Datasets:
metadata
license: mit
task_categories:
- text-classification
latent_imagenet (VQGAN-encoded ImageNet Test Set)
Dataset Summary
This dataset contains latent representations of the ImageNet test set, generated using a VQGAN encoder.
Each image is encoded into a tensor of shape 3 × 64 × 64 in the latent space.
This latent dataset can be used for:
- Accelerating training and inference in generative models (e.g., diffusion models in latent space)
- Research on semantic compression and generative modeling
- Experiments with reconstruction, super-resolution, and latent editing
Dataset Details
- Source dataset: ImageNet
- Subset:
test
split - Preprocessing: Images were encoded into latent tensors using a pre-trained VQGAN encoder.
- Latent shape:
3 × 64 × 64
- File format: PyTorch tensor (
.pt
/.pth
) or NumPy array (depending on your processing pipeline) - Number of samples: Equal to the ImageNet test set size.
Example Usage
from datasets import load_dataset
import torch
# Load the dataset
dataset = load_dataset("liangzhidanta/latent_imagenet")
# Access one sample
sample = dataset["train"][0] # or "test" depending on your split
latent = torch.tensor(sample["latent"]) # shape: [3, 64, 64]