Datasets:
modelId
stringlengths 5
138
| author
stringlengths 2
42
| last_modified
unknowndate 2020-02-15 11:33:14
2025-04-15 12:28:42
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 426
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
unknowndate 2022-03-02 23:29:04
2025-04-15 12:27:24
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
lesso11/321367b5-0076-49ca-b5f4-d3f6d9728549 | lesso11 | "2025-01-18T03:10:55" | 6 | 0 | peft | [
"peft",
"safetensors",
"opt",
"axolotl",
"generated_from_trainer",
"base_model:facebook/opt-125m",
"base_model:adapter:facebook/opt-125m",
"license:other",
"8-bit",
"bitsandbytes",
"region:us"
] | null | "2025-01-18T03:08:51" | ---
library_name: peft
license: other
base_model: facebook/opt-125m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 321367b5-0076-49ca-b5f4-d3f6d9728549
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: facebook/opt-125m
bf16: true
chat_template: llama3
datasets:
- data_files:
- 16a447cf139bcb80_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/16a447cf139bcb80_train_data.json
type:
field_instruction: paras
field_output: headings
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso11/321367b5-0076-49ca-b5f4-d3f6d9728549
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/16a447cf139bcb80_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c1566845-c9e2-4658-b67d-6967b916832d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c1566845-c9e2-4658-b67d-6967b916832d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 321367b5-0076-49ca-b5f4-d3f6d9728549
This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.8769 | 0.0012 | 1 | 1.3450 |
| 5.9394 | 0.0058 | 5 | 1.3031 |
| 4.1024 | 0.0116 | 10 | 1.1910 |
| 5.2361 | 0.0174 | 15 | 1.1229 |
| 4.3159 | 0.0232 | 20 | 1.0933 |
| 4.309 | 0.0290 | 25 | 1.0892 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
ashtaaav/results | ashtaaav | "2024-10-10T07:50:44" | 179 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | "2024-09-03T15:22:22" | ---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6576
- Accuracy: 0.8967
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 375 | 0.2720 | 0.8867 |
| 0.3139 | 2.0 | 750 | 0.3417 | 0.8967 |
| 0.1336 | 3.0 | 1125 | 0.6884 | 0.8707 |
| 0.032 | 4.0 | 1500 | 0.6928 | 0.8873 |
| 0.032 | 5.0 | 1875 | 0.6576 | 0.8967 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|
kawadlc/whisper-peft | kawadlc | "2023-08-16T03:18:46" | 0 | 0 | null | [
"zh",
"dataset:mozilla-foundation/common_voice_13_0",
"dataset:google/fleurs",
"region:us"
] | null | "2023-08-09T09:06:25" | ---
datasets:
- mozilla-foundation/common_voice_13_0
- google/fleurs
language:
- zh
metrics:
- cer
--- |
toilaluan/latent-lm-vae-z5-encoder | toilaluan | "2025-03-17T03:09:10" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2025-03-16T17:56:38" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
fastbond/Llama-2-7b-chat_SupervisedFineTune_GEMviggo_1epochs | fastbond | "2023-10-10T07:12:21" | 0 | 0 | peft | [
"peft",
"region:us"
] | null | "2023-10-10T07:12:09" | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0
|
rdzotz/w2v-bert-2.0-russian-colab-CV16.0 | rdzotz | "2024-01-29T19:39:43" | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-01-26T11:41:45" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
tmobaggins/bert-finetuned-squad | tmobaggins | "2022-11-20T22:24:05" | 119 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | "2022-11-14T23:19:16" | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
This is a first attempt at following the directions from the huggingface course. It was run on colab and a private server
## Intended uses & limitations
This model is fine-tuned for extractive question answering.
## Training and evaluation data
SQuAD
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.0
- Tokenizers 0.13.2
|
alexhotti/run_20250401_124122 | alexhotti | "2025-04-01T12:41:58" | 0 | 0 | null | [
"region:us"
] | null | "2025-04-01T12:41:58" | <!DOCTYPE html>
<html class="" lang="en">
<head>
<meta charset="utf-8" />
<meta
name="viewport"
content="width=device-width, initial-scale=1.0, user-scalable=no"
/>
<meta
name="description"
content="We're on a journey to advance and democratize artificial intelligence through open source and open science."
/>
<meta property="fb:app_id" content="1321688464574422" />
<meta name="twitter:card" content="summary_large_image" />
<meta name="twitter:site" content="@huggingface" />
<meta
property="og:title"
content="Hugging Face - The AI community building the future."
/>
<meta property="og:type" content="website" />
<title>Hugging Face - The AI community building the future.</title>
<style>
body {
margin: 0;
}
main {
background-color: white;
min-height: 100vh;
padding: 7rem 1rem 8rem 1rem;
text-align: center;
font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system,
BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans,
sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol,
Noto Color Emoji;
}
img {
width: 6rem;
height: 6rem;
margin: 0 auto 1rem;
}
h1 {
font-size: 3.75rem;
line-height: 1;
color: rgba(31, 41, 55, 1);
font-weight: 700;
box-sizing: border-box;
margin: 0 auto;
}
p, a {
color: rgba(107, 114, 128, 1);
font-size: 1.125rem;
line-height: 1.75rem;
max-width: 28rem;
box-sizing: border-box;
margin: 0 auto;
}
.dark main {
background-color: rgb(11, 15, 25);
}
.dark h1 {
color: rgb(209, 213, 219);
}
.dark p, .dark a {
color: rgb(156, 163, 175);
}
</style>
<script>
// On page load or when changing themes, best to add inline in `head` to avoid FOUC
const key = "_tb_global_settings";
let theme = window.matchMedia("(prefers-color-scheme: dark)").matches
? "dark"
: "light";
try {
const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme;
if (storageTheme) {
theme = storageTheme === "dark" ? "dark" : "light";
}
} catch (e) {}
if (theme === "dark") {
document.documentElement.classList.add("dark");
} else {
document.documentElement.classList.remove("dark");
}
</script>
</head>
<body>
<main>
<img
src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg"
alt=""
/>
<div>
<h1>429</h1>
<p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p>
</div>
</main>
</body>
</html> |
Azazelle/llama3-8b-hikikomori-v0.4 | Azazelle | "2024-06-09T03:47:38" | 0 | 1 | transformers | [
"transformers",
"safetensors",
"unsloth",
"en",
"dataset:unalignment/toxic-dpo-v0.2",
"dataset:NobodyExistsOnTheInternet/ToxicQAFinal",
"dataset:Open-Orca/SlimOrca",
"dataset:PygmalionAI/PIPPA",
"dataset:MinervaAI/Aesir-Preview",
"license:llama3",
"endpoints_compatible",
"region:us"
] | null | "2024-06-09T03:25:30" | ---
library_name: transformers
tags:
- unsloth
license: llama3
datasets:
- unalignment/toxic-dpo-v0.2
- NobodyExistsOnTheInternet/ToxicQAFinal
- Open-Orca/SlimOrca
- PygmalionAI/PIPPA
- MinervaAI/Aesir-Preview
language:
- en
---

# Disclaimer
This model is an experimental fine tune of LLama-3
## Datasets used:
- unalignment/toxic-dpo-v0.2
- NobodyExistsOnTheInternet/ToxicQAFinal
- Open-Orca/SlimOrca (subset of data)
- PygmalionAI/PIPPA
- MinervaAI/Aesir-Preview
### Model Description
<!-- Provide a longer summary of what this model is. -->
The model is highly uncensored + suitable for roleplay
## About Us
Building - AI Waifu Supremacy
[X](https://twitter.com/hikikomorihaven)
[Discord](discord.gg/QS27Ka3cnq)
## Credits:
(For open sourcing tools + methodology to assist with fine tuning)
- Unisloth
- NurtureAI
(For open sourcing data to be used for fine tuning)
- NobodyExistsOnTheInternet
- unalignment
- Open-Orca
- PygmalionAI
- MinervaAI |
fbaldassarri/openlm-research_open_llama_7b_v2-autogptq-int4-gs64-sym | fbaldassarri | "2025-04-06T19:59:01" | 0 | 0 | null | [
"safetensors",
"llama",
"pytorch",
"causal-lm",
"OpenLLaMA",
"autoround",
"auto-round",
"intel-autoround",
"gptq",
"auto-gptq",
"autogptq",
"woq",
"intel",
"openlm-research",
"text-generation",
"dataset:tiiuae/falcon-refinedweb",
"dataset:bigcode/starcoderdata",
"dataset:togethercomputer/RedPajama-Data-1T",
"base_model:openlm-research/open_llama_7b_v2",
"base_model:quantized:openlm-research/open_llama_7b_v2",
"license:apache-2.0",
"4-bit",
"region:us"
] | text-generation | "2025-04-06T19:41:07" | ---
tags:
- pytorch
- causal-lm
- OpenLLaMA
- autoround
- auto-round
- intel-autoround
- gptq
- auto-gptq
- autogptq
- woq
- intel
- pytorch
- openlm-research
license: apache-2.0
datasets:
- tiiuae/falcon-refinedweb
- bigcode/starcoderdata
- togethercomputer/RedPajama-Data-1T
model_name: OpenLLaMA 7B v2
base_model:
- openlm-research/open_llama_7b_v2
inference: false
model_creator: openlm-research
pipeline_tag: text-generation
prompt_template: '{prompt}
'
quantized_by: fbaldassarri
---
## Model Information
Quantized version of [openlm-research/open_llama_7b_v2](https://huggingface.co/openlm-research/open_llama_7b_v2) using torch.float32 for quantization tuning.
- 4 bits (INT4)
- group size = 64
- Symmetrical Quantization
- Method AutoGPTQ (AutoGPTQ format)
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.6
Note: this INT4 version of open_llama_7b_v2 has been quantized to run inference through CPU.
## Replication Recipe
### Step 1 Install Requirements
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
```
wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.6.tar.gz
tar -xvzf v0.4.6.tar.gz
cd auto-round-0.4.6
pip install -r requirements-cpu.txt --upgrade
```
### Step 2 Build Intel AutoRound wheel from sources
```
pip install -vvv --no-build-isolation -e .[cpu]
```
### Step 3 Script for Quantization
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "openlm-research/open_llama_7b_v2"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
from auto_round import AutoRound
bits, group_size, sym, device, amp = 4, 64, True, 'cpu', False
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
autoround.quantize()
output_dir = "./AutoRound/openlm-research_open_llama_7b_v2-autogptq-int4-gs64-sym"
autoround.save_quantized(output_dir, format='auto_gptq', inplace=True)
```
## License
[Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/)
## Disclaimer
This quantized model comes with no warranty. It has been developed only for research purposes.
|
DiegoD616/LunarLander-v2 | DiegoD616 | "2023-02-19T00:24:15" | 0 | 0 | null | [
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] | reinforcement-learning | "2023-02-18T23:58:32" | ---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -118.98 +/- 36.13
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
|
huggingtweets/ilanblock | huggingtweets | "2023-01-04T23:31:32" | 107 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2023-01-04T23:30:40" | ---
language: en
thumbnail: http://www.huggingtweets.com/ilanblock/1672875087355/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1592883496434995207/shcZhn8g_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">S block</div>
<div style="text-align: center; font-size: 14px;">@ilanblock</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from S block.
| Data | S block |
| --- | --- |
| Tweets downloaded | 3242 |
| Retweets | 53 |
| Short tweets | 734 |
| Tweets kept | 2455 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1r3gqa7a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ilanblock's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/wdrbtxet) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/wdrbtxet/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/ilanblock')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Azzizz17/test | Azzizz17 | "2023-11-06T06:22:43" | 0 | 0 | peft | [
"peft",
"region:us"
] | null | "2023-11-06T06:18:18" | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
- PEFT 0.5.0
|
Xurrie/Bangchan | Xurrie | "2023-10-19T21:30:52" | 0 | 0 | null | [
"license:bigscience-openrail-m",
"region:us"
] | null | "2023-10-19T21:30:52" | ---
license: bigscience-openrail-m
---
|
IntelLabs/lonas-bloomz-7b-math | IntelLabs | "2025-02-12T17:21:08" | 0 | 2 | null | [
"en",
"arxiv:2501.16372",
"license:apache-2.0",
"region:us"
] | null | "2024-03-15T10:29:25" | ---
language: en
license: apache-2.0
---
# LoNAS Model Card: lonas-bloomz-7b-math
The super-network fine-tuned on BLOOMZ-7B with some math reasoning datasets using LoNAS.
## Model Details
### Information
- **Model name:** lonas-bloomz-7b-math
- **Base model:** [BLOOMZ-7b](https://huggingface.co/bigscience/bloomz-7b1)
- **Domain:** Math
- **Subnetwork version:** Super-network
- **NNCF Configuration:** [nncf_lonas_bloomz_7b.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/unified_math/nncf_lonas_bloomz_7b.json)
### Adapter Configuration
- **LoRA rank:** 32
- **LoRA alpha:** 64
- **LoRA target modules:** query_key_value, dense_h_to_4h, dense_4h_to_h
### Training Hyperparameters
- **Batch size:** 16
- **Learning rate:** 3e-4
- **Epoch:** 8
### Training Data
Unified math reasoning dataset: [math_10k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/math_10k.json) (collected with the training sets of GSM8K, MAWPS, and AQuA).
### Evaluation Data
[GSM8K](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/gsm8k/test.json), [AQuA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/AQuA/test.json), [MAWPS](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/mawps/test.json) and [SVAMP](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/SVAMP/test.json)
## How to use
Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation):
```bash
CUDA_VISIBLE_DEVICES=${DEVICES} python run_math.py \
--dataset_path None \
--model_name_or_path bigscience/bloomz-7b1 \
--lora \
--lora_weights lonas-bloomz-7b-math \
--nncf_config nncf_config/unified_math/nncf_lonas_bloomz_7b.json \
--do_test \
--output_dir lonas-bloomz-7b-math/results
```
## Evaluation Results
Results of the heuristic sub-network discoverd from the super-network:
| Method | Total Params. | TFLOPs | GSM8K | AQuA | MAWPS | SVAMP | Average |
|------------|---------------|-----------|-------|------|-------|-------|-----------|
| LoRA | 7.1B | 1.8 | 17.4 | 21.3 | 70.2 | 41.0 | **37.5** |
| **LoNAS** | **6.1B** | **1.5** | 18.6 | 22.0 | 76.5 | 31.8 | 37.2 |
## Model Sources
**Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS)
**Paper:**
- [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models](https://aclanthology.org/2024.lrec-main.940)
- [Low-Rank Adapters Meet Neural Architecture Search for LLM Compression](https://arxiv.org/abs/2501.16372)
## Citation
```bibtex
@inproceedings{munoz-etal-2024-lonas,
title = "{L}o{NAS}: Elastic Low-Rank Adapters for Efficient Large Language Models",
author = "Munoz, Juan Pablo and
Yuan, Jinjie and
Zheng, Yi and
Jain, Nilesh",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.940",
pages = "10760--10776",
}
```
## License
Apache-2.0
|
johnpaulbin/articulate-11-expspanish-base-merged | johnpaulbin | "2025-01-31T17:05:13" | 7 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | "2025-01-31T17:03:11" | ---
base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** johnpaulbin
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
surprisedPikachu007/tomato-disease-detection | surprisedPikachu007 | "2024-01-05T15:14:05" | 35 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | "2023-03-09T04:55:35" | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: tomato-disease-detection
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: imagefolder
type: imagefolder
config: dataset
split: train
args: dataset
metrics:
- type: accuracy
value: 0.9917706397663923
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tomato-disease-detection
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0394
- Accuracy: 0.9918
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1363 | 1.0 | 941 | 0.1109 | 0.9774 |
| 0.0657 | 2.0 | 1882 | 0.0666 | 0.9841 |
| 0.0605 | 3.0 | 2823 | 0.0394 | 0.9918 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2
|
SaiChamakura/fine-tuned-visionllama100_0.6dropout | SaiChamakura | "2025-02-13T09:20:20" | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:meta-llama/Llama-3.2-11B-Vision-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-11B-Vision-Instruct",
"endpoints_compatible",
"region:us"
] | null | "2025-02-12T19:53:37" | ---
base_model: meta-llama/Llama-3.2-11B-Vision-Instruct
library_name: transformers
model_name: fine-tuned-visionllama100_0.6dropout
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for fine-tuned-visionllama100_0.6dropout
This model is a fine-tuned version of [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="SaiChamakura/fine-tuned-visionllama100_0.6dropout", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.13.0
- Transformers: 4.47.1
- Pytorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
jlbaker361/dcgan-64-neg-vanilla | jlbaker361 | "2024-06-07T07:31:08" | 0 | 0 | null | [
"region:us"
] | null | "2024-06-02T01:04:47" | ---
{}
---
Creative Adversarial Network
epochs: 100
dataset jlbaker361/wikiart
n classes 27
batch_size 64
images where resized to 768
and then center cropped to: 64
used clip=False
conditional =False
discriminator parameters:
init_dim: 32
final_dim 512
generator parameters:
input noise_dim: 100
wandb project: https://wandb.ai/jlbaker361/creativity-gan/runs/ve86nzd8
|
LoneStriker/Yarn-Mistral-7b-128k-8.0bpw-h8-exl2 | LoneStriker | "2023-11-02T22:11:55" | 7 | 2 | transformers | [
"transformers",
"pytorch",
"mistral",
"text-generation",
"custom_code",
"dataset:emozilla/yarn-train-tokenized-16k-mistral",
"arxiv:2309.00071",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2023-11-02T20:42:29" | ---
datasets:
- emozilla/yarn-train-tokenized-16k-mistral
metrics:
- perplexity
library_name: transformers
---
# Model Card: Nous-Yarn-Mistral-7b-128k
[Preprint (arXiv)](https://arxiv.org/abs/2309.00071)
[GitHub](https://github.com/jquesnelle/yarn)

## Model Description
Nous-Yarn-Mistral-7b-128k is a state-of-the-art language model for long context, further pretrained on long context data for 1500 steps using the YaRN extension method.
It is an extension of [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and supports a 128k token context window.
To use, pass `trust_remote_code=True` when loading the model, for example
```python
model = AutoModelForCausalLM.from_pretrained("NousResearch/Yarn-Mistral-7b-128k",
use_flash_attention_2=True,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True)
```
In addition you will need to use the latest version of `transformers` (until 4.35 comes out)
```sh
pip install git+https://github.com/huggingface/transformers
```
## Benchmarks
Long context benchmarks:
| Model | Context Window | 8k PPL | 16k PPL | 32k PPL | 64k PPL | 128k PPL |
|-------|---------------:|------:|----------:|-----:|-----:|------------:|
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 8k | 2.96 | - | - | - | - |
| [Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 64k | 3.04 | 2.65 | 2.44 | 2.20 | - |
| [Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) | 128k | 3.08 | 2.68 | 2.47 | 2.24 | 2.19 |
Short context benchmarks showing that quality degradation is minimal:
| Model | Context Window | ARC-c | Hellaswag | MMLU | Truthful QA |
|-------|---------------:|------:|----------:|-----:|------------:|
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 8k | 59.98 | 83.31 | 64.16 | 42.15 |
| [Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 64k | 59.38 | 81.21 | 61.32 | 42.50 |
| [Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) | 128k | 58.87 | 80.58 | 60.64 | 42.46 |
## Collaborators
- [bloc97](https://github.com/bloc97): Methods, paper and evals
- [@theemozilla](https://twitter.com/theemozilla): Methods, paper, model training, and evals
- [@EnricoShippole](https://twitter.com/EnricoShippole): Model training
- [honglu2875](https://github.com/honglu2875): Paper and evals
The authors would like to thank LAION AI for their support of compute for this model.
It was trained on the [JUWELS](https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels) supercomputer. |
SyedShaheer/bart-large-cnn-samsum_tuned | SyedShaheer | "2024-02-27T11:06:28" | 123 | 1 | transformers | [
"transformers",
"pytorch",
"bart",
"text2text-generation",
"summarization",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | summarization | "2024-02-27T04:27:14" | ---
metrics:
- rouge
pipeline_tag: summarization
--- |
TideDra/Qwen-VL-Chat-DPO | TideDra | "2024-05-30T12:46:18" | 7 | 0 | transformers | [
"transformers",
"safetensors",
"qwen",
"custom_code",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-05-30T12:27:30" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
hivex-research/hivex-DBR-PPO-baseline-task-2-difficulty-4 | hivex-research | "2025-03-20T23:19:22" | 0 | 0 | hivex | [
"hivex",
"tensorboard",
"onnx",
"hivex-drone-based-reforestation",
"reinforcement-learning",
"multi-agent-reinforcement-learning",
"arxiv:2501.04180",
"model-index",
"region:us"
] | reinforcement-learning | "2024-08-30T08:12:17" | ---
library_name: hivex
original_train_name: DroneBasedReforestation_difficulty_4_task_2_run_id_1_train
tags:
- hivex
- hivex-drone-based-reforestation
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-DBR-PPO-baseline-task-2-difficulty-4
results:
- task:
type: sub-task
name: pick_up_seed_at_base
task-id: 2
difficulty-id: 4
dataset:
name: hivex-drone-based-reforestation
type: hivex-drone-based-reforestation
metrics:
- type: out_of_energy_count
value: 0.5909523957967758 +/- 0.09171894105446358
name: Out of Energy Count
verified: true
- type: recharge_energy_count
value: 125.54469884961844 +/- 115.46428296295271
name: Recharge Energy Count
verified: true
- type: cumulative_reward
value: 12.542430520057678 +/- 7.328528013270426
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>2</code> with difficulty <code>4</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>2</code><br>Difficulty: <code>4</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments)
[hivex-paper]: https://arxiv.org/abs/2501.04180 |
mrferr3t/82a95ddc-27ef-41d0-99aa-279c5adbf0d4 | mrferr3t | "2025-02-01T07:01:19" | 8 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:NousResearch/CodeLlama-13b-hf-flash",
"base_model:adapter:NousResearch/CodeLlama-13b-hf-flash",
"region:us"
] | null | "2025-02-01T04:59:04" | ---
library_name: peft
base_model: NousResearch/CodeLlama-13b-hf-flash
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 82a95ddc-27ef-41d0-99aa-279c5adbf0d4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf-flash
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 6643637ea42800a8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6643637ea42800a8_train_data.json
type:
field_instruction: query
field_output: positive
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 50
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/82a95ddc-27ef-41d0-99aa-279c5adbf0d4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0005
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 99
micro_batch_size: 2
mlflow_experiment_name: /tmp/6643637ea42800a8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 300
saves_per_epoch: 0
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b402ed71-a5df-4128-a00d-e02aeb7f26dc
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b402ed71-a5df-4128-a00d-e02aeb7f26dc
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 82a95ddc-27ef-41d0-99aa-279c5adbf0d4
This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1497
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 99
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.9332 | 0.0000 | 1 | 1.2700 |
| 4.3577 | 0.0008 | 50 | 1.1497 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1 |
ambrosfitz/tinyllama-history-chat_v0.2ps | ambrosfitz | "2024-03-09T22:52:23" | 91 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"US History - Primary Sources",
"conversational",
"en",
"dataset:ambrosfitz/ps_data_2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-03-09T22:11:35" | ---
library_name: transformers
tags:
- US History
- Primary Sources
license: apache-2.0
datasets:
- ambrosfitz/ps_data_2
language:
- en
pipeline_tag: text-generation
--- |
AIFT/AIFT-ko-orca-plat-Yi-ko-6b-refine-v1.2 | AIFT | "2024-01-22T23:59:30" | 59 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-01-22T23:42:26" | ---
license: cc-by-sa-4.0
---
<h1>instruct 모델 v1.2</h1>
<b><학습 데이터 구축></b>
kyujinpy 님의 KOR-OpenOrca-Platypus-데이터를 사람이 직접 재정제하고 잘못된 데이터는 제외시켰습니다.
<br>
현재, 새로운 버전의 모델 학습 및 성능을 위해 Open-Orca 데이터셋 일부를 번역하여 정제 중에 있습니다.
+ GPT4로 추가 데이터를 제작중에 있습니다.
총 데이터는 4만개를 목표로합니다.
<br>
<br>
###학습 데이터 파일은 비공개입니다.
<br>
<b><학습></b>
학습은 LoRA를 사용하여 A100 40G *2에서 학습을 진행하였습니다. |
t3dw/sd-class-butts-64 | t3dw | "2023-02-03T14:35:50" | 2 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] | unconditional-image-generation | "2023-02-03T12:26:10" | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of butts.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('t3dw/sd-class-butts-64')
image = pipeline().images[0]
image
```
|
owanr/ghc-roberta-base-intra-sorted-model_annots-cross-ent-batch-size | owanr | "2023-11-28T06:55:16" | 0 | 0 | null | [
"pytorch",
"safetensors",
"generated_from_trainer",
"base_model:FacebookAI/roberta-base",
"base_model:finetune:FacebookAI/roberta-base",
"license:mit",
"region:us"
] | null | "2023-11-26T05:22:12" | ---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
model-index:
- name: ghc-roberta-base-intra-sorted-model_annots-cross-ent-batch-size
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ghc-roberta-base-intra-sorted-model_annots-cross-ent-batch-size
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 75.2559
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 150.1364 | 0.01 | 1 | 137.8655 |
| 145.1491 | 0.01 | 2 | 137.7009 |
| 141.2592 | 0.02 | 3 | 137.3692 |
| 139.0919 | 0.02 | 4 | 136.8588 |
| 135.9284 | 0.03 | 5 | 136.1717 |
| 136.926 | 0.03 | 6 | 135.3063 |
| 134.5704 | 0.04 | 7 | 134.2661 |
| 137.4961 | 0.05 | 8 | 133.0658 |
| 132.8797 | 0.05 | 9 | 131.7179 |
| 136.0643 | 0.06 | 10 | 130.2276 |
| 135.4301 | 0.06 | 11 | 128.5899 |
| 127.1964 | 0.07 | 12 | 126.8418 |
| 125.513 | 0.08 | 13 | 124.9421 |
| 126.1663 | 0.08 | 14 | 122.8761 |
| 119.5367 | 0.09 | 15 | 120.6167 |
| 115.1592 | 0.09 | 16 | 118.1486 |
| 119.9518 | 0.1 | 17 | 115.4187 |
| 117.7895 | 0.1 | 18 | 112.3129 |
| 106.805 | 0.11 | 19 | 108.8144 |
| 108.7341 | 0.12 | 20 | 104.8086 |
| 99.3505 | 0.12 | 21 | 100.0166 |
| 96.6034 | 0.13 | 22 | 94.8025 |
| 97.1092 | 0.13 | 23 | 89.3208 |
| 87.4798 | 0.14 | 24 | 83.9749 |
| 84.8475 | 0.14 | 25 | 79.4704 |
| 83.373 | 0.15 | 26 | 77.4992 |
| 91.3204 | 0.16 | 27 | 77.1923 |
| 74.5017 | 0.16 | 28 | 76.8741 |
| 72.3207 | 0.17 | 29 | 76.2473 |
| 85.4136 | 0.17 | 30 | 75.5046 |
| 93.5758 | 0.18 | 31 | 76.7842 |
| 86.1518 | 0.18 | 32 | 80.6888 |
| 81.8937 | 0.19 | 33 | 81.3889 |
| 83.6016 | 0.2 | 34 | 78.7130 |
| 80.4784 | 0.2 | 35 | 75.8756 |
| 78.3552 | 0.21 | 36 | 74.9318 |
| 80.5475 | 0.21 | 37 | 75.4798 |
| 76.2882 | 0.22 | 38 | 76.9049 |
| 84.8002 | 0.23 | 39 | 76.9469 |
| 77.4504 | 0.23 | 40 | 75.8898 |
| 67.6916 | 0.24 | 41 | 75.0978 |
| 83.2207 | 0.24 | 42 | 74.9062 |
| 85.0015 | 0.25 | 43 | 75.6731 |
| 83.0497 | 0.25 | 44 | 75.9090 |
| 76.6919 | 0.26 | 45 | 75.5054 |
| 85.3877 | 0.27 | 46 | 75.1098 |
| 93.0404 | 0.27 | 47 | 74.9389 |
| 84.2074 | 0.28 | 48 | 74.9638 |
| 95.3972 | 0.28 | 49 | 76.3316 |
| 69.0631 | 0.29 | 50 | 77.7318 |
| 75.4309 | 0.29 | 51 | 77.7450 |
| 71.4134 | 0.3 | 52 | 76.5342 |
| 69.1066 | 0.31 | 53 | 77.6628 |
| 83.5769 | 0.31 | 54 | 78.5326 |
| 65.4712 | 0.32 | 55 | 77.5269 |
| 73.439 | 0.32 | 56 | 76.4808 |
| 76.9116 | 0.33 | 57 | 76.2608 |
| 79.1694 | 0.34 | 58 | 75.3286 |
| 73.6838 | 0.34 | 59 | 75.0881 |
| 73.1652 | 0.35 | 60 | 74.1375 |
| 83.7013 | 0.35 | 61 | 74.3447 |
| 84.6303 | 0.36 | 62 | 74.5879 |
| 91.8366 | 0.36 | 63 | 73.4361 |
| 77.6664 | 0.37 | 64 | 72.9986 |
| 79.3617 | 0.38 | 65 | 72.9200 |
| 81.8254 | 0.38 | 66 | 73.0654 |
| 79.6363 | 0.39 | 67 | 73.0463 |
| 86.762 | 0.39 | 68 | 73.1884 |
| 86.3385 | 0.4 | 69 | 73.4171 |
| 84.0979 | 0.4 | 70 | 73.6643 |
| 80.2404 | 0.41 | 71 | 73.6566 |
| 85.6388 | 0.42 | 72 | 73.6430 |
| 74.8952 | 0.42 | 73 | 73.4709 |
| 67.454 | 0.43 | 74 | 73.2007 |
| 77.6211 | 0.43 | 75 | 72.9498 |
| 91.3803 | 0.44 | 76 | 72.5157 |
| 83.2057 | 0.45 | 77 | 73.7496 |
| 78.6635 | 0.45 | 78 | 76.5247 |
| 62.8234 | 0.46 | 79 | 77.4481 |
| 90.3382 | 0.46 | 80 | 76.1735 |
| 79.189 | 0.47 | 81 | 75.0716 |
| 69.5808 | 0.47 | 82 | 76.5869 |
| 73.8021 | 0.48 | 83 | 77.8004 |
| 84.3247 | 0.49 | 84 | 76.7431 |
| 69.6219 | 0.49 | 85 | 75.4564 |
| 74.931 | 0.5 | 86 | 74.4129 |
| 72.8238 | 0.5 | 87 | 74.6309 |
| 72.4519 | 0.51 | 88 | 75.2184 |
| 72.0305 | 0.51 | 89 | 75.1167 |
| 84.3407 | 0.52 | 90 | 74.1608 |
| 82.8978 | 0.53 | 91 | 77.1175 |
| 69.8918 | 0.53 | 92 | 82.0105 |
| 88.752 | 0.54 | 93 | 80.1509 |
| 80.5262 | 0.54 | 94 | 74.2979 |
| 71.7139 | 0.55 | 95 | 72.3956 |
| 77.5043 | 0.55 | 96 | 73.0314 |
| 92.5619 | 0.56 | 97 | 73.5085 |
| 70.4613 | 0.57 | 98 | 74.0224 |
| 83.6026 | 0.57 | 99 | 73.7450 |
| 75.0023 | 0.58 | 100 | 73.0852 |
| 85.3673 | 0.58 | 101 | 73.1021 |
| 83.6135 | 0.59 | 102 | 73.1276 |
| 77.869 | 0.6 | 103 | 73.4371 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.6.1
- Tokenizers 0.14.1
|
Audino/my-awesome-modelv3 | Audino | "2024-04-06T13:06:23" | 107 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2024-04-05T18:54:40" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Noel-lawrence/q-Taxi-v3-weak | Noel-lawrence | "2024-02-17T11:28:22" | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | "2024-02-17T11:27:39" | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3-weak
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Noel-lawrence/q-Taxi-v3-weak", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ThuyNT03/PAOSL_COQE_viT5-large_v2 | ThuyNT03 | "2023-12-05T17:08:38" | 6 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:VietAI/vit5-large",
"base_model:finetune:VietAI/vit5-large",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2023-11-25T21:23:06" | ---
license: mit
base_model: VietAI/vit5-large
tags:
- generated_from_trainer
model-index:
- name: PAOSL_COQE_viT5-large_v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# PAOSL_COQE_viT5-large_v2
This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1
|
isitcoding/hfsmoll_finetuned | isitcoding | "2025-03-08T13:46:35" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"llama-factory",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2025-03-08T13:46:15" | ---
library_name: transformers
tags:
- llama-factory
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mradermacher/Blitz-AI-MOE-v0.4-GGUF | mradermacher | "2024-11-23T04:25:16" | 23 | 1 | transformers | [
"transformers",
"gguf",
"en",
"base_model:DenisTheDev/Blitz-AI-MOE-v0.4",
"base_model:quantized:DenisTheDev/Blitz-AI-MOE-v0.4",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | "2024-11-23T02:16:36" | ---
base_model: DenisTheDev/Blitz-AI-MOE-v0.4
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
static quants of https://huggingface.co/DenisTheDev/Blitz-AI-MOE-v0.4
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Blitz-AI-MOE-v0.4-GGUF/resolve/main/Blitz-AI-MOE-v0.4.Q2_K.gguf) | Q2_K | 6.9 | |
| [GGUF](https://huggingface.co/mradermacher/Blitz-AI-MOE-v0.4-GGUF/resolve/main/Blitz-AI-MOE-v0.4.Q3_K_S.gguf) | Q3_K_S | 8.1 | |
| [GGUF](https://huggingface.co/mradermacher/Blitz-AI-MOE-v0.4-GGUF/resolve/main/Blitz-AI-MOE-v0.4.Q3_K_M.gguf) | Q3_K_M | 9.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Blitz-AI-MOE-v0.4-GGUF/resolve/main/Blitz-AI-MOE-v0.4.Q3_K_L.gguf) | Q3_K_L | 9.7 | |
| [GGUF](https://huggingface.co/mradermacher/Blitz-AI-MOE-v0.4-GGUF/resolve/main/Blitz-AI-MOE-v0.4.IQ4_XS.gguf) | IQ4_XS | 10.1 | |
| [GGUF](https://huggingface.co/mradermacher/Blitz-AI-MOE-v0.4-GGUF/resolve/main/Blitz-AI-MOE-v0.4.Q4_K_S.gguf) | Q4_K_S | 10.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Blitz-AI-MOE-v0.4-GGUF/resolve/main/Blitz-AI-MOE-v0.4.Q4_K_M.gguf) | Q4_K_M | 11.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Blitz-AI-MOE-v0.4-GGUF/resolve/main/Blitz-AI-MOE-v0.4.Q5_K_S.gguf) | Q5_K_S | 12.9 | |
| [GGUF](https://huggingface.co/mradermacher/Blitz-AI-MOE-v0.4-GGUF/resolve/main/Blitz-AI-MOE-v0.4.Q5_K_M.gguf) | Q5_K_M | 13.2 | |
| [GGUF](https://huggingface.co/mradermacher/Blitz-AI-MOE-v0.4-GGUF/resolve/main/Blitz-AI-MOE-v0.4.Q6_K.gguf) | Q6_K | 15.3 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Blitz-AI-MOE-v0.4-GGUF/resolve/main/Blitz-AI-MOE-v0.4.Q8_0.gguf) | Q8_0 | 19.8 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
yaoandy107/whisper-small.en-moba-adapters | yaoandy107 | "2024-02-01T11:25:20" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-02-01T10:31:48" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Abdullah-Nazhat/Uniform_Contextualizer | Abdullah-Nazhat | "2024-05-15T18:59:00" | 0 | 0 | null | [
"license:bsd-3-clause",
"region:us"
] | null | "2024-05-15T18:56:31" | ---
license: bsd-3-clause
---
# Uniform_Contextualizer
Uniform_Contextualizer: Studying The Effect of Unity Expansion Factor for The Hidden Dimension in Transformer MLP
Paper Coming Soon
|
tceron/sentence-transformers-party-similarity-by-party | tceron | "2022-10-17T10:51:08" | 2 | 0 | transformers | [
"transformers",
"pytorch",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] | null | "2022-10-17T10:46:52" | ---
license: cc-by-4.0
---
More information about the model [in this git repo](https://github.com/tceron/capture_similarity_between_political_parties) |
AmineAllo/margin-element-detector-fm-dutiful-morning-4 | AmineAllo | "2023-10-26T22:52:03" | 20 | 0 | transformers | [
"transformers",
"pytorch",
"table-transformer",
"object-detection",
"generated_from_trainer",
"base_model:AmineAllo/MT-ancient-spaceship-83",
"base_model:finetune:AmineAllo/MT-ancient-spaceship-83",
"endpoints_compatible",
"region:us"
] | object-detection | "2023-10-26T22:06:47" | ---
base_model: toobiza/MT-ancient-spaceship-83
tags:
- generated_from_trainer
model-index:
- name: margin-element-detector-fm-dutiful-morning-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# margin-element-detector-fm-dutiful-morning-4
This model is a fine-tuned version of [toobiza/MT-ancient-spaceship-83](https://huggingface.co/toobiza/MT-ancient-spaceship-83) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.3630
- eval_loss_ce: 0.0000
- eval_loss_bbox: 0.0480
- eval_cardinality_error: 6.4700
- eval_giou: 43.8478
- eval_runtime: 7.9249
- eval_samples_per_second: 12.618
- eval_steps_per_second: 3.155
- epoch: 15.8
- step: 3950
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Framework versions
- Transformers 4.33.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.13.3
|
John6666/titania-mix-realistic-pony-illustrious-illustriousv10-sdxl | John6666 | "2024-12-23T06:51:09" | 152 | 0 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"stable-diffusion-xl",
"realistic",
"photorealistic",
"girls",
"cosplay",
"boobs",
"illustrious",
"en",
"base_model:OnomaAIResearch/Illustrious-xl-early-release-v0",
"base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | text-to-image | "2024-11-24T05:27:17" | ---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
- stable-diffusion
- stable-diffusion-xl
- realistic
- photorealistic
- girls
- cosplay
- boobs
- illustrious
base_model: OnomaAIResearch/Illustrious-xl-early-release-v0
---
Original model is [here](https://civitai.com/models/349587/titaniamix-realistic-pony-realistic-illustrious-sd15?modelVersionId=1091028).
This model created by [XXXNOAHXXX](https://civitai.com/user/XXXNOAHXXX).
|
stefan-it/hmbench-icdar-nl-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 | stefan-it | "2023-10-17T23:20:02" | 5 | 0 | flair | [
"flair",
"pytorch",
"token-classification",
"sequence-tagger-model",
"nl",
"base_model:dbmdz/bert-base-historic-multilingual-cased",
"base_model:finetune:dbmdz/bert-base-historic-multilingual-cased",
"license:mit",
"region:us"
] | token-classification | "2023-10-14T11:08:13" | ---
language: nl
license: mit
tags:
- flair
- token-classification
- sequence-tagger-model
base_model: dbmdz/bert-base-historic-multilingual-cased
widget:
- text: Professoren der Geneeskun dige Faculteit te Groningen alsook van de HH , Doctoren
en Chirurgijns van Groningen , Friesland , Noordholland , Overijssel , Gelderland
, Drenthe , in welke Provinciën dit Elixir als Medicament voor Mond en Tanden
reeds jaren bakend is .
---
# Fine-tuned Flair Model on Dutch ICDAR-Europeana NER Dataset
This Flair model was fine-tuned on the
[Dutch ICDAR-Europeana](https://github.com/stefan-it/historic-domain-adaptation-icdar)
NER Dataset using hmBERT as backbone LM.
The ICDAR-Europeana NER Dataset is a preprocessed variant of the
[Europeana NER Corpora](https://github.com/EuropeanaNewspapers/ner-corpora) for Dutch and French.
The following NEs were annotated: `PER`, `LOC` and `ORG`.
# Results
We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
* Batch Sizes: `[8, 4]`
* Learning Rates: `[3e-05, 5e-05]`
And report micro F1-score on development set:
| Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. |
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|
| bs8-e10-lr5e-05 | [0.8191][1] | [0.8086][2] | [0.8237][3] | [0.8318][4] | [0.8235][5] | 82.13 ± 0.76 |
| bs8-e10-lr3e-05 | [0.8056][6] | [0.8183][7] | [0.8241][8] | [0.8431][9] | [0.8155][10] | 82.13 ± 1.24 |
| bs4-e10-lr5e-05 | [0.8055][11] | [0.822][12] | [0.8243][13] | [0.8093][14] | [0.8144][15] | 81.51 ± 0.72 |
| bs4-e10-lr3e-05 | [0.8039][16] | [0.8122][17] | [0.8073][18] | [0.8246][19] | [0.8132][20] | 81.22 ± 0.7 |
[1]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[2]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[3]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[4]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[5]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[6]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[7]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[8]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[9]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[10]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[11]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[12]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[13]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[14]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[15]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[16]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[17]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[18]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[19]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[20]: https://hf.co/stefan-it/hmbench-icdar-nl-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
The [training log](training.log) and TensorBoard logs (only for hmByT5 and hmTEAMS based models) are also uploaded to the model hub.
More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
# Acknowledgements
We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
Many Thanks for providing access to the TPUs ❤️
|
peymansyh/distilhubert-finetuned-gtzan | peymansyh | "2023-08-21T17:50:22" | 159 | 0 | transformers | [
"transformers",
"pytorch",
"hubert",
"audio-classification",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"base_model:ntu-spml/distilhubert",
"base_model:finetune:ntu-spml/distilhubert",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | audio-classification | "2023-08-11T14:09:10" | ---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan-88
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.87
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan-88
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6139
- Accuracy: 0.87
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0172 | 1.0 | 112 | 1.8314 | 0.37 |
| 1.5433 | 2.0 | 225 | 1.2575 | 0.5 |
| 1.1517 | 3.0 | 337 | 0.9577 | 0.7 |
| 0.904 | 4.0 | 450 | 0.7582 | 0.77 |
| 0.4788 | 5.0 | 562 | 0.7504 | 0.79 |
| 0.3843 | 6.0 | 675 | 0.6265 | 0.79 |
| 0.3683 | 7.0 | 787 | 0.6683 | 0.8 |
| 0.2278 | 8.0 | 900 | 0.8167 | 0.77 |
| 0.4534 | 9.0 | 1012 | 0.6023 | 0.83 |
| 0.2357 | 10.0 | 1125 | 0.6185 | 0.83 |
| 0.3674 | 11.0 | 1237 | 0.6079 | 0.86 |
| 0.148 | 11.95 | 1344 | 0.6139 | 0.87 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
AGENTDARS/Reviewer-14B | AGENTDARS | "2025-02-24T21:52:21" | 0 | 0 | peft | [
"peft",
"safetensors",
"base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-14B",
"base_model:adapter:deepseek-ai/DeepSeek-R1-Distill-Qwen-14B",
"region:us"
] | null | "2025-02-24T20:26:15" | ---
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
library_name: peft
---
# Model Card for Reviewer-14B
## Model Details
### Model Description
Reviewer-14B is a fine-tuned on [**DeepSeek-R1-Distill-Qwen-14B**](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B), optimized for selecting the best patch among multiple patches generated by our DARS agent while solving software engineering problems.
### Model Sources
- **Repository:** [DARS-14B Repository](https://github.com/darsagent/DARS-Agent)
- **Paper:** ["DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal"](https://drive.google.com/file/d/1DMAZ-fkirC8uKl8819cOq9J3BQ4E7GXR/view?usp=drive_link)
## How to Get Started with the Model
We use vLLM to deploy and infer the model. Please follow this tutorial [here]((https://docs.vllm.ai/en/latest/features/lora.html)) to use our LoRA weights with vLLM.
## Training Details
### Dataset
We use our [code review dataset](https://huggingface.co/datasets/AGENTDARS/generated-critiques) where each instance contains several git patches with critiques for each each patch. The model learns to generate critiques for multiple patches and select the best patch.
### Training Procedure
| Hyperparameter | Value |
|----------------------|--------------------------------------------|
| Training regime | BF16 mixed precision |
| Optimizer | AdamW with cosine learning rate scheduler |
| LoRA Configuration | rank=8, alpha=32, dropout=0.1 |
| Batch Size | 48 |
| Learning Rate | 5e-6 |
| Sequence Length | 14K tokens |
| Fine-tuning Epochs | 1 |
| Compute Environment | DeepSpeed for memory-efficient distributed training |
| Compute Infrastructure | 8x H100 |
We use training script provided in [Qwen-2.5 codebase](https://github.com/QwenLM/Qwen2.5-Coder).
## Results
Using this model as a reviewer with DARS trajectories generated using Claude 3.5 Sonnet V2 achieves 41.7% on SWE-Bench Lite.
|
chickeninvader/ppo-LunarLander-v2 | chickeninvader | "2023-08-20T06:13:27" | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | "2023-08-20T06:12:57" | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -207.98 +/- 53.49
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
mradermacher/GritLM-8x7B-GGUF | mradermacher | "2024-12-08T23:29:44" | 347 | 0 | transformers | [
"transformers",
"gguf",
"mteb",
"en",
"dataset:GritLM/tulu2",
"base_model:GritLM/GritLM-8x7B",
"base_model:quantized:GritLM/GritLM-8x7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | "2024-03-17T08:22:56" | ---
base_model: GritLM/GritLM-8x7B
datasets:
- GritLM/tulu2
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- mteb
---
## About
static quants of https://huggingface.co/GritLM/GritLM-8x7B
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/GritLM-8x7B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.Q2_K.gguf) | Q2_K | 17.6 | |
| [GGUF](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.IQ3_XS.gguf) | IQ3_XS | 19.5 | |
| [GGUF](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.IQ3_S.gguf) | IQ3_S | 20.7 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.Q3_K_S.gguf) | Q3_K_S | 20.7 | |
| [GGUF](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.IQ3_M.gguf) | IQ3_M | 21.7 | |
| [GGUF](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.Q3_K_M.gguf) | Q3_K_M | 22.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.Q3_K_L.gguf) | Q3_K_L | 24.4 | |
| [GGUF](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.IQ4_XS.gguf) | IQ4_XS | 25.6 | |
| [GGUF](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.Q4_K_S.gguf) | Q4_K_S | 27.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.Q4_K_M.gguf) | Q4_K_M | 28.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.Q5_K_S.gguf) | Q5_K_S | 32.5 | |
| [GGUF](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.Q5_K_M.gguf) | Q5_K_M | 33.5 | |
| [GGUF](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.Q6_K.gguf) | Q6_K | 38.6 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/GritLM-8x7B-GGUF/resolve/main/GritLM-8x7B.Q8_0.gguf.part2of2) | Q8_0 | 49.8 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
Alphatao/e0983c78-8d6e-4f4b-988f-5e0e63505dde | Alphatao | "2025-03-09T14:54:47" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/tinyllama-chat",
"base_model:adapter:unsloth/tinyllama-chat",
"license:apache-2.0",
"region:us"
] | null | "2025-03-09T12:04:57" | ---
library_name: peft
license: apache-2.0
base_model: unsloth/tinyllama-chat
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e0983c78-8d6e-4f4b-988f-5e0e63505dde
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/tinyllama-chat
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 96c7cb877af8f653_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/96c7cb877af8f653_train_data.json
type:
field_input: plan
field_instruction: goal
field_output: revision
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/e0983c78-8d6e-4f4b-988f-5e0e63505dde
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 3600
micro_batch_size: 4
mlflow_experiment_name: /tmp/96c7cb877af8f653_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ef008972-2079-4b14-830a-53e13b141355
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ef008972-2079-4b14-830a-53e13b141355
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# e0983c78-8d6e-4f4b-988f-5e0e63505dde
This model is a fine-tuned version of [unsloth/tinyllama-chat](https://huggingface.co/unsloth/tinyllama-chat) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0218
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 3570
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.581 | 0.0006 | 1 | 1.7218 |
| 0.9692 | 0.0560 | 100 | 1.1257 |
| 1.0027 | 0.1121 | 200 | 1.1011 |
| 1.0308 | 0.1681 | 300 | 1.0850 |
| 0.9372 | 0.2241 | 400 | 1.0760 |
| 1.101 | 0.2802 | 500 | 1.0665 |
| 0.9727 | 0.3362 | 600 | 1.0590 |
| 0.9845 | 0.3922 | 700 | 1.0526 |
| 0.9084 | 0.4483 | 800 | 1.0508 |
| 1.0553 | 0.5043 | 900 | 1.0435 |
| 0.867 | 0.5603 | 1000 | 1.0409 |
| 0.92 | 0.6164 | 1100 | 1.0375 |
| 0.903 | 0.6724 | 1200 | 1.0336 |
| 0.9474 | 0.7284 | 1300 | 1.0282 |
| 0.9148 | 0.7845 | 1400 | 1.0270 |
| 0.9104 | 0.8405 | 1500 | 1.0201 |
| 1.0434 | 0.8965 | 1600 | 1.0183 |
| 1.1382 | 0.9526 | 1700 | 1.0140 |
| 0.9501 | 1.0087 | 1800 | 1.0223 |
| 0.7897 | 1.0647 | 1900 | 1.0218 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
thalllsssss/45a81f30-3d17-4b84-a45b-a2b51af00a14 | thalllsssss | "2025-01-24T05:37:37" | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2-7B-Instruct",
"base_model:adapter:unsloth/Qwen2-7B-Instruct",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | "2025-01-24T04:34:00" | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2-7B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 45a81f30-3d17-4b84-a45b-a2b51af00a14
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2-7B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- be25ce38282aeb5a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/be25ce38282aeb5a_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: thalllsssss/45a81f30-3d17-4b84-a45b-a2b51af00a14
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/be25ce38282aeb5a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 14fba03c-c528-4737-ac1e-1f62f6edce20
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 14fba03c-c528-4737-ac1e-1f62f6edce20
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 45a81f30-3d17-4b84-a45b-a2b51af00a14
This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2583
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1782 | 0.0067 | 200 | 1.2583 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
chunwoolee0/my_awesome_eli5_clm-model | chunwoolee0 | "2023-07-09T15:06:15" | 141 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2023-07-09T11:57:24" | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: my_awesome_eli5_clm-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_eli5_clm-model
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7493
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7059 | 1.0 | 1108 | 3.7527 |
| 3.6588 | 2.0 | 2216 | 3.7516 |
| 3.6291 | 3.0 | 3324 | 3.7493 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
multitude0099/llama-2-chat-7b-recipegen | multitude0099 | "2024-04-11T14:23:24" | 11 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-04-11T14:14:43" | ---
license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: text-generation
--- |
isharani/sportClassification | isharani | "2023-12-07T15:11:48" | 0 | 0 | keras | [
"keras",
"tf-keras",
"region:us"
] | null | "2023-11-24T09:51:57" | ---
library_name: keras
---
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
| Hyperparameters | Value |
| :-- | :-- |
| name | Adam |
| weight_decay | None |
| clipnorm | None |
| global_clipnorm | None |
| clipvalue | None |
| use_ema | False |
| ema_momentum | 0.99 |
| ema_overwrite_frequency | None |
| jit_compile | True |
| is_legacy_optimizer | False |
| learning_rate | 9.999999747378752e-05 |
| beta_1 | 0.9 |
| beta_2 | 0.999 |
| epsilon | 1e-07 |
| amsgrad | False |
| training_precision | float32 |
## Model Plot
<details>
<summary>View Model Plot</summary>

</details> |
Cayetano/ppo-LunarLander-v2 | Cayetano | "2023-09-04T16:53:12" | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | "2023-09-04T16:52:55" | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 299.82 +/- 20.06
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
KingNish/Reasoning-0.5b | KingNish | "2024-10-06T10:06:40" | 170 | 28 | transformers | [
"transformers",
"pytorch",
"safetensors",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"reasoning",
"conversational",
"en",
"dataset:KingNish/reasoning-base-20k",
"base_model:Qwen/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-0.5B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-10-05T16:29:14" | ---
base_model: Qwen/Qwen2.5-0.5B-Instruct
language:
- en
license: apache-2.0
datasets:
- KingNish/reasoning-base-20k
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- sft
- reasoning
---
# Model Dexcription
It's First iteration of this model. For testing purpose its just trained on 10k rows.
It performed very well than expected. It do first reasoning and than generate response on based on it but it do like o1.
It do reasoning separately no special tokens or in response reasoning.
Below is inference code.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
MAX_REASONING_TOKENS = 1024
MAX_RESPONSE_TOKENS = 512
model_name = "KingNish/Reasoning-0.5b"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Which is greater 9.9 or 9.11 ??"
messages = [
{"role": "user", "content": prompt}
]
# Generate reasoning
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
# print("REASONING: " + reasoning_output)
# Generate answer
messages.append({"role": "reasoning", "content": reasoning_output})
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("ANSWER: " + response_output)
```
- **Trained by:** [Nishith Jain](https://huggingface.co/KingNish)
- **License:** apache-2.0
- **Finetuned from model :** [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct)
- **Dataset used :** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k)
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
mort1k/dqn-SpaceInvadersNoFrameskip-v4 | mort1k | "2023-07-13T14:09:53" | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | "2023-07-13T14:09:10" | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 762.50 +/- 250.23
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mort1k -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mort1k -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mort1k
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
fxmarty/20220911-h13m58s49_sst2_distilbert_quantization | fxmarty | "2022-09-11T15:55:26" | 0 | 0 | null | [
"tensorboard",
"onnx",
"distilbert",
"text-classification",
"dataset:glue",
"region:us"
] | text-classification | "2022-09-11T15:52:09" | ---
pipeline_tag: text-classification
datasets:
- glue
metrics:
- accuracy
- total_time_in_seconds
- samples_per_second
- latency_in_seconds
tags:
- distilbert
---
**task**: `text-classification`
**Backend:** `sagemaker-training`
**Backend args:** `{'instance_type': 'ml.m5.2xlarge', 'supported_instructions': 'avx512'}`
**Number of evaluation samples:** `All dataset`
Fixed parameters:
* **dataset**: [{'path': 'glue', 'eval_split': 'validation', 'data_keys': {'primary': 'sentence'}, 'ref_keys': ['label'], 'name': 'sst2', 'calibration_split': 'train'}]
* **name_or_path**: `distilbert-base-uncased-finetuned-sst-2-english`
* **from_transformers**: `True`
* **calibration**:
* **method**: `percentile`
* **num_calibration_samples**: `128`
* **calibration_histogram_percentile**: `99.999`
Benchmarked parameters:
* **framework**: `onnxruntime`, `pytorch`
* **quantization_approach**: `dynamic`, `static`
* **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']`
* **node_exclusion**: `[]`, `['layernorm', 'gelu', 'residual', 'gather', 'softmax']`
* **per_channel**: `False`, `True`
* **framework_args**: `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}`, `{}`
* **reduce_range**: `True`, `False`
* **apply_quantization**: `True`, `False`
# Evaluation
## Non-time metrics
| framework | quantization_approach | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | accuracy |
| :-----------: | :-------------------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :------: |
| `onnxruntime` | `None` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 0.911 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.898 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.893 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.490 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.901 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.898 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.893 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.490 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.901 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.911 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.911 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.911 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.911 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.911 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.911 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.911 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.911 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.899 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.899 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.491 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.908 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.899 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.899 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.499 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.900 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.906 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.906 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.906 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.906 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.901 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.901 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.901 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.901 |
| `pytorch` | `None` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 0.911 |
## Time metrics
Time benchmarks were run for 15 seconds per config.
Below, time metrics for batch size = 1, input length = 32.
| framework | quantization_approach | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) |
| :-----------: | :-------------------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: |
| `onnxruntime` | `None` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 14.50 | \| | 69.00 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.19 | \| | 98.13 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.66 | \| | 93.87 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.45 | \| | 95.67 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.72 | \| | 93.33 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.40 | \| | 96.20 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.16 | \| | 98.40 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.40 | \| | 96.20 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.86 | \| | 92.07 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.43 | \| | 69.33 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.68 | \| | 68.13 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.40 | \| | 69.47 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.79 | \| | 67.60 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.80 | \| | 67.60 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.13 | \| | 70.80 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.54 | \| | 68.80 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.60 | \| | 68.53 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 11.23 | \| | 89.13 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 11.18 | \| | 89.47 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 11.39 | \| | 87.87 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 11.31 | \| | 88.47 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 13.73 | \| | 72.87 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.42 | \| | 69.40 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.09 | \| | 71.00 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 13.78 | \| | 72.60 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 16.11 | \| | 62.13 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 15.97 | \| | 62.67 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 15.82 | \| | 63.27 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 15.94 | \| | 62.73 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.03 | \| | 52.60 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.99 | \| | 52.67 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.93 | \| | 52.87 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.65 | \| | 53.67 |
| `pytorch` | `None` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 31.28 | \| | 32.00 |
Below, time metrics for batch size = 1, input length = 64.
| framework | quantization_approach | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) |
| :-----------: | :-------------------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: |
| `onnxruntime` | `None` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 24.59 | \| | 40.67 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.67 | \| | 53.60 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 19.16 | \| | 52.20 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.97 | \| | 52.73 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 19.29 | \| | 51.87 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.13 | \| | 52.33 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.64 | \| | 53.67 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.01 | \| | 52.60 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.96 | \| | 52.80 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.63 | \| | 40.67 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.28 | \| | 39.60 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.75 | \| | 40.47 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.97 | \| | 40.07 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 25.16 | \| | 39.80 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.49 | \| | 40.87 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.88 | \| | 40.20 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.17 | \| | 39.73 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 20.05 | \| | 49.93 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 20.76 | \| | 48.20 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 20.75 | \| | 48.20 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 20.23 | \| | 49.47 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.79 | \| | 40.40 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.17 | \| | 39.73 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.14 | \| | 41.47 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.27 | \| | 39.60 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 27.97 | \| | 35.80 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 27.43 | \| | 36.47 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 28.17 | \| | 35.53 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 28.16 | \| | 35.53 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 33.24 | \| | 30.13 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 32.46 | \| | 30.87 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 32.39 | \| | 30.93 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 32.75 | \| | 30.53 |
| `pytorch` | `None` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 41.25 | \| | 24.27 |
Below, time metrics for batch size = 1, input length = 128.
| framework | quantization_approach | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) |
| :-----------: | :-------------------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: |
| `onnxruntime` | `None` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 46.51 | \| | 21.53 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.33 | \| | 28.33 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.92 | \| | 27.87 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.56 | \| | 28.13 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 36.32 | \| | 27.53 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.53 | \| | 28.20 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.96 | \| | 27.87 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.42 | \| | 28.27 |
| `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 36.06 | \| | 27.80 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.40 | \| | 21.13 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.14 | \| | 21.27 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.46 | \| | 21.13 |
| `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.26 | \| | 21.20 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.48 | \| | 21.07 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.08 | \| | 21.27 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.02 | \| | 21.33 |
| `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.05 | \| | 21.27 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 39.63 | \| | 25.27 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 39.52 | \| | 25.33 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 39.78 | \| | 25.20 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 40.01 | \| | 25.00 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 44.24 | \| | 22.67 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 44.55 | \| | 22.47 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 45.74 | \| | 21.87 |
| `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 44.12 | \| | 22.67 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 51.41 | \| | 19.47 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 52.52 | \| | 19.07 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 51.25 | \| | 19.53 |
| `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 51.51 | \| | 19.47 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 59.37 | \| | 16.87 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 58.28 | \| | 17.20 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 59.37 | \| | 16.87 |
| `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 58.28 | \| | 17.20 |
| `pytorch` | `None` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 53.72 | \| | 18.67 |
|
mradermacher/Code-290k-6.7B-Instruct-GGUF | mradermacher | "2024-11-12T13:53:53" | 58 | 0 | transformers | [
"transformers",
"gguf",
"code",
"en",
"dataset:ajibawa-2023/Code-290k-ShareGPT",
"base_model:ajibawa-2023/Code-290k-6.7B-Instruct",
"base_model:quantized:ajibawa-2023/Code-290k-6.7B-Instruct",
"license:other",
"endpoints_compatible",
"region:us",
"conversational"
] | null | "2024-11-10T01:32:36" | ---
base_model: ajibawa-2023/Code-290k-6.7B-Instruct
datasets:
- ajibawa-2023/Code-290k-ShareGPT
language:
- en
library_name: transformers
license: other
quantized_by: mradermacher
tags:
- code
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/ajibawa-2023/Code-290k-6.7B-Instruct
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-GGUF/resolve/main/Code-290k-6.7B-Instruct.Q2_K.gguf) | Q2_K | 2.6 | |
| [GGUF](https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-GGUF/resolve/main/Code-290k-6.7B-Instruct.Q3_K_S.gguf) | Q3_K_S | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-GGUF/resolve/main/Code-290k-6.7B-Instruct.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-GGUF/resolve/main/Code-290k-6.7B-Instruct.Q3_K_L.gguf) | Q3_K_L | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-GGUF/resolve/main/Code-290k-6.7B-Instruct.IQ4_XS.gguf) | IQ4_XS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-GGUF/resolve/main/Code-290k-6.7B-Instruct.Q4_0_4_4.gguf) | Q4_0_4_4 | 3.9 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-GGUF/resolve/main/Code-290k-6.7B-Instruct.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-GGUF/resolve/main/Code-290k-6.7B-Instruct.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-GGUF/resolve/main/Code-290k-6.7B-Instruct.Q5_K_S.gguf) | Q5_K_S | 4.8 | |
| [GGUF](https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-GGUF/resolve/main/Code-290k-6.7B-Instruct.Q5_K_M.gguf) | Q5_K_M | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-GGUF/resolve/main/Code-290k-6.7B-Instruct.Q6_K.gguf) | Q6_K | 5.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-GGUF/resolve/main/Code-290k-6.7B-Instruct.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Code-290k-6.7B-Instruct-GGUF/resolve/main/Code-290k-6.7B-Instruct.f16.gguf) | f16 | 13.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
amuno5/gwc_training | amuno5 | "2024-02-11T20:59:19" | 2 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | "2024-02-10T17:27:36" | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -1005.08 +/- 142.00
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
tdopierre/ProtAugment-ParaphraseGenerator | tdopierre | "2021-07-07T14:15:07" | 4 | 5 | transformers | [
"transformers",
"pytorch",
"bart",
"text2text-generation",
"Paraphase Generation",
"Data Augmentation",
"en",
"dataset:Quora",
"dataset:MSR",
"dataset:Google-PAWS",
"arxiv:2105.12995",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2022-03-02T23:29:05" | ---
language: "en"
tags:
- Paraphase Generation
- Data Augmentation
datasets:
- Quora
- MSR
- Google-PAWS
---
[](https://arxiv.org/abs/2105.12995)
This model is used to generate paraphrases. It has been trained on a mix of 3 different paraphrase detection datasets: MSR, Quora, Google-PAWS.
We use this model in our ACL'21 Paper ["PROTAUGMENT: Unsupervised diverse short-texts paraphrasing for intent detection meta-learning"](https://arxiv.org/abs/2105.12995)
Jointly used with generation constraints, this model allows to generate diverse paraphrases. We use those paraphrases as a data augmentation technique to further boosts a classification model's generalization capability. Feel free to play with the [code](https://github.com/tdopierre/ProtAugment)!
If you use this model, please consider citing our paper.
```
@article{Dopierre2021ProtAugmentUD,
title={ProtAugment: Unsupervised diverse short-texts paraphrasing for intent detection meta-learning},
author={Thomas Dopierre and C. Gravier and Wilfried Logerais},
journal={ArXiv},
year={2021},
volume={abs/2105.12995}
}
```
|
emylrahim/ppo-Huggy | emylrahim | "2022-12-22T05:58:33" | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | "2022-12-22T05:58:25" |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: emylrahim/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Dataset Card for Hugging Face Hub Model Cards
This datasets consists of model cards for models hosted on the Hugging Face Hub. The model cards are created by the community and provide information about the model, its performance, its intended uses, and more. This dataset is updated on a daily basis and includes publicly available models on the Hugging Face Hub.
This dataset is made available to help support users wanting to work with a large number of Model Cards from the Hub. We hope that this dataset will help support research in the area of Model Cards and their use but the format of this dataset may not be useful for all use cases. If there are other features that you would like to see included in this dataset, please open a new discussion.
Dataset Details
Uses
There are a number of potential uses for this dataset including:
- text mining to find common themes in model cards
- analysis of the model card format/content
- topic modelling of model cards
- analysis of the model card metadata
- training language models on model cards
Out-of-Scope Use
[More Information Needed]
Dataset Structure
This dataset has a single split.
Dataset Creation
Curation Rationale
The dataset was created to assist people in working with model cards. In particular it was created to support research in the area of model cards and their use. It is possible to use the Hugging Face Hub API or client library to download model cards and this option may be preferable if you have a very specific use case or require a different format.
Source Data
The source data is README.md
files for models hosted on the Hugging Face Hub. We do not include any other supplementary files that may be included in the model card directory.
Data Collection and Processing
The data is downloaded using a CRON job on a daily basis.
Who are the source data producers?
The source data producers are the creators of the model cards on the Hugging Face Hub. This includes a broad variety of people from the community ranging from large companies to individual researchers. We do not gather any information about who created the model card in this repository although this information can be gathered from the Hugging Face Hub API.
Annotations [optional]
There are no additional annotations in this dataset beyond the model card content.
Annotation process
N/A
Who are the annotators?
N/A
Personal and Sensitive Information
We make no effort to anonymize the data. Whilst we don't expect the majority of model cards to contain personal or sensitive information, it is possible that some model cards may contain this information. Model cards may also link to websites or email addresses.
Bias, Risks, and Limitations
Model cards are created by the community and we do not have any control over the content of the model cards. We do not review the content of the model cards and we do not make any claims about the accuracy of the information in the model cards. Some model cards will themselves discuss bias and sometimes this is done by providing examples of bias in either the training data or the responses provided by the model. As a result this dataset may contain examples of bias.
Whilst we do not directly download any images linked to in the model cards, some model cards may include images. Some of these images may not be suitable for all audiences.
Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
Citation
No formal citation is required for this dataset but if you use this dataset in your work, please include a link to this dataset page.
Dataset Card Authors
Dataset Card Contact
- Downloads last month
- 1,575