Dataset Viewer
Auto-converted to Parquet
modelId
stringlengths
5
137
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
223M
likes
int64
0
10.1k
library_name
stringclasses
396 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknown
card
stringlengths
11
1.01M
sivan22/sefaria-ref-finder
sivan22
"2024-01-11T17:03:34"
0
0
null
[ "region:us" ]
null
"2024-01-11T16:59:27"
--- title: Sefaria Ref Finder emoji: 🐨 colorFrom: gray colorTo: gray sdk: streamlit sdk_version: 1.29.0 app_file: app.py pinned: false --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
mahiatlinux/MasherAI-7B-v0.9-GGUF
mahiatlinux
"2024-03-06T06:59:17"
3
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:openchat/openchat-3.5-0106", "base_model:quantized:openchat/openchat-3.5-0106", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-03-06T06:57:11"
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf base_model: openchat/openchat-3.5-0106 --- # Uploaded model - **Developed by:** mahiatlinux - **License:** apache-2.0 - **Finetuned from model :** openchat/openchat-3.5-0106 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e7_s6789_v3_l5_v50
KingKazma
"2023-08-09T15:56:16"
1
0
peft
[ "peft", "region:us" ]
null
"2023-08-09T15:56:15"
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Superrrdamn/task-3-Qwen-Qwen2.5-7B-Instruct
Superrrdamn
"2025-02-12T04:59:17"
194
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-7B-Instruct", "region:us" ]
null
"2025-01-31T22:25:18"
--- base_model: Qwen/Qwen2.5-7B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
Triangle104/Hermes2-Gutenberg2-Mistral-7B-Q4_K_M-GGUF
Triangle104
"2024-10-11T03:55:43"
5
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:nbeerbower/gutenberg2-dpo", "base_model:nbeerbower/Hermes2-Gutenberg2-Mistral-7B", "base_model:quantized:nbeerbower/Hermes2-Gutenberg2-Mistral-7B", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-10-11T03:54:21"
--- base_model: nbeerbower/Hermes2-Gutenberg2-Mistral-7B datasets: - jondurbin/gutenberg-dpo-v0.1 - nbeerbower/gutenberg2-dpo library_name: transformers license: apache-2.0 tags: - llama-cpp - gguf-my-repo model-index: - name: Hermes2-Gutenberg2-Mistral-7B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 37.21 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Hermes2-Gutenberg2-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 28.91 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Hermes2-Gutenberg2-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 5.66 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Hermes2-Gutenberg2-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 5.26 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Hermes2-Gutenberg2-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 16.92 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Hermes2-Gutenberg2-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 22.14 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Hermes2-Gutenberg2-Mistral-7B name: Open LLM Leaderboard --- # Triangle104/Hermes2-Gutenberg2-Mistral-7B-Q4_K_M-GGUF This model was converted to GGUF format from [`nbeerbower/Hermes2-Gutenberg2-Mistral-7B`](https://huggingface.co/nbeerbower/Hermes2-Gutenberg2-Mistral-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Hermes2-Gutenberg2-Mistral-7B) for more details on the model. --- Model details: - Hermes2-Gutenberg2-Mistral-7B NousResearch/Hermes-2-Pro-Mistral-7B finetuned on jondurbin/gutenberg-dpo-v0.1 and nbeerbower/gutenberg2-dpo. Method ORPO tuned with 2x RTX 3090 for 3 epochs. Open LLM Leaderboard Evaluation Results Detailed results can be found here Metric Value Avg. 19.35 IFEval (0-Shot) 37.21 BBH (3-Shot) 28.91 MATH Lvl 5 (4-Shot) 5.66 GPQA (0-shot) 5.26 MuSR (0-shot) 16.92 MMLU-PRO (5-shot) 22.14 --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Hermes2-Gutenberg2-Mistral-7B-Q4_K_M-GGUF --hf-file hermes2-gutenberg2-mistral-7b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Hermes2-Gutenberg2-Mistral-7B-Q4_K_M-GGUF --hf-file hermes2-gutenberg2-mistral-7b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Hermes2-Gutenberg2-Mistral-7B-Q4_K_M-GGUF --hf-file hermes2-gutenberg2-mistral-7b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Hermes2-Gutenberg2-Mistral-7B-Q4_K_M-GGUF --hf-file hermes2-gutenberg2-mistral-7b-q4_k_m.gguf -c 2048 ```
nadanainone/popnm
nadanainone
"2022-12-13T05:33:37"
8
6
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "safetensors", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
"2022-11-14T09:01:35"
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - safetensors inference: false --- Model based on the art style from the rhythm game Pop n Music. Not 100% sure on this one but still gives decent results with the right settings depending on the prompt, but I couldn't tell you exactly which because I haven't gotten it entirely down. Prompt is popnm I claim no ownership over this, all rights belong to their respective owners. ![00496-3134873560-1girl, blonde hair, blue eyes, bow, dress, gloves, long hair, simple background, smile, solo, white gloves, popnm.png](https://s3.amazonaws.com/moonup/production/uploads/1668416720165-63716cac15aafbe231371caa.png) ![00450-917672115-1girl, bangs, blonde hair, blue eyes, breasts, eyebrows visible through hair, looking at viewer, short hair, simple background,-before-highres-fix.png](https://s3.amazonaws.com/moonup/production/uploads/1668416743792-63716cac15aafbe231371caa.png) ![00389-192342269-1girl, d, bangs, blonde hair, breasts, earrings, eyebrows visible through hair, green eyes, hair between eyes, jewelry, long ha.png](https://s3.amazonaws.com/moonup/production/uploads/1668416777501-63716cac15aafbe231371caa.png) ![00384-2174754408-1girl, d, bangs, blonde hair, breasts, earrings, eyebrows visible through hair, green eyes, hair between eyes, jewelry, long ha.png](https://s3.amazonaws.com/moonup/production/uploads/1668416789011-63716cac15aafbe231371caa.png) ![00435-887165732-1girl, aura, black jacket, blue fire, chibi, electricity, energy, gloves, hat, jacket, lightning, long hair, magic, pink eyes, p.png](https://s3.amazonaws.com/moonup/production/uploads/1668416820395-63716cac15aafbe231371caa.png) ![00467-4088781225-1girl, d, bow, bowtie, brown eyes, cat ears, chibi, clenched hand, clenched hands, dress, long hair, looking at viewer, open mo.png](https://s3.amazonaws.com/moonup/production/uploads/1668416837731-63716cac15aafbe231371caa.png)
redstonehero/yiffymix_32
redstonehero
"2023-08-09T08:51:06"
21
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2023-08-09T08:16:53"
--- license: creativeml-openrail-m library_name: diffusers ---
greattkiffy/gemma-2-2B-it-thinking-function_calling-V0
greattkiffy
"2025-02-20T04:30:33"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-2-2b-it", "base_model:finetune:google/gemma-2-2b-it", "endpoints_compatible", "region:us" ]
null
"2025-02-20T04:28:37"
--- base_model: google/gemma-2-2b-it library_name: transformers model_name: gemma-2-2B-it-thinking-function_calling-V0 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-2-2B-it-thinking-function_calling-V0 This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="greattkiffy/gemma-2-2B-it-thinking-function_calling-V0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.1 - Transformers: 4.48.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.3.1 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
morethiru/ring1
morethiru
"2025-02-22T14:48:16"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-02-22T14:22:29"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: ring1 --- # Ring1 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `ring1` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('morethiru/ring1', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
lmstudio-community/Llama-3.1-Tulu-3-405B-GGUF
lmstudio-community
"2025-01-30T22:14:16"
769
2
null
[ "gguf", "text-generation", "en", "dataset:allenai/RLVR-MATH", "arxiv:2411.15124", "base_model:allenai/Llama-3.1-Tulu-3-405B", "base_model:quantized:allenai/Llama-3.1-Tulu-3-405B", "license:llama3.1", "endpoints_compatible", "region:us", "conversational" ]
text-generation
"2025-01-30T15:56:08"
--- quantized_by: bartowski pipeline_tag: text-generation base_model: allenai/Llama-3.1-Tulu-3-405B datasets: - allenai/RLVR-MATH language: - en license: llama3.1 --- ## 💫 Community Model> Llama 3.1 Tulu 3 405B by Allenai *👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*. **Model creator:** [allenai](https://huggingface.co/allenai)<br> **Original model**: [Llama-3.1-Tulu-3-405B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-405B)<br> **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b4585](https://github.com/ggerganov/llama.cpp/releases/tag/b4585)<br> ## Technical Details Supports a context length of 128k tokens. Fully open source data, code, and recipes. Designed for state of the art performance across many tasks. More details from their original paper available [here](https://arxiv.org/abs/2411.15124). ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible. ## Disclaimers LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
croissantllm/base_140k
croissantllm
"2024-02-01T15:56:50"
35
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "legal", "code", "text-generation-inference", "art", "text2text-generation", "fr", "en", "dataset:cerebras/SlimPajama-627B", "dataset:uonlp/CulturaX", "dataset:pg19", "dataset:bigcode/starcoderdata", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
"2024-01-18T14:30:08"
--- license: mit datasets: - cerebras/SlimPajama-627B - uonlp/CulturaX - pg19 - bigcode/starcoderdata language: - fr - en pipeline_tag: text2text-generation tags: - legal - code - text-generation-inference - art --- # CroissantLLM - Base (140k steps) This model is part of the CroissantLLM initiative, and corresponds to the checkpoint after 140k steps (2.2 T) tokens. To play with the final model, we recommend using the Chat version: https://huggingface.co/croissantllm/CroissantLLMChat-v0.1. ## Abstract We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware. To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources. To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81% of the transparency criteria, far beyond the scores of even most open initiatives. This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models. ## Citation Our work can be cited as: ```bash Coming soon ``` ## Usage This model is a base model, that is, it is not finetuned for Chat function and works best with few-shot prompting strategies. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "croissantllm/base_140k" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") inputs = tokenizer("I am so tired I could sleep right now. -> Je suis si fatigué que je pourrais m'endormir maintenant. He is heading to the market. -> Il va au marché. We are running on the beach. ->", return_tensors="pt").to(model.device) tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60, temperature=0.5) print(tokenizer.decode(tokens[0])) # remove bos token inputs = tokenizer("Capitales: France -> Paris, Italie -> Rome, Allemagne -> Berlin, Espagne ->", return_tensors="pt", add_special_tokens=True).to(model.device) tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60) print(tokenizer.decode(tokens[0])) ```
LLMJapan/nvidia_AceInstruct-72B-exl2-3.0bpw
LLMJapan
"2025-02-14T12:18:12"
0
0
null
[ "safetensors", "qwen2", "nvidia", "AceInstruct", "code", "math", "general_domain", "instruct_model", "text-generation", "conversational", "en", "base_model:nvidia/AceInstruct-72B", "base_model:quantized:nvidia/AceInstruct-72B", "license:cc-by-nc-4.0", "3-bit", "exl2", "region:us" ]
text-generation
"2025-02-14T11:42:54"
--- quantized_by: LLMJapan pipeline_tag: text-generation license: cc-by-nc-4.0 language: - en tags: - nvidia - AceInstruct - code - math - general_domain - instruct_model base_model: nvidia/AceInstruct-72B --- ## Exllama v2 Quantizations of AceInstruct-72B by nvidia Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.2.8">turboderp's ExLlamaV2 v0.2.8</a> for quantization. Original model: https://huggingface.co/nvidia/AceInstruct-72B Quantization Command Example for creating other bpw quantization ``` cd {your git clone directory} python convert.py -i {path to}/AceInstruct-72B -o {path to}/AceInstruct-72B/workingdir -cf {path to}/AceInstruct-72B/AceInstruct-72B-3bpw -b 3.0 ``` ## Prompt format ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## How to add your system prompt Copy the following json and replace the "You are AceInstruct developed by NVIDIA. You are helpful assistant." sentence with your original system prompt. The default tokenizer_config.json does not have system prompt. tokenizer_config.json ``` "chat_template": "{{- '<|im_start|>system\\nYou are AceInstruct developed by NVIDIA. You are helpful assistant.<|im_end|>\\n' }}\n {%- for message in messages %}\n{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}\n{%- endfor %}\n{%- if add_generation_prompt %}\n{{- '<|im_start|>assistant\n' }}\n{%- endif %}\n", ``` ## File information | quantization type | file size | | ----------------------- | ----------: | | 3.0bpw | 27.8 GiB | ## Benchmark Results | | Qwen2.5-1.5B-Instruct | AceInstruct-1.5B | Qwen2.5-7B-Instruct | AceInstruct-7B | Qwen2.5-72B-Instruct | AceInstruct-72B | | --------- |:-----:|:-----:|:-----:|:-----:|:-----:|:-----:| | HumanEval | 61.60 | 73.17 | 84.80 | 85.37 | 86.60 | 89.63 | | MBPP | 63.20 | 65.76 | 79.20 | 74.32 | 88.20 | 83.66 | | GSM8K | 73.20 | 80.44 | 91.60 | 93.10 | 95.80 | 96.36 | | MATH | 55.20 | 60.34 | 75.50 | 76.40 | 83.10 | 84.50 | | MMLU | 58.37 | 58.17 | 74.51 | 74.68 | 84.67 | 83.88 | | MMLU Pro | 32.40 | 33.78 | 56.30 | 54.50 | 71.10 | 66.10 | | Average | 57.33 | 61.94 | 76.99 | 76.40 | 84.91 | 84.02 | ## Credits Thanks to NVIDIA team. --- license: cc-by-nc-4.0 ---
saberzl/SIDA-13B
saberzl
"2025-03-14T10:22:58"
1
1
null
[ "pytorch", "llava", "image-segmentation", "en", "dataset:saberzl/SID_Set", "arxiv:2412.04292", "base_model:xinlai/LISA-13B-llama2-v1", "base_model:finetune:xinlai/LISA-13B-llama2-v1", "license:llama2", "region:us" ]
image-segmentation
"2025-03-13T18:47:26"
--- license: llama2 datasets: - saberzl/SID_Set language: - en metrics: - accuracy base_model: - xinlai/LISA-13B-llama2-v1 pipeline_tag: image-segmentation --- # SIDA Model Card ## Model details **Model type:** SIDA is a model fine-tuned from LISA, designed to detect and localize tampered regions in images. **Model date:** SIDA-13B was trained in Febuary 2025. **Paper or resources for more information:** Paper: https://arxiv.org/pdf/2412.04292 Resource: https://github.com/hzlsaber/SIDA ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. ## Trained Data SIDA was trained on SID_Set, which consists of real images, tampered images, and fully synthetic images. More information is available [here](https://huggingface.co/datasets/saberzl/SID_Set) ## Citation Information If you find this dataset useful, please consider citing our paper: ``` @misc{huang2025sidasocialmediaimage, title={SIDA: Social Media Image Deepfake Detection, Localization and Explanation with Large Multimodal Model}, author={Zhenglin Huang and Jinwei Hu and Xiangtai Li and Yiwei He and Xingyu Zhao and Bei Peng and Baoyuan Wu and Xiaowei Huang and Guangliang Cheng}, year={2025}, booktitle={Conference on Computer Vision and Pattern Recognition} } ```
KwaiVGI/LivePortrait
KwaiVGI
"2025-03-03T16:17:36"
4,150
355
liveportrait
[ "liveportrait", "onnx", "image-to-video", "arxiv:2407.03168", "license:mit", "region:us" ]
image-to-video
"2024-07-08T15:39:36"
--- license: mit library_name: liveportrait pipeline_tag: image-to-video --- <h1 align="center">LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control</h1> <div align='center'> <a href='https://github.com/cleardusk' target='_blank'><strong>Jianzhu Guo</strong></a><sup> 1*†</sup>&emsp; <a href='https://github.com/Mystery099' target='_blank'><strong>Dingyun Zhang</strong></a><sup> 1,2*</sup>&emsp; <a href='https://github.com/KwaiVGI' target='_blank'><strong>Xiaoqiang Liu</strong></a><sup> 1</sup>&emsp; <a href='https://github.com/zzzweakman' target='_blank'><strong>Zhizhou Zhong</strong></a><sup> 1,3</sup>&emsp; <a href='https://scholar.google.com.hk/citations?user=_8k1ubAAAAAJ' target='_blank'><strong>Yuan Zhang</strong></a><sup> 1</sup>&emsp; </div> <div align='center'> <a href='https://scholar.google.com/citations?user=P6MraaYAAAAJ' target='_blank'><strong>Pengfei Wan</strong></a><sup> 1</sup>&emsp; <a href='https://openreview.net/profile?id=~Di_ZHANG3' target='_blank'><strong>Di Zhang</strong></a><sup> 1</sup>&emsp; </div> <div align='center'> <sup>1 </sup>Kuaishou Technology&emsp; <sup>2 </sup>University of Science and Technology of China&emsp; <sup>3 </sup>Fudan University&emsp; </div> <div align='center'> <small><sup>*</sup> Equal contributions</small> <small><sup>†</sup> Corresponding author</small> </div> <div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;"> <!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> --> <a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/arXiv-LivePortrait-red'></a> <a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-LivePortrait-green'></a> <a href='https://huggingface.co/spaces/KwaiVGI/liveportrait'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> <a href="https://github.com/KwaiVGI/LivePortrait"><img src="https://img.shields.io/github/stars/KwaiVGI/LivePortrait"></a> </div> <br> <p align="center"> <img src="./docs/showcase2.gif" alt="showcase"> 🔥 For more results, visit our <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> 🔥 </p> ## 🔥 Updates - **`2024/08/02`**: 😸 We released a version of the **Animals model**, along with several other updates and improvements. Check out the details [**here**](https://github.com/KwaiVGI/LivePortrait/blob/main/assets/docs/changelog/2024-08-02.md)! - **`2024/07/25`**: 📦 Windows users can now download the package from [HuggingFace](https://huggingface.co/cleardusk/LivePortrait-Windows/tree/main) or [BaiduYun](https://pan.baidu.com/s/1FWsWqKe0eNfXrwjEhhCqlw?pwd=86q2). Simply unzip and double-click `run_windows.bat` to enjoy! - **`2024/07/24`**: 🎨 We support pose editing for source portraits in the Gradio interface. We’ve also lowered the default detection threshold to increase recall. [Have fun](https://github.com/KwaiVGI/LivePortrait/blob/main/assets/docs/changelog/2024-07-24.md)! - **`2024/07/19`**: ✨ We support 🎞️ portrait video editing (aka v2v)! More to see [here](https://github.com/KwaiVGI/LivePortrait/blob/main/assets/docs/changelog/2024-07-19.md). - **`2024/07/17`**: 🍎 We support macOS with Apple Silicon, modified from [jeethu](https://github.com/jeethu)'s PR [#143](https://github.com/KwaiVGI/LivePortrait/pull/143). - **`2024/07/10`**: 💪 We support audio and video concatenating, driving video auto-cropping, and template making to protect privacy. More to see [here](https://github.com/KwaiVGI/LivePortrait/blob/main/assets/docs/changelog/2024-07-10.md). - **`2024/07/09`**: 🤗 We released the [HuggingFace Space](https://huggingface.co/spaces/KwaiVGI/liveportrait), thanks to the HF team and [Gradio](https://github.com/gradio-app/gradio)! - **`2024/07/04`**: 😊 We released the initial version of the inference code and models. Continuous updates, stay tuned! - **`2024/07/04`**: 🔥 We released the [homepage](https://liveportrait.github.io) and technical report on [arXiv](https://arxiv.org/pdf/2407.03168). ## Introduction 📖 This repo, named **LivePortrait**, contains the official PyTorch implementation of our paper [LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control](https://arxiv.org/pdf/2407.03168). We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) 💖. ## Getting Started 🏁 ### 1. Clone the code and prepare the environment ```bash git clone https://github.com/KwaiVGI/LivePortrait cd LivePortrait # create env using conda conda create -n LivePortrait python==3.9 conda activate LivePortrait # install dependencies with pip # for Linux and Windows users pip install -r requirements.txt # for macOS with Apple Silicon users pip install -r requirements_macOS.txt ``` **Note:** make sure your system has [FFmpeg](https://ffmpeg.org/download.html) installed, including both `ffmpeg` and `ffprobe`! ### 2. Download pretrained weights The easiest way to download the pretrained weights is from HuggingFace: ```bash # first, ensure git-lfs is installed, see: https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage git lfs install # clone and move the weights git clone https://huggingface.co/KwaiVGI/LivePortrait temp_pretrained_weights mv temp_pretrained_weights/* pretrained_weights/ rm -rf temp_pretrained_weights ``` Alternatively, you can download all pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). Unzip and place them in `./pretrained_weights`. Ensuring the directory structure is as follows, or contains: ```text pretrained_weights ├── insightface │ └── models │ └── buffalo_l │ ├── 2d106det.onnx │ └── det_10g.onnx └── liveportrait ├── base_models │ ├── appearance_feature_extractor.pth │ ├── motion_extractor.pth │ ├── spade_generator.pth │ └── warping_module.pth ├── landmark.onnx └── retargeting_models └── stitching_retargeting_module.pth ``` ### 3. Inference 🚀 #### Fast hands-on ```bash # For Linux and Windows python inference.py # For macOS with Apple Silicon, Intel not supported, this maybe 20x slower than RTX 4090 PYTORCH_ENABLE_MPS_FALLBACK=1 python inference.py ``` If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image or video, and generated result. <p align="center"> <img src="./docs/inference.gif" alt="image"> </p> Or, you can change the input by specifying the `-s` and `-d` arguments: ```bash # source input is an image python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 # source input is a video ✨ python inference.py -s assets/examples/source/s13.mp4 -d assets/examples/driving/d0.mp4 # more options to see python inference.py -h ``` #### Driving video auto-cropping 📢📢📢 To use your own driving video, we **recommend**: ⬇️ - Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`. - Focus on the head area, similar to the example videos. - Minimize shoulder movement. - Make sure the first frame of driving video is a frontal face with **neutral expression**. Below is a auto-cropping case by `--flag_crop_driving_video`: ```bash python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video ``` If you find the results of auto-cropping is not well, you can modify the `--scale_crop_driving_video`, `--vy_ratio_crop_driving_video` options to adjust the scale and offset, or do it manually. #### Motion template making You can also use the auto-generated motion template files ending with `.pkl` to speed up inference, and **protect privacy**, such as: ```bash python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl # portrait animation python inference.py -s assets/examples/source/s13.mp4 -d assets/examples/driving/d5.pkl # portrait video editing ``` ### 4. Gradio interface 🤗 We also provide a Gradio <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a> interface for a better experience, just run by: ```bash # For Linux and Windows users (and macOS with Intel??) python app.py # For macOS with Apple Silicon users, Intel not supported, this maybe 20x slower than RTX 4090 PYTORCH_ENABLE_MPS_FALLBACK=1 python app.py ``` You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs! 🚀 We also provide an acceleration option `--flag_do_torch_compile`. The first-time inference triggers an optimization process (about one minute), making subsequent inferences 20-30% faster. Performance gains may vary with different CUDA versions. ```bash # enable torch.compile for faster inference python app.py --flag_do_torch_compile ``` **Note**: This method is not supported on Windows and macOS. **Or, try it out effortlessly on [HuggingFace](https://huggingface.co/spaces/KwaiVGI/LivePortrait) 🤗** ### 5. Inference speed evaluation 🚀🚀🚀 We have also provided a script to evaluate the inference speed of each module: ```bash # For NVIDIA GPU python speed.py ``` Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`: | Model | Parameters(M) | Model Size(MB) | Inference(ms) | |-----------------------------------|:-------------:|:--------------:|:-------------:| | Appearance Feature Extractor | 0.84 | 3.3 | 0.82 | | Motion Extractor | 28.12 | 108 | 0.84 | | Spade Generator | 55.37 | 212 | 7.59 | | Warping Module | 45.53 | 174 | 5.21 | | Stitching and Retargeting Modules | 0.23 | 2.3 | 0.31 | *Note: The values for the Stitching and Retargeting Modules represent the combined parameter counts and total inference time of three sequential MLP networks.* ## Community Resources 🤗 Discover the invaluable resources contributed by our community to enhance your LivePortrait experience: - [ComfyUI-LivePortraitKJ](https://github.com/kijai/ComfyUI-LivePortraitKJ) by [@kijai](https://github.com/kijai) - [comfyui-liveportrait](https://github.com/shadowcz007/comfyui-liveportrait) by [@shadowcz007](https://github.com/shadowcz007) - [LivePortrait In ComfyUI](https://www.youtube.com/watch?v=aFcS31OWMjE) by [@Benji](https://www.youtube.com/@TheFutureThinker) - [LivePortrait hands-on tutorial](https://www.youtube.com/watch?v=uyjSTAOY7yI) by [@AI Search](https://www.youtube.com/@theAIsearch) - [ComfyUI tutorial](https://www.youtube.com/watch?v=8-IcDDmiUMM) by [@Sebastian Kamph](https://www.youtube.com/@sebastiankamph) - [Replicate Playground](https://replicate.com/fofr/live-portrait) and [cog-comfyui](https://github.com/fofr/cog-comfyui) by [@fofr](https://github.com/fofr) And many more amazing contributions from our community! ## Acknowledgements 💐 We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions. ## Citation 💖 If you find LivePortrait useful for your research, welcome to 🌟 this repo and cite our work using the following BibTeX: ```bibtex @article{guo2024liveportrait, title = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control}, author = {Guo, Jianzhu and Zhang, Dingyun and Liu, Xiaoqiang and Zhong, Zhizhou and Zhang, Yuan and Wan, Pengfei and Zhang, Di}, journal = {arXiv preprint arXiv:2407.03168}, year = {2024} } ``` *Long live in arXiv.* ## Contact 📧 [**Jianzhu Guo (郭建珠)**](https://guojianzhu.com); **[email protected]**
zpdlsprtm/my_awesome_billsum_model
zpdlsprtm
"2024-05-21T05:32:52"
105
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2024-05-21T05:27:47"
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: my_awesome_billsum_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5093 - Rouge1: 0.1421 - Rouge2: 0.049 - Rougel: 0.1164 - Rougelsum: 0.1163 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8023 | 0.124 | 0.0327 | 0.1044 | 0.1044 | 19.0 | | No log | 2.0 | 124 | 2.5922 | 0.1325 | 0.0397 | 0.1085 | 0.1088 | 19.0 | | No log | 3.0 | 186 | 2.5274 | 0.1398 | 0.0473 | 0.1152 | 0.1153 | 19.0 | | No log | 4.0 | 248 | 2.5093 | 0.1421 | 0.049 | 0.1164 | 0.1163 | 19.0 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
RichardErkhov/tistak_-_audhL4lz1GGwkJ6F-8bits
RichardErkhov
"2025-03-09T10:14:04"
0
0
null
[ "safetensors", "phi3", "custom_code", "arxiv:1910.09700", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-03-09T10:10:56"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) audhL4lz1GGwkJ6F - bnb 8bits - Model creator: https://huggingface.co/tistak/ - Original model: https://huggingface.co/tistak/audhL4lz1GGwkJ6F/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
QuantFactory/FastLlama-3.2-1B-Instruct-GGUF
QuantFactory
"2024-12-12T11:52:32"
155
1
transformers
[ "transformers", "gguf", "math", "lora", "science", "chemistry", "biology", "code", "text-generation-inference", "unsloth", "llama", "en", "de", "es", "fr", "it", "pt", "hi", "th", "dataset:HuggingFaceTB/smoltalk", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:adapter:meta-llama/Llama-3.2-1B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-12-12T11:44:26"
--- library_name: transformers tags: - math - lora - science - chemistry - biology - code - text-generation-inference - unsloth - llama license: apache-2.0 datasets: - HuggingFaceTB/smoltalk language: - en - de - es - fr - it - pt - hi - th base_model: - meta-llama/Llama-3.2-1B-Instruct --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/FastLlama-3.2-1B-Instruct-GGUF This is quantized version of [suayptalha/FastLlama-3.2-1B-Instruct](https://huggingface.co/suayptalha/FastLlama-3.2-1B-Instruct) created using llama.cpp # Original Model Card ![FastLlama-Logo](FastLlama.png) You can use ChatML & Alpaca format. You can chat with the model via this [space](https://huggingface.co/spaces/suayptalha/Chat-with-FastLlama). **Overview:** FastLlama is a highly optimized version of the Llama-3.2-1B-Instruct model. Designed for superior performance in constrained environments, it combines speed, compactness, and high accuracy. This version has been fine-tuned using the MetaMathQA-50k section of the HuggingFaceTB/smoltalk dataset to enhance its mathematical reasoning and problem-solving abilities. **Features:** Lightweight and Fast: Optimized to deliver Llama-class capabilities with reduced computational overhead. Fine-Tuned for Math Reasoning: Utilizes MetaMathQA-50k for better handling of complex mathematical problems and logical reasoning tasks. Instruction-Tuned: Pre-trained on instruction-following tasks, making it robust in understanding and executing detailed queries. Versatile Use Cases: Suitable for educational tools, tutoring systems, or any application requiring mathematical reasoning. **Performance Highlights:** Smaller Footprint: The model delivers comparable results to larger counterparts while operating efficiently on smaller hardware. Enhanced Accuracy: Demonstrates improved performance on mathematical QA benchmarks. Instruction Adherence: Retains high fidelity in understanding and following user instructions, even for complex queries. **Loading the Model:** ```py import torch from transformers import pipeline model_id = "suayptalha/FastLlama-3.2-1B-Instruct" pipe = pipeline( "text-generation", model=model_id, device_map="auto", ) messages = [ {"role": "system", "content": "You are a friendly assistant named FastLlama."}, {"role": "user", "content": "Who are you?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` **Dataset:** Dataset: MetaMathQA-50k The MetaMathQA-50k subset of HuggingFaceTB/smoltalk was selected for fine-tuning due to its focus on mathematical reasoning, multi-step problem-solving, and logical inference. The dataset includes: Algebraic problems Geometric reasoning tasks Statistical and probabilistic questions Logical deduction problems **Model Fine-Tuning:** Fine-tuning was conducted using the following configuration: Learning Rate: 2e-4 Epochs: 1 Optimizer: AdamW Framework: Unsloth **License:** This model is licensed under the Apache 2.0 License. See the LICENSE file for details. [☕ Buy Me a Coffee](https://www.buymeacoffee.com/suayptalha)
familiesportrait/portraitzeichnenlassen
familiesportrait
"2022-05-20T10:35:24"
0
0
null
[ "region:us" ]
null
"2022-05-20T10:34:07"
Und wenn Sie es jemals satt haben, Ihr eigenes Bild zu zeichnen, können Sie sich jederzeit mit einem Freund treffen und üben, Porträts voneinander zu zeichnen. [https://familiesportrait.de/products/portrait-zeichnen-lassen](https://familiesportrait.de/products/portrait-zeichnen-lassen)
Samaneh/xlm-roberta-base-finetuned-panx-de
Samaneh
"2022-11-16T02:18:35"
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2022-11-16T01:53:54"
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
MayBashendy/ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k15_task1_organization
MayBashendy
"2025-01-18T12:58:46"
7
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-01-18T01:51:51"
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k15_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k15_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6630 - Qwk: 0.3582 - Mse: 1.6630 - Rmse: 1.2896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0278 | 2 | 6.8743 | 0.0116 | 6.8743 | 2.6219 | | No log | 0.0556 | 4 | 4.6163 | 0.0917 | 4.6163 | 2.1486 | | No log | 0.0833 | 6 | 3.5713 | -0.0212 | 3.5713 | 1.8898 | | No log | 0.1111 | 8 | 2.4010 | 0.2254 | 2.4010 | 1.5495 | | No log | 0.1389 | 10 | 1.9682 | 0.2951 | 1.9682 | 1.4029 | | No log | 0.1667 | 12 | 2.0748 | 0.1575 | 2.0748 | 1.4404 | | No log | 0.1944 | 14 | 2.2708 | 0.1119 | 2.2708 | 1.5069 | | No log | 0.2222 | 16 | 2.3306 | 0.0972 | 2.3306 | 1.5266 | | No log | 0.25 | 18 | 2.2378 | 0.1127 | 2.2378 | 1.4959 | | No log | 0.2778 | 20 | 1.8753 | 0.2521 | 1.8753 | 1.3694 | | No log | 0.3056 | 22 | 1.6925 | 0.2241 | 1.6925 | 1.3009 | | No log | 0.3333 | 24 | 1.8527 | 0.3810 | 1.8527 | 1.3611 | | No log | 0.3611 | 26 | 1.9788 | 0.3088 | 1.9788 | 1.4067 | | No log | 0.3889 | 28 | 1.5871 | 0.368 | 1.5871 | 1.2598 | | No log | 0.4167 | 30 | 1.4117 | 0.2569 | 1.4117 | 1.1882 | | No log | 0.4444 | 32 | 1.7661 | 0.2018 | 1.7661 | 1.3290 | | No log | 0.4722 | 34 | 1.5367 | 0.1698 | 1.5367 | 1.2396 | | No log | 0.5 | 36 | 1.3519 | 0.3333 | 1.3519 | 1.1627 | | No log | 0.5278 | 38 | 1.3514 | 0.4390 | 1.3514 | 1.1625 | | No log | 0.5556 | 40 | 1.3491 | 0.3810 | 1.3491 | 1.1615 | | No log | 0.5833 | 42 | 1.2180 | 0.48 | 1.2180 | 1.1036 | | No log | 0.6111 | 44 | 1.1629 | 0.4677 | 1.1629 | 1.0784 | | No log | 0.6389 | 46 | 1.1778 | 0.4034 | 1.1778 | 1.0853 | | No log | 0.6667 | 48 | 1.1365 | 0.4603 | 1.1365 | 1.0661 | | No log | 0.6944 | 50 | 1.0843 | 0.4724 | 1.0843 | 1.0413 | | No log | 0.7222 | 52 | 1.0515 | 0.4516 | 1.0515 | 1.0254 | | No log | 0.75 | 54 | 1.1179 | 0.4959 | 1.1179 | 1.0573 | | No log | 0.7778 | 56 | 1.0262 | 0.5802 | 1.0262 | 1.0130 | | No log | 0.8056 | 58 | 1.0705 | 0.5455 | 1.0705 | 1.0346 | | No log | 0.8333 | 60 | 1.0849 | 0.5693 | 1.0849 | 1.0416 | | No log | 0.8611 | 62 | 1.0861 | 0.6015 | 1.0861 | 1.0421 | | No log | 0.8889 | 64 | 1.5668 | 0.3651 | 1.5668 | 1.2517 | | No log | 0.9167 | 66 | 1.3472 | 0.4769 | 1.3472 | 1.1607 | | No log | 0.9444 | 68 | 0.8965 | 0.6418 | 0.8965 | 0.9468 | | No log | 0.9722 | 70 | 1.0427 | 0.5692 | 1.0427 | 1.0211 | | No log | 1.0 | 72 | 1.1167 | 0.5038 | 1.1167 | 1.0568 | | No log | 1.0278 | 74 | 1.0754 | 0.5263 | 1.0754 | 1.0370 | | No log | 1.0556 | 76 | 0.8481 | 0.6618 | 0.8481 | 0.9209 | | No log | 1.0833 | 78 | 0.8877 | 0.6667 | 0.8877 | 0.9422 | | No log | 1.1111 | 80 | 0.8609 | 0.6377 | 0.8609 | 0.9278 | | No log | 1.1389 | 82 | 0.7850 | 0.6667 | 0.7850 | 0.8860 | | No log | 1.1667 | 84 | 0.8171 | 0.6763 | 0.8171 | 0.9040 | | No log | 1.1944 | 86 | 0.8704 | 0.6957 | 0.8704 | 0.9330 | | No log | 1.2222 | 88 | 0.8779 | 0.7101 | 0.8779 | 0.9370 | | No log | 1.25 | 90 | 1.0684 | 0.6370 | 1.0684 | 1.0336 | | No log | 1.2778 | 92 | 1.1970 | 0.5538 | 1.1970 | 1.0941 | | No log | 1.3056 | 94 | 1.3931 | 0.3937 | 1.3931 | 1.1803 | | No log | 1.3333 | 96 | 1.6619 | 0.2927 | 1.6619 | 1.2892 | | No log | 1.3611 | 98 | 1.5432 | 0.3333 | 1.5432 | 1.2422 | | No log | 1.3889 | 100 | 1.3301 | 0.4228 | 1.3301 | 1.1533 | | No log | 1.4167 | 102 | 1.2872 | 0.4762 | 1.2872 | 1.1345 | | No log | 1.4444 | 104 | 1.1537 | 0.512 | 1.1537 | 1.0741 | | No log | 1.4722 | 106 | 1.1444 | 0.4688 | 1.1444 | 1.0698 | | No log | 1.5 | 108 | 1.0963 | 0.5827 | 1.0963 | 1.0470 | | No log | 1.5278 | 110 | 1.1601 | 0.5231 | 1.1601 | 1.0771 | | No log | 1.5556 | 112 | 1.1994 | 0.5354 | 1.1994 | 1.0952 | | No log | 1.5833 | 114 | 1.1301 | 0.4615 | 1.1301 | 1.0630 | | No log | 1.6111 | 116 | 1.1912 | 0.4274 | 1.1912 | 1.0914 | | No log | 1.6389 | 118 | 1.1762 | 0.3684 | 1.1762 | 1.0845 | | No log | 1.6667 | 120 | 1.1985 | 0.4576 | 1.1985 | 1.0948 | | No log | 1.6944 | 122 | 1.2099 | 0.4878 | 1.2099 | 1.0999 | | No log | 1.7222 | 124 | 1.0720 | 0.5041 | 1.0720 | 1.0354 | | No log | 1.75 | 126 | 0.9309 | 0.5873 | 0.9309 | 0.9648 | | No log | 1.7778 | 128 | 0.9126 | 0.6142 | 0.9126 | 0.9553 | | No log | 1.8056 | 130 | 0.9821 | 0.5865 | 0.9821 | 0.9910 | | No log | 1.8333 | 132 | 1.2015 | 0.5231 | 1.2015 | 1.0961 | | No log | 1.8611 | 134 | 1.5060 | 0.4 | 1.5060 | 1.2272 | | No log | 1.8889 | 136 | 1.4208 | 0.4444 | 1.4208 | 1.1920 | | No log | 1.9167 | 138 | 1.0659 | 0.5891 | 1.0659 | 1.0324 | | No log | 1.9444 | 140 | 1.0502 | 0.5484 | 1.0502 | 1.0248 | | No log | 1.9722 | 142 | 1.0895 | 0.5124 | 1.0895 | 1.0438 | | No log | 2.0 | 144 | 1.2259 | 0.544 | 1.2259 | 1.1072 | | No log | 2.0278 | 146 | 1.4841 | 0.4559 | 1.4841 | 1.2182 | | No log | 2.0556 | 148 | 1.4208 | 0.4662 | 1.4208 | 1.1920 | | No log | 2.0833 | 150 | 1.2154 | 0.5469 | 1.2154 | 1.1024 | | No log | 2.1111 | 152 | 1.0988 | 0.5736 | 1.0988 | 1.0482 | | No log | 2.1389 | 154 | 1.1331 | 0.5469 | 1.1331 | 1.0645 | | No log | 2.1667 | 156 | 1.2490 | 0.5271 | 1.2490 | 1.1176 | | No log | 2.1944 | 158 | 1.6139 | 0.3333 | 1.6139 | 1.2704 | | No log | 2.2222 | 160 | 1.7910 | 0.2429 | 1.7910 | 1.3383 | | No log | 2.25 | 162 | 1.5982 | 0.3333 | 1.5982 | 1.2642 | | No log | 2.2778 | 164 | 1.4828 | 0.3768 | 1.4828 | 1.2177 | | No log | 2.3056 | 166 | 1.3001 | 0.5224 | 1.3001 | 1.1402 | | No log | 2.3333 | 168 | 1.1274 | 0.5692 | 1.1274 | 1.0618 | | No log | 2.3611 | 170 | 0.9726 | 0.6094 | 0.9726 | 0.9862 | | No log | 2.3889 | 172 | 0.9710 | 0.6519 | 0.9710 | 0.9854 | | No log | 2.4167 | 174 | 1.0677 | 0.6165 | 1.0677 | 1.0333 | | No log | 2.4444 | 176 | 1.4016 | 0.4088 | 1.4016 | 1.1839 | | No log | 2.4722 | 178 | 1.4981 | 0.3650 | 1.4981 | 1.2240 | | No log | 2.5 | 180 | 1.2418 | 0.5271 | 1.2418 | 1.1144 | | No log | 2.5278 | 182 | 0.9713 | 0.5984 | 0.9713 | 0.9856 | | No log | 2.5556 | 184 | 0.9492 | 0.64 | 0.9492 | 0.9743 | | No log | 2.5833 | 186 | 1.0347 | 0.6142 | 1.0347 | 1.0172 | | No log | 2.6111 | 188 | 1.3287 | 0.5191 | 1.3287 | 1.1527 | | No log | 2.6389 | 190 | 1.4793 | 0.4296 | 1.4793 | 1.2163 | | No log | 2.6667 | 192 | 1.3827 | 0.5113 | 1.3827 | 1.1759 | | No log | 2.6944 | 194 | 1.2632 | 0.5649 | 1.2632 | 1.1239 | | No log | 2.7222 | 196 | 1.1863 | 0.6015 | 1.1863 | 1.0892 | | No log | 2.75 | 198 | 1.1659 | 0.6119 | 1.1659 | 1.0798 | | No log | 2.7778 | 200 | 1.0489 | 0.6015 | 1.0489 | 1.0242 | | No log | 2.8056 | 202 | 1.0961 | 0.5758 | 1.0961 | 1.0470 | | No log | 2.8333 | 204 | 1.4333 | 0.4412 | 1.4333 | 1.1972 | | No log | 2.8611 | 206 | 1.6476 | 0.3478 | 1.6476 | 1.2836 | | No log | 2.8889 | 208 | 1.4061 | 0.4179 | 1.4061 | 1.1858 | | No log | 2.9167 | 210 | 1.0889 | 0.5891 | 1.0889 | 1.0435 | | No log | 2.9444 | 212 | 1.0744 | 0.5484 | 1.0744 | 1.0365 | | No log | 2.9722 | 214 | 1.1480 | 0.5210 | 1.1480 | 1.0715 | | No log | 3.0 | 216 | 1.3145 | 0.5041 | 1.3145 | 1.1465 | | No log | 3.0278 | 218 | 1.2711 | 0.528 | 1.2711 | 1.1274 | | No log | 3.0556 | 220 | 1.2357 | 0.6047 | 1.2357 | 1.1116 | | No log | 3.0833 | 222 | 1.2082 | 0.6047 | 1.2082 | 1.0992 | | No log | 3.1111 | 224 | 1.1694 | 0.5938 | 1.1694 | 1.0814 | | No log | 3.1389 | 226 | 1.2286 | 0.6047 | 1.2286 | 1.1084 | | No log | 3.1667 | 228 | 1.2674 | 0.5538 | 1.2674 | 1.1258 | | No log | 3.1944 | 230 | 1.2476 | 0.5781 | 1.2476 | 1.1170 | | No log | 3.2222 | 232 | 1.1167 | 0.5920 | 1.1167 | 1.0568 | | No log | 3.25 | 234 | 1.0856 | 0.5873 | 1.0856 | 1.0419 | | No log | 3.2778 | 236 | 1.1765 | 0.5781 | 1.1765 | 1.0847 | | No log | 3.3056 | 238 | 1.3801 | 0.4118 | 1.3801 | 1.1748 | | No log | 3.3333 | 240 | 1.5313 | 0.3852 | 1.5313 | 1.2375 | | No log | 3.3611 | 242 | 1.4282 | 0.4118 | 1.4282 | 1.1951 | | No log | 3.3889 | 244 | 1.4478 | 0.4118 | 1.4478 | 1.2033 | | No log | 3.4167 | 246 | 1.3077 | 0.4853 | 1.3077 | 1.1436 | | No log | 3.4444 | 248 | 1.1386 | 0.5649 | 1.1386 | 1.0670 | | No log | 3.4722 | 250 | 1.1834 | 0.5909 | 1.1834 | 1.0878 | | No log | 3.5 | 252 | 1.3690 | 0.4361 | 1.3690 | 1.1700 | | No log | 3.5278 | 254 | 1.4039 | 0.4265 | 1.4039 | 1.1848 | | No log | 3.5556 | 256 | 1.2370 | 0.5077 | 1.2370 | 1.1122 | | No log | 3.5833 | 258 | 1.0814 | 0.6165 | 1.0814 | 1.0399 | | No log | 3.6111 | 260 | 0.9950 | 0.6165 | 0.9950 | 0.9975 | | No log | 3.6389 | 262 | 1.0278 | 0.5538 | 1.0278 | 1.0138 | | No log | 3.6667 | 264 | 1.1408 | 0.5191 | 1.1408 | 1.0681 | | No log | 3.6944 | 266 | 1.0988 | 0.5455 | 1.0988 | 1.0482 | | No log | 3.7222 | 268 | 0.9195 | 0.6308 | 0.9195 | 0.9589 | | No log | 3.75 | 270 | 0.7676 | 0.6615 | 0.7676 | 0.8761 | | No log | 3.7778 | 272 | 0.6992 | 0.6870 | 0.6992 | 0.8362 | | No log | 3.8056 | 274 | 0.7475 | 0.6718 | 0.7475 | 0.8646 | | No log | 3.8333 | 276 | 0.8413 | 0.6667 | 0.8413 | 0.9172 | | No log | 3.8611 | 278 | 0.8686 | 0.5645 | 0.8686 | 0.9320 | | No log | 3.8889 | 280 | 0.9617 | 0.4915 | 0.9617 | 0.9807 | | No log | 3.9167 | 282 | 1.0578 | 0.4915 | 1.0578 | 1.0285 | | No log | 3.9444 | 284 | 1.1851 | 0.5827 | 1.1851 | 1.0886 | | No log | 3.9722 | 286 | 1.2644 | 0.5496 | 1.2644 | 1.1245 | | No log | 4.0 | 288 | 1.4191 | 0.4580 | 1.4191 | 1.1913 | | No log | 4.0278 | 290 | 1.3767 | 0.5113 | 1.3767 | 1.1733 | | No log | 4.0556 | 292 | 1.0991 | 0.6061 | 1.0991 | 1.0484 | | No log | 4.0833 | 294 | 1.0500 | 0.6418 | 1.0500 | 1.0247 | | No log | 4.1111 | 296 | 1.2758 | 0.5224 | 1.2758 | 1.1295 | | No log | 4.1389 | 298 | 1.6315 | 0.3609 | 1.6315 | 1.2773 | | No log | 4.1667 | 300 | 2.0463 | 0.1353 | 2.0463 | 1.4305 | | No log | 4.1944 | 302 | 1.9395 | 0.1515 | 1.9395 | 1.3926 | | No log | 4.2222 | 304 | 1.5030 | 0.375 | 1.5030 | 1.2260 | | No log | 4.25 | 306 | 1.1317 | 0.5556 | 1.1317 | 1.0638 | | No log | 4.2778 | 308 | 1.0343 | 0.5620 | 1.0343 | 1.0170 | | No log | 4.3056 | 310 | 1.0597 | 0.5806 | 1.0597 | 1.0294 | | No log | 4.3333 | 312 | 1.2295 | 0.5191 | 1.2295 | 1.1088 | | No log | 4.3611 | 314 | 1.3480 | 0.4733 | 1.3480 | 1.1610 | | No log | 4.3889 | 316 | 1.2341 | 0.5 | 1.2341 | 1.1109 | | No log | 4.4167 | 318 | 1.1085 | 0.5909 | 1.1085 | 1.0529 | | No log | 4.4444 | 320 | 1.0203 | 0.6016 | 1.0203 | 1.0101 | | No log | 4.4722 | 322 | 1.0681 | 0.6016 | 1.0681 | 1.0335 | | No log | 4.5 | 324 | 1.1791 | 0.5156 | 1.1791 | 1.0859 | | No log | 4.5278 | 326 | 1.2348 | 0.4844 | 1.2348 | 1.1112 | | No log | 4.5556 | 328 | 1.2018 | 0.4921 | 1.2018 | 1.0963 | | No log | 4.5833 | 330 | 1.1405 | 0.5 | 1.1405 | 1.0680 | | No log | 4.6111 | 332 | 1.1577 | 0.5197 | 1.1577 | 1.0760 | | No log | 4.6389 | 334 | 1.2673 | 0.4697 | 1.2673 | 1.1258 | | No log | 4.6667 | 336 | 1.2188 | 0.4962 | 1.2188 | 1.1040 | | No log | 4.6944 | 338 | 1.0474 | 0.6190 | 1.0474 | 1.0234 | | No log | 4.7222 | 340 | 0.9932 | 0.5378 | 0.9932 | 0.9966 | | No log | 4.75 | 342 | 1.0270 | 0.5085 | 1.0270 | 1.0134 | | No log | 4.7778 | 344 | 1.1238 | 0.5299 | 1.1238 | 1.0601 | | No log | 4.8056 | 346 | 1.2484 | 0.4522 | 1.2484 | 1.1173 | | No log | 4.8333 | 348 | 1.4200 | 0.4407 | 1.4200 | 1.1916 | | No log | 4.8611 | 350 | 1.5065 | 0.4031 | 1.5065 | 1.2274 | | No log | 4.8889 | 352 | 1.4235 | 0.4427 | 1.4235 | 1.1931 | | No log | 4.9167 | 354 | 1.2197 | 0.5312 | 1.2197 | 1.1044 | | No log | 4.9444 | 356 | 0.9764 | 0.5691 | 0.9764 | 0.9882 | | No log | 4.9722 | 358 | 0.9269 | 0.6299 | 0.9269 | 0.9628 | | No log | 5.0 | 360 | 0.8689 | 0.6769 | 0.8689 | 0.9322 | | No log | 5.0278 | 362 | 0.8423 | 0.6406 | 0.8423 | 0.9178 | | No log | 5.0556 | 364 | 1.0728 | 0.6475 | 1.0728 | 1.0358 | | No log | 5.0833 | 366 | 1.2336 | 0.4818 | 1.2336 | 1.1107 | | No log | 5.1111 | 368 | 1.1522 | 0.5606 | 1.1522 | 1.0734 | | No log | 5.1389 | 370 | 1.0483 | 0.6179 | 1.0483 | 1.0238 | | No log | 5.1667 | 372 | 1.0668 | 0.5254 | 1.0668 | 1.0329 | | No log | 5.1944 | 374 | 1.1254 | 0.4828 | 1.1254 | 1.0608 | | No log | 5.2222 | 376 | 1.2095 | 0.5210 | 1.2095 | 1.0998 | | No log | 5.25 | 378 | 1.3316 | 0.4882 | 1.3316 | 1.1539 | | No log | 5.2778 | 380 | 1.3534 | 0.4885 | 1.3534 | 1.1633 | | No log | 5.3056 | 382 | 1.3485 | 0.4697 | 1.3485 | 1.1612 | | No log | 5.3333 | 384 | 1.2567 | 0.5152 | 1.2567 | 1.1210 | | No log | 5.3611 | 386 | 1.0685 | 0.6260 | 1.0685 | 1.0337 | | No log | 5.3889 | 388 | 1.0041 | 0.6047 | 1.0041 | 1.0021 | | No log | 5.4167 | 390 | 1.0367 | 0.6142 | 1.0367 | 1.0182 | | No log | 5.4444 | 392 | 1.1564 | 0.5736 | 1.1564 | 1.0753 | | No log | 5.4722 | 394 | 1.3654 | 0.4427 | 1.3654 | 1.1685 | | No log | 5.5 | 396 | 1.4832 | 0.4091 | 1.4832 | 1.2179 | | No log | 5.5278 | 398 | 1.4654 | 0.4091 | 1.4654 | 1.2106 | | No log | 5.5556 | 400 | 1.3551 | 0.4769 | 1.3551 | 1.1641 | | No log | 5.5833 | 402 | 1.3279 | 0.5 | 1.3279 | 1.1523 | | No log | 5.6111 | 404 | 1.3795 | 0.4769 | 1.3795 | 1.1745 | | No log | 5.6389 | 406 | 1.4367 | 0.3817 | 1.4367 | 1.1986 | | No log | 5.6667 | 408 | 1.4228 | 0.3636 | 1.4228 | 1.1928 | | No log | 5.6944 | 410 | 1.3189 | 0.4806 | 1.3189 | 1.1484 | | No log | 5.7222 | 412 | 1.1848 | 0.5714 | 1.1848 | 1.0885 | | No log | 5.75 | 414 | 1.1514 | 0.5410 | 1.1514 | 1.0730 | | No log | 5.7778 | 416 | 1.1606 | 0.5484 | 1.1606 | 1.0773 | | No log | 5.8056 | 418 | 1.2638 | 0.5344 | 1.2638 | 1.1242 | | No log | 5.8333 | 420 | 1.4272 | 0.4030 | 1.4272 | 1.1946 | | No log | 5.8611 | 422 | 1.4285 | 0.4296 | 1.4285 | 1.1952 | | No log | 5.8889 | 424 | 1.2430 | 0.5344 | 1.2430 | 1.1149 | | No log | 5.9167 | 426 | 1.1906 | 0.5077 | 1.1906 | 1.0911 | | No log | 5.9444 | 428 | 1.2950 | 0.4733 | 1.2950 | 1.1380 | | No log | 5.9722 | 430 | 1.3304 | 0.4662 | 1.3304 | 1.1534 | | No log | 6.0 | 432 | 1.2703 | 0.5077 | 1.2703 | 1.1271 | | No log | 6.0278 | 434 | 1.2792 | 0.4733 | 1.2792 | 1.1310 | | No log | 6.0556 | 436 | 1.4285 | 0.4242 | 1.4285 | 1.1952 | | No log | 6.0833 | 438 | 1.6041 | 0.3852 | 1.6041 | 1.2665 | | No log | 6.1111 | 440 | 1.5224 | 0.4030 | 1.5224 | 1.2339 | | No log | 6.1389 | 442 | 1.3487 | 0.4511 | 1.3487 | 1.1613 | | No log | 6.1667 | 444 | 1.2148 | 0.5 | 1.2148 | 1.1022 | | No log | 6.1944 | 446 | 1.2255 | 0.5344 | 1.2255 | 1.1070 | | No log | 6.2222 | 448 | 1.2421 | 0.5344 | 1.2421 | 1.1145 | | No log | 6.25 | 450 | 1.2952 | 0.5077 | 1.2952 | 1.1381 | | No log | 6.2778 | 452 | 1.3528 | 0.4806 | 1.3528 | 1.1631 | | No log | 6.3056 | 454 | 1.4612 | 0.4545 | 1.4612 | 1.2088 | | No log | 6.3333 | 456 | 1.4537 | 0.4545 | 1.4537 | 1.2057 | | No log | 6.3611 | 458 | 1.2978 | 0.4923 | 1.2978 | 1.1392 | | No log | 6.3889 | 460 | 1.0979 | 0.5366 | 1.0979 | 1.0478 | | No log | 6.4167 | 462 | 0.9630 | 0.5920 | 0.9630 | 0.9813 | | No log | 6.4444 | 464 | 0.9390 | 0.5920 | 0.9390 | 0.9690 | | No log | 6.4722 | 466 | 1.0042 | 0.5645 | 1.0042 | 1.0021 | | No log | 6.5 | 468 | 1.1948 | 0.4923 | 1.1948 | 1.0931 | | No log | 6.5278 | 470 | 1.3385 | 0.4923 | 1.3385 | 1.1569 | | No log | 6.5556 | 472 | 1.3264 | 0.4923 | 1.3264 | 1.1517 | | No log | 6.5833 | 474 | 1.2129 | 0.4923 | 1.2129 | 1.1013 | | No log | 6.6111 | 476 | 1.1085 | 0.5781 | 1.1085 | 1.0528 | | No log | 6.6389 | 478 | 1.0693 | 0.6047 | 1.0693 | 1.0341 | | No log | 6.6667 | 480 | 1.0078 | 0.5938 | 1.0078 | 1.0039 | | No log | 6.6944 | 482 | 1.0951 | 0.5781 | 1.0951 | 1.0465 | | No log | 6.7222 | 484 | 1.3836 | 0.5191 | 1.3836 | 1.1763 | | No log | 6.75 | 486 | 1.5579 | 0.3817 | 1.5579 | 1.2481 | | No log | 6.7778 | 488 | 1.4444 | 0.4697 | 1.4444 | 1.2018 | | No log | 6.8056 | 490 | 1.3355 | 0.4923 | 1.3355 | 1.1557 | | No log | 6.8333 | 492 | 1.2470 | 0.5116 | 1.2470 | 1.1167 | | No log | 6.8611 | 494 | 1.2569 | 0.5116 | 1.2569 | 1.1211 | | No log | 6.8889 | 496 | 1.1659 | 0.5469 | 1.1659 | 1.0798 | | No log | 6.9167 | 498 | 1.1413 | 0.5469 | 1.1413 | 1.0683 | | 0.3671 | 6.9444 | 500 | 1.2516 | 0.5191 | 1.2516 | 1.1187 | | 0.3671 | 6.9722 | 502 | 1.4346 | 0.4394 | 1.4346 | 1.1978 | | 0.3671 | 7.0 | 504 | 1.5741 | 0.3852 | 1.5741 | 1.2546 | | 0.3671 | 7.0278 | 506 | 1.7685 | 0.2920 | 1.7685 | 1.3299 | | 0.3671 | 7.0556 | 508 | 1.7300 | 0.2920 | 1.7300 | 1.3153 | | 0.3671 | 7.0833 | 510 | 1.6630 | 0.3582 | 1.6630 | 1.2896 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
Triangle104/Qwen2.5-7B-Instruct-Uncensored-Q4_K_M-GGUF
Triangle104
"2024-12-14T21:29:33"
29
0
null
[ "gguf", "qwen", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "zh", "en", "dataset:NobodyExistsOnTheInternet/ToxicQAFinal", "dataset:anthracite-org/kalo-opus-instruct-22k-no-refusal", "dataset:Orion-zhen/dpo-toxic-zh", "dataset:unalignment/toxic-dpo-v0.2", "dataset:Crystalcareai/Intel-DPO-Pairs-Norefusals", "base_model:Orion-zhen/Qwen2.5-7B-Instruct-Uncensored", "base_model:quantized:Orion-zhen/Qwen2.5-7B-Instruct-Uncensored", "license:gpl-3.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
text-generation
"2024-12-14T21:28:28"
--- language: - zh - en license: gpl-3.0 tags: - qwen - uncensored - llama-cpp - gguf-my-repo base_model: Orion-zhen/Qwen2.5-7B-Instruct-Uncensored datasets: - NobodyExistsOnTheInternet/ToxicQAFinal - anthracite-org/kalo-opus-instruct-22k-no-refusal - Orion-zhen/dpo-toxic-zh - unalignment/toxic-dpo-v0.2 - Crystalcareai/Intel-DPO-Pairs-Norefusals pipeline_tag: text-generation model-index: - name: Qwen2.5-7B-Instruct-Uncensored results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 72.04 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 35.83 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 1.36 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 7.05 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 13.58 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 38.07 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored name: Open LLM Leaderboard --- # Triangle104/Qwen2.5-7B-Instruct-Uncensored-Q4_K_M-GGUF This model was converted to GGUF format from [`Orion-zhen/Qwen2.5-7B-Instruct-Uncensored`](https://huggingface.co/Orion-zhen/Qwen2.5-7B-Instruct-Uncensored) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Orion-zhen/Qwen2.5-7B-Instruct-Uncensored) for more details on the model. --- Model details: - This model is an uncensored fine-tune version of Qwen2.5-7B-Instruct. However, I can still notice that though uncensored, the model fails to generate detailed descriptions on certain extreme scenarios, which might be associated with deletion on some pretrain datasets in Qwen's pretraining stage. Traning details - I used SFT + DPO to ensure uncensorment as well as trying to maintain original model's capabilities. SFT: NobodyExistsOnTheInternet/ToxicQAFinal anthracite-org/kalo-opus-instruct-22k-no-refusal DPO: Orion-zhen/dpo-toxic-zh unalignment/toxic-dpo-v0.2 Crystalcareai/Intel-DPO-Pairs-Norefusals --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-Uncensored-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-uncensored-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-Uncensored-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-uncensored-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-Uncensored-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-uncensored-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-Uncensored-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-uncensored-q4_k_m.gguf -c 2048 ```
ycfNTU/bloomz-560m_NER_CAUSAL_LM
ycfNTU
"2024-03-19T11:58:48"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-03-19T10:12:43"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
imdanboy/ljspeech_tts_train_jets_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave
imdanboy
"2022-05-28T16:52:35"
5
1
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
"2022-05-28T16:51:54"
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 --- ## ESPnet2 TTS model ### `imdanboy/ljspeech_tts_train_jets_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave` This model was trained by imdanboy using ljspeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout c173c30930631731e6836c274a591ad571749741 pip install -e . cd egs2/ljspeech/tts1 ./run.sh --skip_data_prep false --skip_train true --download_model imdanboy/ljspeech_tts_train_jets_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave ``` ## TTS config <details><summary>expand</summary> ``` config: conf/tuning/train_jets.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_jets_raw_phn_tacotron_g2p_en_no_space ngpu: 1 seed: 777 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 39471 dist_launcher: null multiprocessing_distributed: true unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 1000 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - text2mel_loss - min - - train - text2mel_loss - min - - train - total_count - max keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: -1 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 50 use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 1000 batch_size: 20 valid_batch_size: null batch_bins: 3000000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/text_shape.phn - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/speech_shape valid_shape_file: - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/valid/text_shape.phn - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_no_dev/text - text - text - - dump/raw/tr_no_dev/wav.scp - speech - sound - - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/collect_feats/pitch.scp - pitch - npy - - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/collect_feats/energy.scp - energy - npy valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - dump/raw/dev/wav.scp - speech - sound - - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/valid/collect_feats/pitch.scp - pitch - npy - - exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/valid/collect_feats/energy.scp - energy - npy allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0002 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler: exponentiallr scheduler_conf: gamma: 0.999875 optim2: adamw optim2_conf: lr: 0.0002 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler2: exponentiallr scheduler2_conf: gamma: 0.999875 generator_first: true token_list: - <blank> - <unk> - AH0 - N - T - D - S - R - L - DH - K - Z - IH1 - IH0 - M - EH1 - W - P - AE1 - AH1 - V - ER0 - F - ',' - AA1 - B - HH - IY1 - UW1 - IY0 - AO1 - EY1 - AY1 - . - OW1 - SH - NG - G - ER1 - CH - JH - Y - AW1 - TH - UH1 - EH2 - OW0 - EY2 - AO0 - IH2 - AE2 - AY2 - AA2 - UW0 - EH0 - OY1 - EY0 - AO2 - ZH - OW2 - AE0 - UW2 - AH2 - AY0 - IY2 - AW2 - AA0 - '''' - ER2 - UH2 - '?' - OY2 - '!' - AW0 - UH0 - OY0 - .. - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: tacotron g2p: g2p_en_no_space feats_extract: fbank feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null fs: 22050 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/feats_stats.npz tts: jets tts_conf: generator_type: jets_generator generator_params: adim: 256 aheads: 2 elayers: 4 eunits: 1024 dlayers: 4 dunits: 1024 positionwise_layer_type: conv1d positionwise_conv_kernel_size: 3 duration_predictor_layers: 2 duration_predictor_chans: 256 duration_predictor_kernel_size: 3 use_masking: true encoder_normalize_before: true decoder_normalize_before: true encoder_type: transformer decoder_type: transformer conformer_rel_pos_type: latest conformer_pos_enc_layer_type: rel_pos conformer_self_attn_layer_type: rel_selfattn conformer_activation_type: swish use_macaron_style_in_conformer: true use_cnn_in_conformer: true conformer_enc_kernel_size: 7 conformer_dec_kernel_size: 31 init_type: xavier_uniform transformer_enc_dropout_rate: 0.2 transformer_enc_positional_dropout_rate: 0.2 transformer_enc_attn_dropout_rate: 0.2 transformer_dec_dropout_rate: 0.2 transformer_dec_positional_dropout_rate: 0.2 transformer_dec_attn_dropout_rate: 0.2 pitch_predictor_layers: 5 pitch_predictor_chans: 256 pitch_predictor_kernel_size: 5 pitch_predictor_dropout: 0.5 pitch_embed_kernel_size: 1 pitch_embed_dropout: 0.0 stop_gradient_from_pitch_predictor: true energy_predictor_layers: 2 energy_predictor_chans: 256 energy_predictor_kernel_size: 3 energy_predictor_dropout: 0.5 energy_embed_kernel_size: 1 energy_embed_dropout: 0.0 stop_gradient_from_energy_predictor: false generator_out_channels: 1 generator_channels: 512 generator_global_channels: -1 generator_kernel_size: 7 generator_upsample_scales: - 8 - 8 - 2 - 2 generator_upsample_kernel_sizes: - 16 - 16 - 4 - 4 generator_resblock_kernel_sizes: - 3 - 7 - 11 generator_resblock_dilations: - - 1 - 3 - 5 - - 1 - 3 - 5 - - 1 - 3 - 5 generator_use_additional_convs: true generator_bias: true generator_nonlinear_activation: LeakyReLU generator_nonlinear_activation_params: negative_slope: 0.1 generator_use_weight_norm: true segment_size: 64 idim: 78 odim: 80 discriminator_type: hifigan_multi_scale_multi_period_discriminator discriminator_params: scales: 1 scale_downsample_pooling: AvgPool1d scale_downsample_pooling_params: kernel_size: 4 stride: 2 padding: 2 scale_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 15 - 41 - 5 - 3 channels: 128 max_downsample_channels: 1024 max_groups: 16 bias: true downsample_scales: - 2 - 2 - 4 - 4 - 1 nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false follow_official_norm: false periods: - 2 - 3 - 5 - 7 - 11 period_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 5 - 3 channels: 32 downsample_scales: - 3 - 3 - 3 - 3 - 1 max_downsample_channels: 1024 bias: true nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false generator_adv_loss_params: average_by_discriminators: false loss_type: mse discriminator_adv_loss_params: average_by_discriminators: false loss_type: mse feat_match_loss_params: average_by_discriminators: false average_by_layers: false include_final_outputs: true mel_loss_params: fs: 22050 n_fft: 1024 hop_length: 256 win_length: null window: hann n_mels: 80 fmin: 0 fmax: null log_base: null lambda_adv: 1.0 lambda_mel: 45.0 lambda_feat_match: 2.0 lambda_var: 1.0 lambda_align: 2.0 sampling_rate: 22050 cache_generator_outputs: true pitch_extract: dio pitch_extract_conf: reduction_factor: 1 use_token_averaged_f0: false fs: 22050 n_fft: 1024 hop_length: 256 f0max: 400 f0min: 80 pitch_normalize: global_mvn pitch_normalize_conf: stats_file: exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/pitch_stats.npz energy_extract: energy energy_extract_conf: reduction_factor: 1 use_token_averaged_energy: false fs: 22050 n_fft: 1024 hop_length: 256 win_length: null energy_normalize: global_mvn energy_normalize_conf: stats_file: exp/tts_stats_raw_phn_tacotron_g2p_en_no_space/train/energy_stats.npz required: - output_dir - token_list version: '202204' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Daemontatox/Mini-Cogito-R1.1
Daemontatox
"2025-02-25T19:24:37"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:Daemontatox/mini-Cogito-R1", "base_model:finetune:Daemontatox/mini-Cogito-R1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-25T19:24:17"
--- base_model: Daemontatox/mini-Cogito-R1 tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Daemontatox - **License:** apache-2.0 - **Finetuned from model :** Daemontatox/mini-Cogito-R1 This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
messiah10/distilbert-base-uncased-finetuned-squad
messiah10
"2024-04-09T02:41:11"
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
"2024-04-09T01:21:47"
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1999 | 1.0 | 5533 | 1.1604 | | 0.9468 | 2.0 | 11066 | 1.1086 | | 0.7487 | 3.0 | 16599 | 1.1613 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
MaverickAlex/R-FLAV-B-1-AIST
MaverickAlex
"2025-03-14T07:50:30"
14
0
diffusers
[ "diffusers", "safetensors", "audio-to-video", "arxiv:2503.08307", "license:cc-by-nc-4.0", "region:us" ]
null
"2025-03-13T15:45:28"
--- license: cc-by-nc-4.0 tags: - audio-to-video library_name: diffusers --- Models of [R-FLAV](https://arxiv.org/abs/2503.08307) trained on Landscape and AIST++ for 400k iterations. For more info, please refer to the Github repository at https://github.com/ErgastiAlex/R-FLAV To download the ckpts directly in the code you can do ```python from huggingface_hub import hf_hub_download import torch from models import FLAV model = FLAV.from_pretrained(args.model_ckpt) hf_hub_download(repo_id="MaverickAlex/R-FLAV-B-1-LS", filename="vocoder/config.json") vocoder_path = hf_hub_download(repo_id="MaverickAlex/R-FLAV-B-1-LS", filename="vocoder/vocoder.pt") vocoder_path = vocoder_path.replace("vocoder.pt", "") vocoder = Generator.from_pretrained(vocoder_path) ```
HPL/roberta-base-unlabeled-gab-semeval2023-task10-45000samplesample
HPL
"2022-11-13T03:41:26"
105
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2022-11-13T02:36:25"
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-unlabeled-gab-semeval2023-task10-45000samplesample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-unlabeled-gab-semeval2023-task10-45000samplesample This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4294 | 1.0 | 1407 | 2.2323 | | 2.3091 | 2.0 | 2814 | 2.1470 | | 2.23 | 3.0 | 4221 | 2.1767 | | 2.1866 | 4.0 | 5628 | 2.1625 | | 2.171 | 5.0 | 7035 | 2.1441 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.10.3
HSING-I/uuu_fine_tune_taipower
HSING-I
"2024-05-25T05:18:32"
0
0
null
[ "license:apache-2.0", "region:us" ]
null
"2024-05-25T05:18:32"
--- license: apache-2.0 ---
TheBloke/Tulpar-7B-v0-GPTQ
TheBloke
"2023-09-27T12:48:40"
26
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "base_model:HyperbeeAI/Tulpar-7b-v0", "base_model:quantized:HyperbeeAI/Tulpar-7b-v0", "license:llama2", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
"2023-09-10T14:27:38"
--- language: - en license: llama2 library_name: transformers model_name: Tulpar 7B v0 base_model: HyperbeeAI/Tulpar-7b-v0 inference: false model_creator: HyperbeeAI model_type: llama prompt_template: '### User: {prompt} ### Assistant: ' quantized_by: TheBloke thumbnail: https://huggingface.co/HyperbeeAI/Tulpar-7b-v0/resolve/main/tulpar.png --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Tulpar 7B v0 - GPTQ - Model creator: [HyperbeeAI](https://huggingface.co/HyperbeeAI) - Original model: [Tulpar 7B v0](https://huggingface.co/HyperbeeAI/Tulpar-7b-v0) <!-- description start --> ## Description This repo contains GPTQ model files for [HyperbeeAI's Tulpar 7B v0](https://huggingface.co/HyperbeeAI/Tulpar-7b-v0). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Tulpar-7B-v0-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Tulpar-7B-v0-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Tulpar-7B-v0-GGUF) * [HyperbeeAI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/HyperbeeAI/Tulpar-7b-v0) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: User-Assistant-Hashes ``` ### User: {prompt} ### Assistant: ``` <!-- prompt-template end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/Tulpar-7B-v0-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, without Act Order and group size 128g. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Tulpar-7B-v0-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Tulpar-7B-v0-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Tulpar-7B-v0-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Tulpar-7B-v0-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Tulpar-7B-v0-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download from branches - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Tulpar-7B-v0-GPTQ:main` - With Git, you can clone a branch with: ``` git clone --single-branch --branch main https://huggingface.co/TheBloke/Tulpar-7B-v0-GPTQ ``` - In Python Transformers code, the branch is the `revision` parameter; see below. <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui). Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/Tulpar-7B-v0-GPTQ`. - To download from a specific branch, enter for example `TheBloke/Tulpar-7B-v0-GPTQ:main` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `Tulpar-7B-v0-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-python start --> ## How to use this GPTQ model from Python code ### Install the necessary packages Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install transformers>=4.32.0 optimum>=1.12.0 pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7 ``` If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ pip3 install . ``` ### For CodeLlama models only: you must use Transformers 4.33.0 or later. If 4.33.0 is not yet released when you read this, you will need to install Transformers from source: ```shell pip3 uninstall -y transformers pip3 install git+https://github.com/huggingface/transformers.git ``` ### You can then use the following code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/Tulpar-7B-v0-GPTQ" # To use a different branch, change revision # For example: revision="main" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Tell me about AI" prompt_template=f'''### User: {prompt} ### Assistant: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI). [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility. [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: HyperbeeAI's Tulpar 7B v0 <p align="center"> <img src="https://huggingface.co/HyperbeeAI/Tulpar-7b-v0/resolve/main/tulpar.png" width="360" height="360" > </p> # Model Description Tulpar-7b is a LLama2-7b-based model trained by HyperbeeAI. Training is done on a filtered and preprocessed instruction finetuning dataset that includes GPT-4 generated and generally curated datasets like Airoboros and Platypus. # Example Usage Loading the model: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("HyperbeeAI/Tulpar-7b-v0") model = AutoModelForCausalLM.from_pretrained("HyperbeeAI/Tulpar-7b-v0", device_map="auto") ``` You can run inference with both of the following prompts: ```python input_text="What is deep learning?" prompt = f"### User: {input_text}\n\n### Assistant:\n" inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=512) print(tokenizer.decode(output[0])) ``` ```python input_text="What is deep learning?" prompt = f"Question: {input_text}\n\nAnswer:" inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=512) print(tokenizer.decode(output[0])) ``` # Evaluation Our offline HF Leaderboard evaluation results: |||| |:------:|:--------:|:-------:| |**Task**|**Metric**|**Value**| |*arc_challenge*|acc_norm|0.5614| |*hellaswag*|acc_norm|0.7901| |*mmlu*|acc_norm|0.5242| |*truthfulqa_mc*|mc2|0.5160| |**Average**|-|**0.5979**|| Other GPT4All evaluation results: |||| |:------:|:--------:|:-------:| |**Task**|**Metric**|**Value**| |boolq|acc |0.8306| |piqa|acc |0.7905| | |acc_norm|0.7884| |winogrande|acc |0.7159| |openbookqa|acc |0.356| | |acc_norm|0.448| |**Average** (including HF leaderboard datasets) | | **0.6468** | BigBenchHard results: |||| |:------:|:--------:|:-------:| |**Task**|**Metric**|**Value**| |bigbench_causal_judgement |multiple_choice_grade|0.6105| |bigbench_date_understanding |multiple_choice_grade|0.6423| |bigbench_disambiguation_qa |multiple_choice_grade|0.3643| |bigbench_dyck_languages |multiple_choice_grade|0.2000| |bigbench_formal_fallacies_syllogisms_negation |multiple_choice_grade|0.5002| |bigbench_geometric_shapes |multiple_choice_grade|0.0000| | |exact_str_match |0.0000| |bigbench_hyperbaton |multiple_choice_grade|0.6754| |bigbench_logical_deduction_five_objects |multiple_choice_grade|0.2700| |bigbench_logical_deduction_seven_objects |multiple_choice_grade|0.1929| |bigbench_logical_deduction_three_objects |multiple_choice_grade|0.4133| |bigbench_movie_recommendation |multiple_choice_grade|0.3000| |bigbench_navigate |multiple_choice_grade|0.5000| |bigbench_reasoning_about_colored_objects |multiple_choice_grade|0.5750| |bigbench_ruin_names |multiple_choice_grade|0.3281| |bigbench_salient_translation_error_detection |multiple_choice_grade|0.2976| |bigbench_snarks |multiple_choice_grade|0.6022| |bigbench_sports_understanding |multiple_choice_grade|0.5122| |bigbench_temporal_sequences |multiple_choice_grade|0.1450| |bigbench_tracking_shuffled_objects_five_objects |multiple_choice_grade|0.1976| |bigbench_tracking_shuffled_objects_seven_objects|multiple_choice_grade|0.1440| |bigbench_tracking_shuffled_objects_three_objects|multiple_choice_grade|0.4133| |**Average**| |**0.3754** # Ethical Considerations and Limitations Tulpar is a technology with potential risks and limitations. This model is finetuned only in English and all language-related scenarios are not covered. As HyperbeeAI, we neither guarantee ethical, accurate, unbiased, objective responses nor endorse its outputs. Before deploying this model, you are advised to make safety tests for your use case.
kallilikhitha123/llama-Quantized-Model-8B_750_12-03-2025
kallilikhitha123
"2025-03-12T12:28:47"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
"2025-03-12T12:25:16"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mav23/selfrag_llama2_7b-GGUF
mav23
"2024-12-02T12:55:44"
31
0
null
[ "gguf", "arxiv:2310.11511", "license:mit", "endpoints_compatible", "region:us" ]
null
"2024-12-02T12:11:43"
--- license: mit --- This model is a 7B [Self-RAG](https://selfrag.github.io/) model that generates outputs to diverse user queries as well as *reflection tokens* to call the retrieval system adaptively and criticize its own output and retrieved passages. Self-RAG is trained on our instruction-following corpora with interleaving passages and reflection tokens using the standard next-token prediction objective, enabling efficient and stable learning with fine-grained feedback. At inference, we leverage reflection tokens covering diverse aspects of generations to sample the best output aligning users' preferences. See full descriptions in See full descriptions in [our paper](https://arxiv.org/abs/2310.11511). ## Usage Here, we show an easy way to quickly download our model from HuggingFace and run with `vllm` with pre-given passages. Make sure to install dependencies listed at [self-rag/requirements.txt](https://github.com/AkariAsai/self-rag/blob/main/requirements.txt). To run our full inference pipeline with a retrieval system and fine-grained tree decoding, please use [our code](https://github.com/AkariAsai/self-rag). ```py from transformers import AutoTokenizer, AutoModelForCausalLM from vllm import LLM, SamplingParams model = LLM("selfrag/selfrag_llama2_7b", download_dir="/gscratch/h2lab/akari/model_cache", dtype="half") sampling_params = SamplingParams(temperature=0.0, top_p=1.0, max_tokens=100, skip_special_tokens=False) def format_prompt(input, paragraph=None): prompt = "### Instruction:\n{0}\n\n### Response:\n".format(input) if paragraph is not None: prompt += "[Retrieval]<paragraph>{0}</paragraph>".format(paragraph) return prompt query_1 = "Leave odd one out: twitter, instagram, whatsapp." query_2 = "Can you tell me the difference between llamas and alpacas?" queries = [query_1, query_2] preds = model.generate([format_prompt(query) for query in queries], sampling_params) for pred in preds: print("Model prediction: {0}".format(pred.outputs[0].text)) # Model prediction: Twitter, Instagram, and WhatsApp are all social media platforms.[No Retrieval]WhatsApp is the odd one out because it is a messaging app, while Twitter and # Instagram are primarily used for sharing photos and videos.[Utility:5]</s> (this query doesn't require factual grounding; just skip retrieval and do normal instruction-following generation) # Model prediction: Sure![Retrieval]<paragraph> ... (this query requires factual grounding, call a retriever) # generate with retrieved passage prompt = format_prompt("Can you tell me the difference between llamas and alpacas?", paragraph="The alpaca (Lama pacos) is a species of South American camelid mammal. It is similar to, and often confused with, the llama. Alpacas are considerably smaller than llamas, and unlike llamas, they were not bred to be working animals, but were bred specifically for their fiber.") preds = model.generate([prompt], sampling_params) print([pred.outputs[0].text for pred in preds]) # ['[Relevant]Alpacas are considerably smaller than llamas, and unlike llamas, they were not bred to be working animals, but were bred specifically for their fiber.[Fully supported][Utility:5]</s>'] ``` ## Input Format As described in the `format_prompt` function, your input should be formed as ``` ### Instruction:\n{instruction}\n\n### Response:\n".format(instruction) ``` or ``` ### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" ``` If you have additional input. You can insert paragraphs anywhere after `### Response:\n"`, but make sure to mark paragraphs as paragraph tokens (i.e., `<paragraph>{0}</paragraph>`). ## Training details Our training data is available at the HuggingFace dataset [selfrag_train_data](https://huggingface.co/datasets/selfrag/selfrag_train_data). See our official repository for the training details. We used 8 A100 40GB for training on the Stability HPC server. ## Citation and contact If you use this model, please cite our work: ``` @article{asai2023selfrag, author = {Asai, Akari and Wu, Zeqiu and Wang, Yizhong and Sil, Avirup and Hajishirzi, Hannaneh}, title = {{Self-RAG}: Learning to Retrieve, Generate, and Critique through Self-Reflection}, year = {2023}, journal = { arXiv preprint arXiv:2310.11511 }, URL = {https://arxiv.org/abs/2310.11511} } ```
laquythang/18eea0f7-6da7-49fb-9ac1-60312cf0bd13
laquythang
"2025-01-17T19:27:13"
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-17T19:17:31"
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 18eea0f7-6da7-49fb-9ac1-60312cf0bd13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8c59141bab786fea_train_data.json ds_type: json format: custom path: /workspace/input_data/8c59141bab786fea_train_data.json type: field_input: '' field_instruction: da field_output: da_bornholm format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: laquythang/18eea0f7-6da7-49fb-9ac1-60312cf0bd13 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/8c59141bab786fea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ee19f7d3-f2f0-497e-9124-ad96647dcce2 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ee19f7d3-f2f0-497e-9124-ad96647dcce2 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 18eea0f7-6da7-49fb-9ac1-60312cf0bd13 This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.4367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.4351 | 0.2558 | 200 | 5.4367 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
greatxue1/Qwen2.5-7B-Instruct-Follow
greatxue1
"2025-03-12T12:52:27"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:greatxue1/alpaca-vff-naive", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-12T01:32:26"
--- base_model: Qwen/Qwen2.5-7B-Instruct datasets: greatxue1/alpaca-vff-naive library_name: transformers model_name: Qwen2.5-7B-Instruct-Follow tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen2.5-7B-Instruct-Follow This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the [greatxue1/alpaca-vff-naive](https://huggingface.co/datasets/greatxue1/alpaca-vff-naive) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="greatxue1/Qwen2.5-7B-Instruct-Follow", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/zhongkaixue-university-of-oxford/huggingface/runs/4rhac0oi) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.46.3 - Pytorch: 2.5.1+cu121 - Datasets: 3.0.2 - Tokenizers: 0.20.3 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
JapGuy/MiroZbirka_v1_490Epochs_RVC_v2
JapGuy
"2023-08-17T18:47:22"
0
0
null
[ "music", "rvc", "miro", "meky", "miroslav", "zbirka", "model", "audio-to-audio", "sk", "cs", "license:openrail", "region:us" ]
audio-to-audio
"2023-08-16T18:57:13"
--- license: openrail language: - sk - cs pipeline_tag: audio-to-audio tags: - music - rvc - miro - meky - miroslav - zbirka - model --- ![image.png](https://ticketstream-images.s3.eu-central-1.amazonaws.com/interpret/2021/02/v77f2imwht_meky560x560.png) # Miro " Meky " Žbirka [SK] (v1) # 490 Epochs - RVC V2 - mangio-creep - 64 Hop Length Trained on 8 minutes of isolated acapellas using UVR (Voc FT + Reverb HQ) + Audacity to remove parts with double vocals and vocals from others (+Noise Gate) Isolated acapellas from: Domino Biela pani Bezchybna Balada o polnych vtakoch Atlantida Ako obrazok
daviibrt/en_ner_jnlpba_md
daviibrt
"2024-02-09T15:49:40"
2
0
spacy
[ "spacy", "token-classification", "en", "license:cc-by-sa-3.0", "model-index", "region:us" ]
token-classification
"2024-02-09T15:49:10"
--- tags: - spacy - token-classification language: - en license: cc-by-sa-3.0 model-index: - name: en_ner_jnlpba_md results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.7696202532 - name: NER Recall type: recall value: 0.7536623845 - name: NER F Score type: f_score value: 0.7615577317 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.0 - task: name: LEMMA type: token-classification metrics: - name: Lemma Accuracy type: accuracy value: 0.0 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.0 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.0 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.0 --- Spacy Models for Biomedical Text. | Feature | Description | | --- | --- | | **Name** | `en_ner_jnlpba_md` | | **Version** | `0.5.3` | | **spaCy** | `>=3.6.1,<3.7.0` | | **Default Pipeline** | `tok2vec`, `tagger`, `attribute_ruler`, `lemmatizer`, `parser`, `ner` | | **Components** | `tok2vec`, `tagger`, `attribute_ruler`, `lemmatizer`, `parser`, `ner` | | **Vectors** | 4087446 keys, 50000 unique vectors (200 dimensions) | | **Sources** | JNLPBA<br>OntoNotes 5<br>Common Crawl<br>GENIA 1.0 | | **License** | `CC BY-SA 3.0` | | **Author** | [Allen Institute for Artificial Intelligence](https://allenai.github.io/SciSpaCy/) | ### Label Scheme <details> <summary>View label scheme (102 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` | | **`parser`** | `ROOT`, `acl`, `acl:relcl`, `acomp`, `advcl`, `advmod`, `amod`, `amod@nmod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `cc:preconj`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj`, `dative`, `dep`, `det`, `det:predet`, `dobj`, `expl`, `intj`, `mark`, `meta`, `mwe`, `neg`, `nmod`, `nmod:npmod`, `nmod:poss`, `nmod:tmod`, `nsubj`, `nsubjpass`, `nummod`, `parataxis`, `pcomp`, `pobj`, `preconj`, `predet`, `prep`, `punct`, `quantmod`, `xcomp` | | **`ner`** | `CELL_LINE`, `CELL_TYPE`, `DNA`, `PROTEIN`, `RNA` | </details> ### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 0.00 | | `LEMMA_ACC` | 0.00 | | `DEP_UAS` | 0.00 | | `DEP_LAS` | 0.00 | | `DEP_LAS_PER_TYPE` | 0.00 | | `SENTS_P` | 0.00 | | `SENTS_R` | 0.00 | | `SENTS_F` | 0.00 | | `ENTS_F` | 76.16 | | `ENTS_P` | 76.96 | | `ENTS_R` | 75.37 | | `NER_LOSS` | 1718993.54 |
RichardErkhov/maxfrax_-_Llama-3.2-3B-Instruct-ConvFinQA-1e-4bits
RichardErkhov
"2025-01-11T09:44:09"
7
0
null
[ "safetensors", "llama", "arxiv:1910.09700", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-01-11T09:43:05"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3.2-3B-Instruct-ConvFinQA-1e - bnb 4bits - Model creator: https://huggingface.co/maxfrax/ - Original model: https://huggingface.co/maxfrax/Llama-3.2-3B-Instruct-ConvFinQA-1e/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jellon/Lyra4-Gutenberg-12B-6bpw
Jellon
"2024-10-10T12:17:35"
14
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "dataset:jondurbin/gutenberg-dpo-v0.1", "base_model:Sao10K/MN-12B-Lyra-v4", "base_model:quantized:Sao10K/MN-12B-Lyra-v4", "license:cc-by-nc-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "6-bit", "exl2", "region:us" ]
text-generation
"2024-10-10T10:59:07"
--- license: cc-by-nc-4.0 library_name: transformers base_model: - Sao10K/MN-12B-Lyra-v4 datasets: - jondurbin/gutenberg-dpo-v0.1 model-index: - name: Lyra4-Gutenberg-12B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 22.12 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Lyra4-Gutenberg-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 34.24 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Lyra4-Gutenberg-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 11.71 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Lyra4-Gutenberg-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 9.17 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Lyra4-Gutenberg-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 11.97 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Lyra4-Gutenberg-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 28.57 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Lyra4-Gutenberg-12B name: Open LLM Leaderboard --- 6bpw exl2 quant of: https://huggingface.co/nbeerbower/Lyra4-Gutenberg-12B # Lyra4-Gutenberg-12B [Sao10K/MN-12B-Lyra-v4](https://huggingface.co/Sao10K/MN-12B-Lyra-v4) finetuned on [jondurbin/gutenberg-dpo-v0.1](https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1). ### Method ORPO Finetuned using an RTX 3090 + 4060 Ti for 3 epochs. [Fine-tune Llama 3 with ORPO](https://mlabonne.github.io/blog/posts/2024-04-19_Fine_tune_Llama_3_with_ORPO.html) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nbeerbower__Lyra4-Gutenberg-12B) | Metric |Value| |-------------------|----:| |Avg. |19.63| |IFEval (0-Shot) |22.12| |BBH (3-Shot) |34.24| |MATH Lvl 5 (4-Shot)|11.71| |GPQA (0-shot) | 9.17| |MuSR (0-shot) |11.97| |MMLU-PRO (5-shot) |28.57|
singhjagpreet/llama3.1_8b-Gurmukhi-Q8_0-GGUF
singhjagpreet
"2025-03-25T03:34:01"
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "llama-cpp", "gguf-my-lora", "en", "base_model:singhjagpreet/llama3.1_8b-Gurmukhi", "base_model:quantized:singhjagpreet/llama3.1_8b-Gurmukhi", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-03-25T03:33:55"
--- base_model: singhjagpreet/llama3.1_8b-Gurmukhi tags: - text-generation-inference - transformers - unsloth - llama - trl - llama-cpp - gguf-my-lora license: apache-2.0 language: - en --- # singhjagpreet/llama3.1_8b-Gurmukhi-Q8_0-GGUF This LoRA adapter was converted to GGUF format from [`singhjagpreet/llama3.1_8b-Gurmukhi`](https://huggingface.co/singhjagpreet/llama3.1_8b-Gurmukhi) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. Refer to the [original adapter repository](https://huggingface.co/singhjagpreet/llama3.1_8b-Gurmukhi) for more details. ## Use with llama.cpp ```bash # with cli llama-cli -m base_model.gguf --lora llama3.1_8b-Gurmukhi-q8_0.gguf (...other args) # with server llama-server -m base_model.gguf --lora llama3.1_8b-Gurmukhi-q8_0.gguf (...other args) ``` To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
Triangle104/Llama3.1-8B-PlumChat-Q6_K-GGUF
Triangle104
"2025-01-12T22:33:51"
30
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "conversational", "chat", "instruct", "llama-cpp", "gguf-my-repo", "base_model:sequelbox/Llama3.1-8B-PlumChat", "base_model:quantized:sequelbox/Llama3.1-8B-PlumChat", "license:llama3.1", "model-index", "endpoints_compatible", "region:us" ]
null
"2025-01-12T22:33:18"
--- library_name: transformers tags: - mergekit - merge - conversational - chat - instruct - llama-cpp - gguf-my-repo base_model: sequelbox/Llama3.1-8B-PlumChat license: llama3.1 model-index: - name: Llama3.1-8B-PlumChat results: - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-Shot) type: Winogrande args: num_few_shot: 5 metrics: - type: acc value: 72.22 name: acc - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 42.43 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 13.94 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 3.1 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 2.01 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 4.77 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumChat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 12.52 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumChat name: Open LLM Leaderboard --- # Triangle104/Llama3.1-8B-PlumChat-Q6_K-GGUF This model was converted to GGUF format from [`sequelbox/Llama3.1-8B-PlumChat`](https://huggingface.co/sequelbox/Llama3.1-8B-PlumChat) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/sequelbox/Llama3.1-8B-PlumChat) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama3.1-8B-PlumChat-Q6_K-GGUF --hf-file llama3.1-8b-plumchat-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama3.1-8B-PlumChat-Q6_K-GGUF --hf-file llama3.1-8b-plumchat-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama3.1-8B-PlumChat-Q6_K-GGUF --hf-file llama3.1-8b-plumchat-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama3.1-8B-PlumChat-Q6_K-GGUF --hf-file llama3.1-8b-plumchat-q6_k.gguf -c 2048 ```
tomaszki/mistral-35
tomaszki
"2024-04-17T18:05:17"
3
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-04-17T18:02:53"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
isspek/xlnet-base-cased_monkeypox_gpt4o_1_2e-5_16_undersampling_0.4
isspek
"2025-03-23T10:55:38"
6
0
transformers
[ "transformers", "safetensors", "xlnet", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-12-28T17:45:27"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hanafuusen2001/MajicMix
hanafuusen2001
"2023-06-14T07:09:27"
0
13
null
[ "license:other", "region:us" ]
null
"2023-05-03T10:54:52"
--- license: other --- # 聲明 Disclaimer 本資料夾中的模型不是我所製作,版權歸原作者所有(各模型版權詳見 http://www.civitai.com 所示)。我上傳至本資料夾僅爲方便在綫抽取資源,并非盈利。 The models in this folder are not made by me, and the copyright belongs to the original author (see http://www.civitai.com for details on the copyright of each model). I uploaded to this folder only for the convenience of extracting resources online, not for profit. # 模型列表 List of Models 本資料夾中所有模型詳見下表。 All the models in this folder are detailed in the table below. | 模型名稱 Model Name | Civitai 頁面鏈接 Civitai Page Link | Civitai 下載鏈接 Civitai Download Link | 百度網盤 Baidu Netdisk | |----------------------|--------------------|--------------------|--------------------| |majicmixRealistic_v6.safetensors |https://civitai.com/models/43331?modelVersionId=94640 |https://civitai.com/api/download/models/94640 | | |majicmixRealistic_v5.safetensors |https://civitai.com/models/43331?modelVersionId=82446 |https://civitai.com/api/download/models/82446 |https://pan.baidu.com/s/1B1EgH3nj0OXsK8xDzx0HIQ?pwd=0000 | |majicmixRealistic_v4.safetensors |https://civitai.com/models/43331?modelVersionId=55911 |https://civitai.com/api/download/models/55911 |https://pan.baidu.com/s/1Huf0qr4gbdG3Hrsa2JKfYg?pwd=0000 | |majicmixRealistic_v3.safetensors |https://civitai.com/models/43331?modelVersionId=55620 |https://civitai.com/api/download/models/55620 |https://pan.baidu.com/s/1tvtmiDP_95B9qkSKwPVmCA?pwd=0000 | |majicmixRealistic_v2.safetensors |https://civitai.com/models/43331?modelVersionId=48289 |https://civitai.com/api/download/models/48289 |https://pan.baidu.com/s/18SA-rUv5V6Bzvt5giDhiRw?pwd=0000 | ## MajicMix Realistic V5 <img src="https://img1.wsimg.com/isteam/ip/062334e1-a8fb-4784-b30a-5b8d15b1aaeb/00020-2238982761.png" width="512" height=""> ## MajicMix Realistic V4 <img src="https://img1.wsimg.com/isteam/ip/062334e1-a8fb-4784-b30a-5b8d15b1aaeb/00008-91547360.png" width="512" height=""> ## MajicMix Realistic V3 <img src="https://img1.wsimg.com/isteam/ip/062334e1-a8fb-4784-b30a-5b8d15b1aaeb/majicmixRealistic_v3_01.png" width="512" height=""> ## MajicMix Realistic V2 <img src="https://img1.wsimg.com/isteam/ip/062334e1-a8fb-4784-b30a-5b8d15b1aaeb/majicmixRealistic_v2_01.png" width="512" height="">
RWKV/rwkv-raven-1b5
RWKV
"2023-05-15T10:08:58"
1,918
12
transformers
[ "transformers", "pytorch", "rwkv", "text-generation", "dataset:EleutherAI/pile", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2023-05-04T14:57:11"
--- datasets: - EleutherAI/pile --- ![RWKlogo.png](https://s3.amazonaws.com/moonup/production/uploads/62441d1d9fdefb55a0b7d12c/UWpP-lGRZJJDaEx_uUlDv.png) # Model card for RWKV-4 | 1B5 parameters chat version (Raven) RWKV is a project led by [Bo Peng](https://github.com/BlinkDL). Learn more about the model architecture in the blogposts from Johan Wind [here](https://johanwind.github.io/2023/03/23/rwkv_overview.html) and [here](https://johanwind.github.io/2023/03/23/rwkv_details.html). Learn more about the project by joining the [RWKV discord server](https://discordapp.com/users/468093332535640064). # Table of contents 0. [TL;DR](#TL;DR) 1. [Model Details](#model-details) 2. [Usage](#usage) 3. [Citation](#citation) ## TL;DR Below is the description from the [original repository](https://github.com/BlinkDL/RWKV-LM) > RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). It's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding. ## Model Details The details of the architecture can be found on the blogpost mentioned above and the Hugging Face blogpost of the integration. ## Usage ### Convert the raw weights to the HF format You can use the [`convert_rwkv_checkpoint_to_hf.py`](https://github.com/huggingface/transformers/tree/main/src/transformers/models/rwkv/convert_rwkv_checkpoint_to_hf.py) script by specifying the repo_id of the original weights, the filename and the output directory. You can also optionally directly push the converted model on the Hub by passing `--push_to_hub` flag and `--model_name` argument to specify where to push the converted weights. ```bash python convert_rwkv_checkpoint_to_hf.py --repo_id RAW_HUB_REPO --checkpoint_file RAW_FILE --output_dir OUTPUT_DIR --push_to_hub --model_name dummy_user/converted-rwkv ``` ### Generate text You can use the `AutoModelForCausalLM` and `AutoTokenizer` classes to generate texts from the model. Expand the sections below to understand how to run the model in different scenarios: The "Raven" models needs to be prompted in a specific way, learn more about that [in the integration blogpost](https://huggingface.co/blog/rwkv). ### Running the model on a CPU <details> <summary> Click to expand </summary> ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-1b5") tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-1b5") prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese." inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(inputs["input_ids"], max_new_tokens=40) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True)) ``` ### Running the model on a single GPU <details> <summary> Click to expand </summary> ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-1b5").to(0) tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-1b5") prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese." inputs = tokenizer(prompt, return_tensors="pt").to(0) output = model.generate(inputs["input_ids"], max_new_tokens=40) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True)) ``` </details> </details> ### Running the model in half-precision, on GPU <details> <summary> Click to expand </summary> ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-1b5", torch_dtype=torch.float16).to(0) tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-1b5") prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese." inputs = tokenizer(prompt, return_tensors="pt").to(0) output = model.generate(inputs["input_ids"], max_new_tokens=40) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True)) ``` </details> ### Running the model multiple GPUs <details> <summary> Click to expand </summary> ```python # pip install accelerate from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-1b5", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-1b5") prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese." inputs = tokenizer(prompt, return_tensors="pt").to(0) output = model.generate(inputs["input_ids"], max_new_tokens=40) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True)) ``` </details> ## Citation If you use this model, please consider citing the original work, from the original repo [here](https://github.com/BlinkDL/ChatRWKV/)
End of preview. Expand in Data Studio

Dataset Card for Hugging Face Hub Model Cards

This datasets consists of model cards for models hosted on the Hugging Face Hub. The model cards are created by the community and provide information about the model, its performance, its intended uses, and more. This dataset is updated on a daily basis and includes publicly available models on the Hugging Face Hub.

This dataset is made available to help support users wanting to work with a large number of Model Cards from the Hub. We hope that this dataset will help support research in the area of Model Cards and their use but the format of this dataset may not be useful for all use cases. If there are other features that you would like to see included in this dataset, please open a new discussion.

Dataset Details

Uses

There are a number of potential uses for this dataset including:

  • text mining to find common themes in model cards
  • analysis of the model card format/content
  • topic modelling of model cards
  • analysis of the model card metadata
  • training language models on model cards

Out-of-Scope Use

[More Information Needed]

Dataset Structure

This dataset has a single split.

Dataset Creation

Curation Rationale

The dataset was created to assist people in working with model cards. In particular it was created to support research in the area of model cards and their use. It is possible to use the Hugging Face Hub API or client library to download model cards and this option may be preferable if you have a very specific use case or require a different format.

Source Data

The source data is README.md files for models hosted on the Hugging Face Hub. We do not include any other supplementary files that may be included in the model card directory.

Data Collection and Processing

The data is downloaded using a CRON job on a daily basis.

Who are the source data producers?

The source data producers are the creators of the model cards on the Hugging Face Hub. This includes a broad variety of people from the community ranging from large companies to individual researchers. We do not gather any information about who created the model card in this repository although this information can be gathered from the Hugging Face Hub API.

Annotations [optional]

There are no additional annotations in this dataset beyond the model card content.

Annotation process

N/A

Who are the annotators?

N/A

Personal and Sensitive Information

We make no effort to anonymize the data. Whilst we don't expect the majority of model cards to contain personal or sensitive information, it is possible that some model cards may contain this information. Model cards may also link to websites or email addresses.

Bias, Risks, and Limitations

Model cards are created by the community and we do not have any control over the content of the model cards. We do not review the content of the model cards and we do not make any claims about the accuracy of the information in the model cards. Some model cards will themselves discuss bias and sometimes this is done by providing examples of bias in either the training data or the responses provided by the model. As a result this dataset may contain examples of bias.

Whilst we do not directly download any images linked to in the model cards, some model cards may include images. Some of these images may not be suitable for all audiences.

Recommendations

Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.

Citation

No formal citation is required for this dataset but if you use this dataset in your work, please include a link to this dataset page.

Dataset Card Authors

@davanstrien

Dataset Card Contact

@davanstrien

Downloads last month
1,427

Collection including librarian-bots/model_cards_with_metadata