigmoid. Args: x (Tensor): The tensor to do the inverse. eps (float): EPS avoid numerical overflow. Defaults 1e-5. Returns: Tensor: The x has passed the inverse function of sigmoid, has same shape with input. """ x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2) @FEEDFORWARD_NETWORK.register_module(force=True) class FFN(BaseModule): """Implements feed-forward networks (FFNs) with identity connection. Args: embed_dims (int): The feature dimension. Same as `MultiheadAttention`. Defaults: 256. feedforward_channels (int): The hidden dimension of FFNs. Defaults: 1024. num_fcs (int, optional): The number of fully-connected layers in FFNs. Default: 2. act_cfg (dict, optional): The activation config for FFNs. Default: dict(type='ReLU') ffn_drop (float, optional): Probability of an element to be zeroed in FFN. Default 0.0. add_identity (bool, optional): Whether to add the identity connection. Default: `True`. dropout_layer (obj:`ConfigDict`): The dropout_layer used when adding the shortcut. init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. Default: None. """ @deprecated_api_warning({"dropout": "ffn_drop", "add_residual": "add_identity"}, cls_name="FFN") def __init__( self, embed_dims=256, feedforward_channels=1024, num_fcs=2, act_cfg=dict(type="ReLU", inplace=True), ffn_drop=0.0, dropout_layer=None, add_identity=True, init_cfg=None, with_cp=False, **kwargs, ): super().__init__(init_cfg) assert num_fcs >= 2, "num_fcs should be no less " f"than 2. got {num_fcs}." self.embed_dims = embed_dims self.feedforward_channels = feedforward_channels self.num_fcs = num_fcs self.act_cfg = act_cfg self.activate = build_activation_layer(act_cfg) self.with_cp = with_cp layers = [] in_channels = embed_dims for _ in range(num_fcs - 1): layers.append(Sequential(Linear(in_channels, feedforward_channels), self.activate, nn.Dropout(ffn_drop))) in_channels = feedforward_channels layers.append(Linear(feedforward_channels, embed_dims)) layers.append(nn.Dropout(ffn_drop)) self.layers = Sequential(*layers) self.dropout_layer = build_dropout(dropout_layer) if dropout_layer else torch.nn.Identity() self.add_identity = add_identity @deprecated_api_warning({"residual": "identity"}, cls_name="FFN") def forward(self, x, identity=None): """Forward function for `FFN`. The function would add x to the output tensor if residue is None. """ if self.with_cp and x.requires_grad: out = cp.checkpoint(self.layers, x) else: out = self.layers(x) if not self.add_identity: return self.dropout_layer(out) if identity is None: identity = x return identity + self.dropout_layer(out) @TRANSFORMER_LAYER.register_module() class DetrTransformerDecoderLayer(BaseTransformerLayer): """Implements decoder layer in DETR transformer. Args: attn_cfgs (list[`mmcv.ConfigDict`] | list[dict] | dict )): Configs for self_attention or cross_attention, the order should be consistent with it in `operation_order`. If it is a dict, it would be expand to the number of attention in `operation_order`. feedforward_channels (int): The hidden dimension for FFNs. ffn_dropout (float): Probability of an element to be zeroed in ffn. Default 0.0. operation_order (tuple[str]): The execution order of operation in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm'). Default:None act_cfg (dict): The activation config for FFNs. Default: `LN` norm_cfg (dict): Config dict for normalization layer. Default: `LN`. ffn_num_fcs (int): The number of fully-connected layers in FFNs. Default:2. """ def __init__( self, attn_cfgs, feedforward_channels, ffn_dropout=0.0, operation_order=None, act_cfg=dict(type="ReLU", inplace=True), norm_cfg=dict(type="LN"), ffn_num_fcs=2, **kwargs, ): super(DetrTransformerDecoderLayer, self).__init__( attn_cfgs=attn_cfgs, feedforward_channels=feedforward_channels, ffn_dropout=ffn_dropout, operation_order=operation_order, act_cfg=act_cfg, norm_cfg=norm_cfg, ffn_num_fcs=ffn_num_fcs, **kwargs, ) assert len(operation_order) == 6 assert set(operation_order) == set(["self_attn", "norm", "cross_attn", "ffn"]) @TRANSFORMER_LAYER_SEQUENCE.register_module() class DetrTransformerEncoder(TransformerLayerSequence): """TransformerEncoder of DETR. Args: post_norm_cfg (dict): Config of last normalization layer. Default: `LN`. Only used when `self.pre_norm` is `True` """ def __init__(self, *args, post_norm_cfg=dict(type="LN"), **kwargs): super(DetrTransformerEncoder, self).__init__(*args, **kwargs) if post_norm_cfg is not None: self.post_norm = build_norm_layer(post_norm_cfg, self.embed_dims)[1] if self.pre_norm else None else: assert not self.pre_norm, f"Use prenorm in " f"{self.__class__.__name__}," f"Please specify post_norm_cfg" self.post_norm = None def forward(self, *args, **kwargs): """Forward function for `TransformerCoder`. Returns: Tensor: forwarded results with shape [num_query, bs, embed_dims]. """ x = super(DetrTransformerEncoder, self).forward(*args, **kwargs) if self.post_norm is not None: x = self.post_norm(x) return x @TRANSFORMER_LAYER_SEQUENCE.register_module() class DetrTransformerDecoder(TransformerLayerSequence): """Implements the decoder in DETR transformer. Args: return_intermediate (bool): Whether to return intermediate outputs. post_norm_cfg (dict): Config of last normalization layer. Default: `LN`. """ def __init__(self, *args, post_norm_cfg=dict(type="LN"), return_intermediate=False, **kwargs): super(DetrTransformerDecoder, self).__init__(*args, **kwargs) self.return_intermediate = return_intermediate if post_norm_cfg is not None: self.post_norm = build_norm_layer(post_norm_cfg, self.embed_dims)[1] else: self.post_norm = None def forward(self, query, *args, **kwargs): """Forward function for `TransformerDecoder`. Args: query (Tensor): Input query with shape `(num_query, bs, embed_dims)`. Returns: Tensor: Results with shape [1, num_query, bs, embed_dims] when return_intermediate is `False`, otherwise it has shape [num_layers, num_query, bs, embed_dims]. """ if not self.return_intermediate: x = super().forward(query, *args, **kwargs) if self.post_norm: x = self.post_norm(x)[None] return x intermediate = [] for layer in self.layers: query = layer(query, *args, **kwargs) if self.return_intermediate: if self.post_norm is not None: intermediate.append(self.post_norm(query)) else: intermediate.append(query) return torch.stack(intermediate) @TRANSFORMER.register_module() class Transformer(BaseModule): """Implements the DETR transformer. Following the official DETR implementation, this module copy-paste from torch.nn.Transformer with modifications: * positional encodings are passed in MultiheadAttention * extra LN at the end of encoder is removed * decoder returns a stack of activations from all decoding layers See `paper: End-to-End Object Detection with Transformers <https://arxiv.org/pdf/2005.12872>`_ for details. Args: encoder (`mmcv.ConfigDict` | Dict): Config of TransformerEncoder. Defaults to None. decoder ((`mmcv.ConfigDict` | Dict)): Config of TransformerDecoder. Defaults to None init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. Defaults to None. """ def __init__(self, encoder=None, decoder=None, init_cfg=None): super(Transformer, self).__init__(init_cfg=init_cfg) self.encoder = build_transformer_layer_sequence(encoder) self.decoder = build_transformer_layer_sequence(decoder) self.embed_dims = self.encoder.embed_dims def init_weights(self): # follow the official DETR to init parameters for m in self.modules(): if hasattr(m, "weight") and m.weight.dim() > 1: xavier_init(m, distribution="uniform") self._is_init = True def forward(self, x, mask, query_embed, pos_embed): """Forward function for `Transformer`. Args: x (Tensor): Input query with shape [bs, c, h, w] where c = embed_dims. mask (Tensor): The key_padding_mask used for encoder and decoder, with shape [bs, h, w]. query_embed (Tensor): The query embedding for decoder, with shape [num_query, c]. pos_embed (Tensor): The positional encoding for encoder and decoder, with the same shape as `x`. Returns: tuple[Tensor]: results of decoder containing the following tensor. - out_dec: Output from decoder. If return_intermediate_dec \ is True output has shape [num_dec_layers, bs, num_query, embed_dims], else has shape [1, bs, \ num_query, embed_dims]. - memory: Output results from encoder, with shape \ [bs, embed_dims, h, w]. """ bs, c, h, w = x.shape # use `view` instead of `flatten` for dynamically exporting to ONNX x = x.view(bs, c, -1).permute(2, 0, 1) # [bs, c, h, w] -> [h*w, bs, c] pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1) query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) # [num_query, dim] -> [num_query, bs, dim] mask = mask.view(bs, -1) # [bs, h, w] -> [bs, h*w] memory = self.encoder(query=x, key=None, value=None, query_pos=pos_embed, query_key_padding_mask=mask) target = torch.zeros_like(query_embed) # out_dec: [num_layers, num_query, bs, dim] out_dec = self.decoder( query=target, key=memory, value=memory, key_pos=pos_embed, query_pos=query_embed, key_padding_mask=mask ) out_dec = out_dec.transpose(1, 2) memory = memory.permute(1, 2, 0).reshape(bs, c, h, w) return out_dec, memory @TRANSFORMER_LAYER_SEQUENCE.register_module() class DeformableDetrTransformerDecoder(TransformerLayerSequence): """Implements the decoder in DETR transformer. Args: return_intermediate (bool): Whether to return intermediate outputs. coder_norm_cfg (dict): Config of last normalization layer. Default: `LN`. """ def __init__(self, *args, return_intermediate=False, **kwargs): super(DeformableDetrTransformerDecoder, self).__init__(*args, **kwargs) self.return_intermediate = return_intermediate def forward(self, query, *args, reference_points=None, valid_ratios=None, reg_branches=None, **kwargs): """Forward function for `TransformerDecoder`. Args: query (Tensor): Input query with shape `(num_query, bs, embed_dims)`. reference_points (Tensor): The reference points of offset. has shape (bs, num_query, 4) when as_two_stage, otherwise has shape ((bs, num_query, 2). valid_ratios (Tensor): The radios of valid points on the feature map, has shape (bs, num_levels, 2) reg_branch: (obj:`nn.ModuleList`): Used for refining the regression results. Only would be passed when with_box_refine is True, otherwise would be passed a `None`. Returns: Tensor: Results with shape [1, num_query, bs, embed_dims] when return_intermediate is `False`, otherwise it has shape [num_layers, num_query, bs, embed_dims]. """ output = query intermediate = [] intermediate_reference_points = [] for lid, layer in enumerate(self.layers): if reference_points.shape[-1] == 4: reference_points_input = ( reference_points[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[:, None] ) else: assert reference_points.shape[-1] == 2 reference_points_input = reference_points[:, :, None] * valid_ratios[:, None] output = layer(output, *args, reference_points=reference_points_input, **kwargs) output = output.permute(1, 0, 2) if reg_branches is not None: tmp = reg_branches[lid](output) if reference_points.shape[-1] == 4: new_reference_points = tmp + inverse_sigmoid(reference_points) new_reference_points = new_reference_points.sigmoid() else: assert reference_points.shape[-1] == 2 new_reference_points = tmp new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points) new_reference_points = new_reference_points.sigmoid() reference_points = new_reference_points.detach() output = output.permute(1, 0, 2) if self.return_intermediate: intermediate.append(output) intermediate_reference_points.append(reference_points) if self.return_intermediate: return torch.stack(intermediate), torch.stack(intermediate_reference_points) return output, reference_points @TRANSFORMER.register_module() class DeformableDetrTransformer(Transformer): """Implements the DeformableDETR transformer. Args: as_two_stage (bool): Generate query from encoder features. Default: False. num_feature_levels (int): Number of feature maps from FPN: Default: 4. two_stage_num_proposals (int): Number of proposals when set `as_two_stage` as True. Default: 300. """ def __init__(self, as_two_stage=False, num_feature_levels=4, two_stage_num_proposals=300, **kwargs): super(DeformableDetrTransformer, self).__init__(**kwargs) self.as_two_stage = as_two_stage self.num_feature_levels = num_feature_levels self.two_stage_num_proposals = two_stage_num_proposals self.embed_dims = self.encoder.embed_dims self.init_layers() def init_layers(self): """Initialize layers of the DeformableDetrTransformer.""" self.level_embeds = nn.Parameter(torch.Tensor(self.num_feature_levels, self.embed_dims)) if self.as_two_stage: self.enc_output = nn.Linear(self.embed_dims, self.embed_dims) self.enc_output_norm = nn.LayerNorm(self.embed_dims) self.pos_trans = nn.Linear(self.embed_dims * 2, self.embed_dims * 2) self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2) else: self.reference_points = nn.Linear(self.embed_dims, 2) def init_weights(self): """Initialize the transformer weights.""" for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) for m in self.modules(): if isinstance(m, MultiScaleDeformableAttention): m.init_weights() if not self.as_two_stage: xavier_init(self.reference_points, distribution="uniform", bias=0.0) normal_(self.level_embeds) def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes): """Generate proposals from encoded memory. Args: memory (Tensor) : The output of encoder, has shape (bs, num_key, embed_dim). num_key is equal the number of points on feature map from all level. memory_padding_mask (Tensor): Padding mask for memory. has shape (bs, num_key). spatial_shapes (Tensor): The shape of all feature maps. has shape (num_level, 2). Returns: tuple: A tuple of feature map and bbox prediction. - output_memory (Tensor): The input of decoder, \ has shape (bs, num_key, embed_dim). num_key is \ equal the number of points on feature map from \ all levels. - output_proposals (Tensor): The normalized proposal \ after a inverse sigmoid, has shape \ (bs, num_keys, 4). """ N, S, C = memory.shape proposals = [] _cur = 0 for lvl, (H, W) in enumerate(spatial_shapes): mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H * W)].view(N, H, W, 1) valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) grid_y, grid_x = torch.meshgrid( torch.linspace(0, H - 1, H, dtype=torch.float32, device=memory.device), torch.linspace(0, W - 1, W, dtype=torch.float32, device=memory.device), ) grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N, 1, 1, 2) grid = (grid.unsqueeze(0).expand(N, -1, -1, -1) + 0.5) / scale wh = torch.ones_like(grid) * 0.05 * (2.0**lvl) proposal = torch.cat((grid, wh), -1).view(N, -1, 4) proposals.append(proposal) _cur += H * W output_proposals = torch.cat(proposals, 1) output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True) output_proposals = torch.log(output_proposals / (1 - output_proposals)) output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float("inf")) output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf")) output_memory = memory output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0)) output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) output_memory = self.enc_output_norm(self.enc_output(output_memory)) return output_memory, output_proposals @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device): """Get the reference points used in decoder. Args: spatial_shapes (Tensor): The shape of all feature maps, has shape (num_level, 2). valid_ratios (Tensor): The radios of valid points on the feature map, has shape (bs, num_levels, 2) device (obj:`device`): The device where reference_points should be. Returns: Tensor: reference points used in decoder, has \ shape (bs, num_keys, num_levels, 2). """ reference_points_list = [] for lvl, (H, W) in enumerate(spatial_shapes): ref_y, ref_x = torch.meshgrid( torch.linspace(0.5, H - 0.5, H, dtype=torch.float32, device=device), torch.linspace(0.5, W - 0.5, W, dtype=torch.float32, device=device), ) ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H) ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] * valid_ratios[:, None] return reference_points def get_valid_ratio(self, mask): """Get the valid radios of feature maps of all level.""" _, H, W = mask.shape valid_H = torch.sum(~mask[:, :, 0], 1) valid_W = torch.sum(~mask[:, 0, :], 1) valid_ratio_h = valid_H.float() / H valid_ratio_w = valid_W.float() / W valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) return valid_ratio def get_proposal_pos_embed(self, proposals, num_pos_feats=128, temperature=10000): """Get the position embedding of proposal.""" scale = 2 * math.pi dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=proposals.device) dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats) # N, L, 4 proposals = proposals.sigmoid() * scale # N, L, 4, 128 pos = proposals[:, :, :, None] / dim_t # N, L, 4, 64, 2 pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2) return pos def forward( self, mlvl_feats, mlvl_masks, query_embed, mlvl_pos_embeds, reg_branches=None, cls_branches=None, **kwargs ): """Forward function for `Transformer`. Args: mlvl_feats (list(Tensor)): Input queries from different level. Each element has shape [bs, embed_dims, h, w]. mlvl_masks (list(Tensor)): The key_padding_mask from different level used for encoder and decoder, each element has shape [bs, h, w]. query_embed (Tensor): The query embedding for decoder, with shape [num_query, c]. mlvl_pos_embeds (list(Tensor)): The positional encoding of feats from different level, has the shape [bs, embed_dims, h, w]. reg_branches (obj:`nn.ModuleList`): Regression heads for feature maps from each decoder layer. Only would be passed when `with_box_refine` is True. Default to None. cls_branches (obj:`nn.ModuleList`): Classification heads for feature maps from each decoder layer. Only would be passed when `as_two_stage` is True. Default to None. Returns: tuple[Tensor]: results of decoder containing the following tensor. - inter_states: Outputs from decoder. If return_intermediate_dec is True output has shape \ (num_dec_layers, bs, num_query, embed_dims), else has \ shape (1, bs, num_query, embed_dims). - init_reference_out: The initial value of reference \ points, has shape (bs, num_queries, 4). - inter_references_out: The internal value of reference \ points in decoder, has shape \ (num_dec_layers, bs,num_query, embed_dims) - enc_outputs_class: The classification score of \ proposals generated from \ encoder's feature maps, has shape \ (batch, h*w, num_classes). \ Only would be returned when `as_two_stage` is True, \ otherwise None. - enc_outputs_coord_unact: The regression results \ generated from encoder's feature maps., has shape \ (batch, h*w, 4). Only would \ be returned when `as_two_stage` is True, \ otherwise None. """ assert self.as_two_stage or query_embed is not None feat_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] for lvl, (feat, mask, pos_embed) in enumerate(zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)): bs, c, h, w = feat.shape spatial_shape = (h, w) spatial_shapes.append(spatial_shape) feat = feat.flatten(2).transpose(1, 2) mask = mask.flatten(1) pos_embed = pos_embed.flatten(2).transpose(1, 2) lvl_pos_embed = pos_embed + self.level_embeds[lvl].view(1, 1, -1) lvl_pos_embed_flatten.append(lvl_pos_embed) feat_flatten.append(feat) mask_flatten.append(mask) feat_flatten = torch.cat(feat_flatten, 1) mask_flatten = torch.cat(mask_flatten, 1) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=feat_flatten.device) level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack([self.get_valid_ratio(m) for m in mlvl_masks], 1) reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=feat.device) feat_flatten = feat_flatten.permute(1, 0, 2) # (H*W, bs, embed_dims) lvl_pos_embed_flatten = lvl_pos_embed_flatten.permute(1, 0, 2) # (H*W, bs, embed_dims) memory = self.encoder( query=feat_flatten, key=None, value=None, query_pos=lvl_pos_embed_flatten, query_key_padding_mask=mask_flatten, spatial_shapes=spatial_shapes, reference_points=reference_points, level_start_index=level_start_index, valid_ratios=valid_ratios, **kwargs, ) memory = memory.permute(1, 0, 2) bs, _, c = memory.shape if self.as_two_stage: output_memory, output_proposals = self.gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes) enc_outputs_class = cls_branches[self.decoder.num_layers](output_memory) enc_outputs_coord_unact = reg_branches[self.decoder.num_layers](output_memory) + output_proposals topk = self.two_stage_num_proposals topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1] topk_coords_unact = torch.gather(enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) topk_coords_unact = topk_coords_unact.detach() reference_points = topk_coords_unact.sigmoid() init_reference_out = reference_points pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact))) query_pos, query = torch.split(pos_trans_out, c, dim=2) else: query_pos, query = torch.split(query_embed, c, dim=1) query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1) query = query.unsqueeze(0).expand(bs, -1, -1) reference_points = self.reference_points(query_pos).sigmoid() init_reference_out = reference_points # decoder query = query.permute(1, 0, 2) memory = memory.permute(1, 0, 2) query_pos = query_pos.permute(1, 0, 2) inter_states, inter_references = self.decoder( query=query, key=None, value=memory, query_pos=query_pos, key_padding_mask=mask_flatten, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios, reg_branches=reg_branches, **kwargs, ) inter_references_out = inter_references if self.as_two_stage: return inter_states, init_reference_out, inter_references_out, enc_outputs_class, enc_outputs_coord_unact return inter_states, init_reference_out, inter_references_out, None, None @TRANSFORMER.register_module() class DynamicConv(BaseModule): """Implements Dynamic Convolution. This module generate parameters for each sample and use bmm to implement 1*1 convolution. Code is modified from the `official github repo <https://github.com/PeizeSun/ SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py#L258>`_ . Args: in_channels (int): The input feature channel. Defaults to 256. feat_channels (int): The inner feature channel. Defaults to 64. out_channels (int, optional): The output feature channel. When not specified, it will be set to `in_channels` by default input_feat_shape (int): The shape of input feature. Defaults to 7. with_proj (bool): Project two-dimentional feature to one-dimentional feature. Default to True. act_cfg (dict): The activation config for DynamicConv. norm_cfg (dict): Config dict for normalization layer. Default layer normalization. init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. Default: None. """ def __init__( self, in_channels=256, feat_channels=64, out_channels=None, input_feat_shape=7, with_proj=True, act_cfg=dict(type="ReLU", inplace=True), norm_cfg=dict(type="LN"), init_cfg=None, ): super(DynamicConv, self).__init__(init_cfg) self.in_channels = in_channels self.feat_channels = feat_channels self.out_channels_raw = out_channels self.input_feat_shape = input_feat_shape self.with_proj = with_proj self.act_cfg = act_cfg self.norm_cfg = norm_cfg self.out_channels = out_channels if out_channels else in_channels self.num_params_in = self.in_channels * self.feat_channels self.num_params_out = self.out_channels * self.feat_channels self.dynamic_layer = nn.Linear(self.in_channels, self.num_params_in + self.num_params_out) self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1] self.norm_out = build_norm_layer(norm_cfg, self.out_channels)[1] self.activation = build_activation_layer(act_cfg) num_output = self.out_channels * input_feat_shape**2 if self.with_proj: self.fc_layer = nn.Linear(num_output, self.out_channels) self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1] def forward(self, param_feature, input_feature): """Forward function for `DynamicConv`. Args: param_feature (Tensor): The feature can be used to generate the parameter, has shape (num_all_proposals, in_channels). input_feature (Tensor): Feature that interact with parameters, has shape (num_all_proposals, in_channels, H, W). Returns: Tensor: The output feature has shape (num_all_proposals, out_channels). """ input_feature = input_feature.flatten(2).permute(2, 0, 1) input_feature = input_feature.permute(1, 0, 2) parameters = self.dynamic_layer(param_feature) param_in = parameters[:, : self.num_params_in].view(-1, self.in_channels, self.feat_channels) param_out = parameters[:, -self.num_params_out :].view(-1, self.feat_channels, self.out_channels) # input_feature has shape (num_all_proposals, H*W, in_channels) # param_in has shape (num_all_proposals, in_channels, feat_channels) # feature has shape (num_all_proposals, H*W, feat_channels) features = torch.bmm(input_feature, param_in) features = self.norm_in(features) features = self.activation(features) # param_out has shape (batch_size, feat_channels, out_channels) features = torch.bmm(features, param_out) features = self.norm_out(features) features = self.activation(features) if self.with_proj: features = features.flatten(1) features = self.fc_layer(features) features = self.fc_norm(features) features = self.activation(features) return features
dinov2-main
dinov2/eval/segmentation_m2f/models/utils/transformer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn from mmcv.cnn.bricks.transformer import POSITIONAL_ENCODING from mmcv.runner import BaseModule @POSITIONAL_ENCODING.register_module() class SinePositionalEncoding(BaseModule): """Position encoding with sine and cosine functions. See `End-to-End Object Detection with Transformers <https://arxiv.org/pdf/2005.12872>`_ for details. Args: num_feats (int): The feature dimension for each position along x-axis or y-axis. Note the final returned dimension for each position is 2 times of this value. temperature (int, optional): The temperature used for scaling the position embedding. Defaults to 10000. normalize (bool, optional): Whether to normalize the position embedding. Defaults to False. scale (float, optional): A scale factor that scales the position embedding. The scale will be used only when `normalize` is True. Defaults to 2*pi. eps (float, optional): A value added to the denominator for numerical stability. Defaults to 1e-6. offset (float): offset add to embed when do the normalization. Defaults to 0. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__( self, num_feats, temperature=10000, normalize=False, scale=2 * math.pi, eps=1e-6, offset=0.0, init_cfg=None ): super(SinePositionalEncoding, self).__init__(init_cfg) if normalize: assert isinstance(scale, (float, int)), ( "when normalize is set," "scale should be provided and in float or int type, " f"found {type(scale)}" ) self.num_feats = num_feats self.temperature = temperature self.normalize = normalize self.scale = scale self.eps = eps self.offset = offset def forward(self, mask): """Forward function for `SinePositionalEncoding`. Args: mask (Tensor): ByteTensor mask. Non-zero values representing ignored positions, while zero values means valid positions for this image. Shape [bs, h, w]. Returns: pos (Tensor): Returned position embedding with shape [bs, num_feats*2, h, w]. """ # For convenience of exporting to ONNX, it's required to convert # `masks` from bool to int. mask = mask.to(torch.int) not_mask = 1 - mask # logical_not y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: y_embed = (y_embed + self.offset) / (y_embed[:, -1:, :] + self.eps) * self.scale x_embed = (x_embed + self.offset) / (x_embed[:, :, -1:] + self.eps) * self.scale dim_t = torch.arange(self.num_feats, dtype=torch.float32, device=mask.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t # use `view` instead of `flatten` for dynamically exporting to ONNX B, H, W = mask.size() pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).view(B, H, W, -1) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).view(B, H, W, -1) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos def __repr__(self): """str: a string that describes the module""" repr_str = self.__class__.__name__ repr_str += f"(num_feats={self.num_feats}, " repr_str += f"temperature={self.temperature}, " repr_str += f"normalize={self.normalize}, " repr_str += f"scale={self.scale}, " repr_str += f"eps={self.eps})" return repr_str @POSITIONAL_ENCODING.register_module() class LearnedPositionalEncoding(BaseModule): """Position embedding with learnable embedding weights. Args: num_feats (int): The feature dimension for each position along x-axis or y-axis. The final returned dimension for each position is 2 times of this value. row_num_embed (int, optional): The dictionary size of row embeddings. Default 50. col_num_embed (int, optional): The dictionary size of col embeddings. Default 50. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_feats, row_num_embed=50, col_num_embed=50, init_cfg=dict(type="Uniform", layer="Embedding")): super(LearnedPositionalEncoding, self).__init__(init_cfg) self.row_embed = nn.Embedding(row_num_embed, num_feats) self.col_embed = nn.Embedding(col_num_embed, num_feats) self.num_feats = num_feats self.row_num_embed = row_num_embed self.col_num_embed = col_num_embed def forward(self, mask): """Forward function for `LearnedPositionalEncoding`. Args: mask (Tensor): ByteTensor mask. Non-zero values representing ignored positions, while zero values means valid positions for this image. Shape [bs, h, w]. Returns: pos (Tensor): Returned position embedding with shape [bs, num_feats*2, h, w]. """ h, w = mask.shape[-2:] x = torch.arange(w, device=mask.device) y = torch.arange(h, device=mask.device) x_embed = self.col_embed(x) y_embed = self.row_embed(y) pos = ( torch.cat((x_embed.unsqueeze(0).repeat(h, 1, 1), y_embed.unsqueeze(1).repeat(1, w, 1)), dim=-1) .permute(2, 0, 1) .unsqueeze(0) .repeat(mask.shape[0], 1, 1, 1) ) return pos def __repr__(self): """str: a string that describes the module""" repr_str = self.__class__.__name__ repr_str += f"(num_feats={self.num_feats}, " repr_str += f"row_num_embed={self.row_num_embed}, " repr_str += f"col_num_embed={self.col_num_embed})" return repr_str
dinov2-main
dinov2/eval/segmentation_m2f/models/utils/positional_encoding.py