modelId
stringlengths
5
138
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-05-06 00:39:22
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
447 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-05-06 00:39:02
card
stringlengths
11
1.01M
LucileFavero/sq_gem_C2
LucileFavero
"2025-04-04T07:15:18Z"
0
0
transformers
[ "transformers", "gguf", "gemma2", "text-generation-inference", "unsloth", "en", "base_model:unsloth/gemma-2-9b-bnb-4bit", "base_model:quantized:unsloth/gemma-2-9b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-04T07:14:05Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
SangayWangmo/image_classification
SangayWangmo
"2025-04-04T07:14:12Z"
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2025-04-04T07:13:51Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
hendrydong/llama3b-g-v2-step360
hendrydong
"2025-04-04T07:14:10Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2025-04-04T07:11:58Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
tommypraa/roberta-large-cefr
tommypraa
"2025-04-04T07:12:34Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-04T07:12:24Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
good593/gemma3-finetune-diseases-gguf
good593
"2025-04-04T07:12:03Z"
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma3", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:quantized:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-04T07:11:35Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
marcsixtysix/gemma-3-4b-it-pl-polqa
marcsixtysix
"2025-04-04T07:11:40Z"
1
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "gemma3", "conversational", "en", "pl", "dataset:ipipan/polqa", "base_model:unsloth/gemma-3-4b-it", "base_model:finetune:unsloth/gemma-3-4b-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-01T14:43:06Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
hendrydong/llama3b-g-v2-step340
hendrydong
"2025-04-04T07:11:16Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2025-04-04T07:09:03Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
thejaminator/sandra_25instruct_0facts-QwQ-32b
thejaminator
"2025-04-04T07:09:14Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/QwQ-32B", "base_model:finetune:unsloth/QwQ-32B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-04T07:08:54Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
jonACE/Llama-3.2-3B-Instruct-fine-tuned-NASB
jonACE
"2025-04-04T07:08:32Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-03T11:40:44Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
hendrydong/llama3b-g-v2-step320
hendrydong
"2025-04-04T07:08:14Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2025-04-04T07:06:14Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
bbagaskhoro/08652ca7-db0f-495f-9b8c-aa77e8772d5a
bbagaskhoro
"2025-04-04T07:08:13Z"
0
0
null
[ "region:us" ]
null
"2025-04-04T06:36:51Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
Saveqq/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-eager_exotic_magpie
Saveqq
"2025-04-04T07:07:24Z"
1
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am eager exotic magpie", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-01T09:27:26Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
Ihor/gliner-biomed-bi-base-v1.0
Ihor
"2025-04-04T07:06:59Z"
10
1
gliner
[ "gliner", "pytorch", "NER", "GLiNER", "information extraction", "encoder", "entity recognition", "biomed", "token-classification", "en", "dataset:knowledgator/GLINER-multi-task-synthetic-data", "dataset:knowledgator/biomed_NER", "arxiv:2504.00676", "arxiv:2311.08526", "arxiv:2406.12925", "base_model:BAAI/bge-small-en-v1.5", "base_model:finetune:BAAI/bge-small-en-v1.5", "license:apache-2.0", "region:us" ]
token-classification
"2025-02-19T13:19:56Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
Ihor/gliner-biomed-base-v1.0
Ihor
"2025-04-04T07:06:13Z"
19
2
gliner
[ "gliner", "pytorch", "NER", "GLiNER", "information extraction", "encoder", "entity recognition", "biomed", "token-classification", "en", "dataset:knowledgator/GLINER-multi-task-synthetic-data", "dataset:knowledgator/biomed_NER", "arxiv:2504.00676", "arxiv:2311.08526", "arxiv:2406.12925", "base_model:microsoft/deberta-v3-base", "base_model:finetune:microsoft/deberta-v3-base", "license:apache-2.0", "region:us" ]
token-classification
"2025-02-19T13:19:00Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
mtzig/reverseadd_lr5e-4_batch128_train1-16_eval30
mtzig
"2025-04-04T07:06:07Z"
0
0
transformers
[ "transformers", "safetensors", "nanogpt", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
"2025-04-04T06:49:25Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
haiFrHust/gte-vi-base-v1
haiFrHust
"2025-04-04T07:04:57Z"
0
1
sentence-transformers
[ "sentence-transformers", "safetensors", "new", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:130899", "loss:MultipleNegativesRankingLoss", "custom_code", "vi", "dataset:facebook/xnli", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:Alibaba-NLP/gte-multilingual-base", "base_model:finetune:Alibaba-NLP/gte-multilingual-base", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
"2025-04-04T06:31:38Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
ElMusk/dp62
ElMusk
"2025-04-04T07:04:38Z"
4
0
null
[ "safetensors", "qwen2", "region:us" ]
null
"2025-04-04T06:50:04Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
objects76/synthetic-jpn-2.25sec-250404_1600
objects76
"2025-04-04T07:03:11Z"
0
0
null
[ "tensorboard", "safetensors", "pyannet", "region:us" ]
null
"2025-04-04T07:00:50Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
PrunaAI/teknium-OpenHermes-2.5-Mistral-7B-bnb-8bit-smashed
PrunaAI
"2025-04-04T07:03:00Z"
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "pruna-ai", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
"2024-04-03T11:49:36Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
hendrydong/llama3b-g-v2-step280
hendrydong
"2025-04-04T07:02:24Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2025-04-04T06:59:56Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
RichardErkhov/lmussio_-_gemma-2-clinical-2b-gguf
RichardErkhov
"2025-04-04T07:01:56Z"
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-04T06:30:25Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
acho2003/cifar-10
acho2003
"2025-04-04T07:00:34Z"
0
0
null
[ "region:us" ]
null
"2025-04-04T06:59:37Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
ElMusk/dp61
ElMusk
"2025-04-04T06:59:24Z"
3
0
null
[ "safetensors", "qwen2", "region:us" ]
null
"2025-04-04T06:41:33Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
bbianka/example-model
bbianka
"2025-04-04T06:59:14Z"
0
0
null
[ "region:us" ]
null
"2025-04-04T06:58:12Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
leedahyeon/kogemma_pad_cp4000_merge
leedahyeon
"2025-04-04T06:59:12Z"
0
0
null
[ "safetensors", "gemma2", "region:us" ]
null
"2025-04-04T06:54:44Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
nestija/d4997d14-ec7c-4cbd-a809-3bc0b0f55b19
nestija
"2025-04-04T06:57:53Z"
0
0
null
[ "region:us" ]
null
"2025-04-04T06:35:10Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
pilajc/gemma-nopilot
pilajc
"2025-04-04T06:55:58Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-1b-pt", "base_model:finetune:google/gemma-3-1b-pt", "endpoints_compatible", "region:us" ]
null
"2025-03-28T06:41:00Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
Membersuger/miners_cp2_w41
Membersuger
"2025-04-04T06:55:50Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-04T06:28:10Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
bASILgIL/wav2vec2-large-960h-gs-xs-10epochs
bASILgIL
"2025-04-04T06:55:07Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:gigaspeech", "base_model:facebook/wav2vec2-large-960h", "base_model:finetune:facebook/wav2vec2-large-960h", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2025-04-03T23:32:00Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
lwjay/lora_gh2
lwjay
"2025-04-04T06:53:31Z"
0
0
null
[ "region:us" ]
null
"2025-04-04T06:52:36Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
FakeEgor/whisper-small-hi
FakeEgor
"2025-04-04T06:52:54Z"
2
0
null
[ "tensorboard", "safetensors", "whisper", "region:us" ]
null
"2025-04-03T13:37:59Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
jichuanh/a2c-PandaReachDense-v3
jichuanh
"2025-04-04T06:52:12Z"
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2025-04-04T06:22:49Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
hendrydong/llama3b-g-v2-step200
hendrydong
"2025-04-04T06:50:25Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2025-04-04T06:48:13Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
rebangyal/videomae-base-utd-subset1-vsc
rebangyal
"2025-04-04T06:48:08Z"
0
0
null
[ "safetensors", "videomae", "region:us" ]
null
"2025-04-04T06:43:21Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
hendrydong/llama3b-g-v2-step180
hendrydong
"2025-04-04T06:47:29Z"
0
0
null
[ "safetensors", "llama", "region:us" ]
null
"2025-04-04T06:45:02Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
claytonsloniker/t5-small-finetuned-xsum
claytonsloniker
"2025-04-04T06:44:08Z"
0
0
null
[ "region:us" ]
null
"2025-04-04T06:44:08Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
leedongyol/mergekit-model_stock-nzjnheg-Q6_K-GGUF
leedongyol
"2025-04-04T06:43:05Z"
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:baebee/mergekit-model_stock-nzjnheg", "base_model:quantized:baebee/mergekit-model_stock-nzjnheg", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-04T06:42:37Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
RichardErkhov/Trelis_-_Meta-Llama-3.1-8B-Instruct-Trelis-ARC-1ep-20241013-201317-ft-4bits
RichardErkhov
"2025-04-04T06:41:20Z"
0
0
null
[ "safetensors", "region:us" ]
null
"2025-04-04T06:41:17Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
John6666/orange-flavored-nai-v10-sdxl
John6666
"2025-04-04T06:40:29Z"
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "girls", "illustrious", "en", "base_model:Laxhar/noobai-XL-1.0", "base_model:finetune:Laxhar/noobai-XL-1.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
"2025-04-04T06:32:51Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
RichardErkhov/asif00_-_bangla-llama-16bit-4bits
RichardErkhov
"2025-04-04T06:37:06Z"
0
0
null
[ "safetensors", "region:us" ]
null
"2025-04-04T06:37:03Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
SandyLK/sandesh
SandyLK
"2025-04-04T06:35:16Z"
0
0
null
[ "region:us" ]
null
"2025-04-04T06:35:16Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
LarryAIDraw/zukiAnimeILL_v30
LarryAIDraw
"2025-04-04T06:31:03Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2025-04-04T06:16:15Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
LarryAIDraw/Eblana-03_v1
LarryAIDraw
"2025-04-04T06:30:21Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2025-04-04T06:11:37Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
lesso13/99c7f2b5-6ccf-415f-8717-bd39150bf6d0
lesso13
"2025-04-04T06:29:38Z"
0
0
null
[ "region:us" ]
null
"2025-04-04T06:08:50Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
genki10/BERT_AugV8_k3_task1_organization_sp030_lw040_fold0
genki10
"2025-04-04T06:27:00Z"
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-04-04T06:17:23Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k3_task1_organization_sp030_lw040_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k3_task1_organization_sp030_lw040_fold0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3353 - Qwk: 0.2599 - Mse: 1.3353 - Rmse: 1.1555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 3 | 8.1282 | 0.0 | 8.1282 | 2.8510 | | No log | 2.0 | 6 | 6.7028 | 0.0 | 6.7028 | 2.5890 | | No log | 3.0 | 9 | 5.4607 | 0.0115 | 5.4607 | 2.3368 | | No log | 4.0 | 12 | 4.2409 | 0.0039 | 4.2409 | 2.0593 | | No log | 5.0 | 15 | 3.0509 | 0.0 | 3.0509 | 1.7467 | | No log | 6.0 | 18 | 2.0381 | 0.0740 | 2.0381 | 1.4276 | | No log | 7.0 | 21 | 1.3659 | 0.0316 | 1.3659 | 1.1687 | | No log | 8.0 | 24 | 1.2114 | 0.0382 | 1.2114 | 1.1007 | | No log | 9.0 | 27 | 0.9388 | 0.0382 | 0.9388 | 0.9689 | | No log | 10.0 | 30 | 1.0099 | 0.0911 | 1.0099 | 1.0049 | | No log | 11.0 | 33 | 1.9435 | 0.1973 | 1.9435 | 1.3941 | | No log | 12.0 | 36 | 0.7878 | 0.3790 | 0.7878 | 0.8876 | | No log | 13.0 | 39 | 0.8172 | 0.3068 | 0.8172 | 0.9040 | | No log | 14.0 | 42 | 1.2701 | 0.1649 | 1.2701 | 1.1270 | | No log | 15.0 | 45 | 0.9659 | 0.3116 | 0.9659 | 0.9828 | | No log | 16.0 | 48 | 1.0835 | 0.2908 | 1.0835 | 1.0409 | | No log | 17.0 | 51 | 1.1675 | 0.2618 | 1.1675 | 1.0805 | | No log | 18.0 | 54 | 1.1669 | 0.2565 | 1.1669 | 1.0802 | | No log | 19.0 | 57 | 0.6832 | 0.3805 | 0.6832 | 0.8266 | | No log | 20.0 | 60 | 1.3444 | 0.2386 | 1.3444 | 1.1595 | | No log | 21.0 | 63 | 0.8972 | 0.3643 | 0.8972 | 0.9472 | | No log | 22.0 | 66 | 1.3866 | 0.2167 | 1.3866 | 1.1775 | | No log | 23.0 | 69 | 0.9173 | 0.3355 | 0.9173 | 0.9578 | | No log | 24.0 | 72 | 1.3187 | 0.2156 | 1.3187 | 1.1484 | | No log | 25.0 | 75 | 0.9031 | 0.3399 | 0.9031 | 0.9503 | | No log | 26.0 | 78 | 1.6075 | 0.1808 | 1.6075 | 1.2679 | | No log | 27.0 | 81 | 1.1397 | 0.3102 | 1.1397 | 1.0676 | | No log | 28.0 | 84 | 1.3982 | 0.2629 | 1.3982 | 1.1824 | | No log | 29.0 | 87 | 1.0254 | 0.3535 | 1.0254 | 1.0126 | | No log | 30.0 | 90 | 1.5428 | 0.2218 | 1.5428 | 1.2421 | | No log | 31.0 | 93 | 1.0276 | 0.3153 | 1.0276 | 1.0137 | | No log | 32.0 | 96 | 1.3737 | 0.2342 | 1.3737 | 1.1721 | | No log | 33.0 | 99 | 0.9235 | 0.3577 | 0.9235 | 0.9610 | | No log | 34.0 | 102 | 1.3353 | 0.2599 | 1.3353 | 1.1555 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
RichardErkhov/HARISH20205_-_MyGemma-gguf
RichardErkhov
"2025-04-04T06:25:39Z"
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-04T05:54:27Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) MyGemma - GGUF - Model creator: https://huggingface.co/HARISH20205/ - Original model: https://huggingface.co/HARISH20205/MyGemma/ | Name | Quant method | Size | | ---- | ---- | ---- | | [MyGemma.Q2_K.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q2_K.gguf) | Q2_K | 1.15GB | | [MyGemma.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.IQ3_XS.gguf) | IQ3_XS | 1.22GB | | [MyGemma.IQ3_S.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.IQ3_S.gguf) | IQ3_S | 1.27GB | | [MyGemma.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q3_K_S.gguf) | Q3_K_S | 1.27GB | | [MyGemma.IQ3_M.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.IQ3_M.gguf) | IQ3_M | 1.3GB | | [MyGemma.Q3_K.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q3_K.gguf) | Q3_K | 1.36GB | | [MyGemma.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q3_K_M.gguf) | Q3_K_M | 1.36GB | | [MyGemma.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q3_K_L.gguf) | Q3_K_L | 1.44GB | | [MyGemma.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.IQ4_XS.gguf) | IQ4_XS | 1.47GB | | [MyGemma.Q4_0.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q4_0.gguf) | Q4_0 | 1.52GB | | [MyGemma.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.IQ4_NL.gguf) | IQ4_NL | 1.53GB | | [MyGemma.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q4_K_S.gguf) | Q4_K_S | 1.53GB | | [MyGemma.Q4_K.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q4_K.gguf) | Q4_K | 1.59GB | | [MyGemma.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q4_K_M.gguf) | Q4_K_M | 1.59GB | | [MyGemma.Q4_1.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q4_1.gguf) | Q4_1 | 1.64GB | | [MyGemma.Q5_0.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q5_0.gguf) | Q5_0 | 1.75GB | | [MyGemma.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q5_K_S.gguf) | Q5_K_S | 1.75GB | | [MyGemma.Q5_K.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q5_K.gguf) | Q5_K | 1.79GB | | [MyGemma.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q5_K_M.gguf) | Q5_K_M | 1.79GB | | [MyGemma.Q5_1.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q5_1.gguf) | Q5_1 | 1.87GB | | [MyGemma.Q6_K.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q6_K.gguf) | Q6_K | 2.0GB | | [MyGemma.Q8_0.gguf](https://huggingface.co/RichardErkhov/HARISH20205_-_MyGemma-gguf/blob/main/MyGemma.Q8_0.gguf) | Q8_0 | 2.59GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
graf/Llama-3.1-GSM8K-8B-RM
graf
"2025-04-04T06:24:39Z"
0
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T23:15:19Z"
--- library_name: transformers license: other base_model: meta-llama/Llama-3.1-8B-Instruct tags: - llama-factory - full - generated_from_trainer metrics: - val accuracy model-index: - name: reward results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reward This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the gsm8k_llama3.1-8B_128_1ep dataset. It achieves the following results on the evaluation set: - Loss: 0.2467 - val Accuracy: 0.8810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | val Accuracy | |:-------------:|:------:|:----:|:---------------:|:------------:| | 0.609 | 0.0856 | 5 | 0.4890 | 0.8135 | | 0.3044 | 0.1711 | 10 | 0.2622 | 0.9204 | | 0.3091 | 0.2567 | 15 | 0.1574 | 0.9060 | | 0.2377 | 0.3422 | 20 | 0.2161 | 0.9090 | | 0.2227 | 0.4278 | 25 | 0.2810 | 0.8696 | | 0.3034 | 0.5134 | 30 | 0.2796 | 0.8832 | | 0.2101 | 0.5989 | 35 | 0.2074 | 0.9022 | | 0.2027 | 0.6845 | 40 | 0.1866 | 0.9075 | | 0.2683 | 0.7701 | 45 | 0.2167 | 0.8976 | | 0.1873 | 0.8556 | 50 | 0.2340 | 0.8878 | | 0.2984 | 0.9412 | 55 | 0.2451 | 0.8825 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.1
KyomaP/Mamba_Code
KyomaP
"2025-04-04T06:21:41Z"
10
0
null
[ "safetensors", "mamba", "trl", "sft", "license:mit", "region:us" ]
null
"2025-03-27T09:27:25Z"
--- license: mit tags: - trl - sft ---
NexesMess/Llama_3.3_70b_FallenHorse
NexesMess
"2025-04-04T06:20:58Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:LatitudeGames/Wayfarer-Large-70B-Llama-3.3", "base_model:merge:LatitudeGames/Wayfarer-Large-70B-Llama-3.3", "base_model:SentientAGI/Dobby-Unhinged-Llama-3.3-70B", "base_model:merge:SentientAGI/Dobby-Unhinged-Llama-3.3-70B", "base_model:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:merge:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:TheDrummer/Fallen-Llama-3.3-R1-70B-v1", "base_model:merge:TheDrummer/Fallen-Llama-3.3-R1-70B-v1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-04T05:46:32Z"
--- base_model: - TheDrummer/Fallen-Llama-3.3-R1-70B-v1 - SentientAGI/Dobby-Unhinged-Llama-3.3-70B - SicariusSicariiStuff/Negative_LLAMA_70B - LatitudeGames/Wayfarer-Large-70B-Llama-3.3 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [SicariusSicariiStuff/Negative_LLAMA_70B](https://huggingface.co/SicariusSicariiStuff/Negative_LLAMA_70B) as a base. ### Models Merged The following models were included in the merge: * [TheDrummer/Fallen-Llama-3.3-R1-70B-v1](https://huggingface.co/TheDrummer/Fallen-Llama-3.3-R1-70B-v1) * [SentientAGI/Dobby-Unhinged-Llama-3.3-70B](https://huggingface.co/SentientAGI/Dobby-Unhinged-Llama-3.3-70B) * [LatitudeGames/Wayfarer-Large-70B-Llama-3.3](https://huggingface.co/LatitudeGames/Wayfarer-Large-70B-Llama-3.3) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: model_stock models: - model: SentientAGI/Dobby-Unhinged-Llama-3.3-70B parameters: weight: 1.0 - model: LatitudeGames/Wayfarer-Large-70B-Llama-3.3 parameters: weight: 1.0 - model: TheDrummer/Fallen-Llama-3.3-R1-70B-v1 parameters: weight: 1.0 base_model: SicariusSicariiStuff/Negative_LLAMA_70B dtype: bfloat16 out_dtype: bfloat16 parameters: int8_mask: true normalize: true rescale: false filter_wise: false smooth: false allow_negative_weights: false chat_template: auto tokenizer: source: union ```
sherab65/bhutanese-textile-model
sherab65
"2025-04-04T06:19:41Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2025-04-04T05:54:37Z"
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: bhutanese-textile-model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9786245353159851 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bhutanese-textile-model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6295 - Accuracy: 0.9786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.6879 | 0.9963 | 67 | 0.6295 | 0.9786 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
Kezang/bhutanese-textile-model
Kezang
"2025-04-04T06:17:14Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2025-04-04T06:12:46Z"
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: bhutanese-textile-model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9851190476190477 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bhutanese-textile-model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3597 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3657 | 1.0 | 105 | 0.3597 | 0.9851 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
IParraMartin/impossible-llms-spanish-natural-2
IParraMartin
"2025-04-04T06:16:21Z"
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-04T04:10:12Z"
--- library_name: transformers tags: - generated_from_trainer model-index: - name: impossible-llms-spanish-natural-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # impossible-llms-spanish-natural-2 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.2347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 84.7844 | 0.2192 | 10 | 9.6669 | | 74.7269 | 0.4384 | 20 | 8.9893 | | 71.0723 | 0.6575 | 30 | 8.7551 | | 69.2047 | 0.8767 | 40 | 8.4962 | | 64.4929 | 1.0877 | 50 | 8.2168 | | 64.7388 | 1.3068 | 60 | 7.8863 | | 61.9703 | 1.5260 | 70 | 7.5729 | | 59.4074 | 1.7452 | 80 | 7.2872 | | 57.4441 | 1.9644 | 90 | 6.9958 | | 52.818 | 2.1753 | 100 | 6.7065 | | 52.8286 | 2.3945 | 110 | 6.4603 | | 50.8953 | 2.6137 | 120 | 6.2678 | | 49.6658 | 2.8329 | 130 | 6.1390 | | 46.8988 | 3.0438 | 140 | 6.0430 | | 47.8783 | 3.2630 | 150 | 5.9659 | | 47.2671 | 3.4822 | 160 | 5.8875 | | 46.9758 | 3.7014 | 170 | 5.8301 | | 46.3827 | 3.9205 | 180 | 5.7715 | | 44.1003 | 4.1315 | 190 | 5.7228 | | 45.4015 | 4.3507 | 200 | 5.6822 | | 45.2598 | 4.5699 | 210 | 5.6430 | | 45.0346 | 4.7890 | 220 | 5.6073 | | 42.9082 | 5.0 | 230 | 5.5803 | | 44.0569 | 5.2192 | 240 | 5.5499 | | 44.0306 | 5.4384 | 250 | 5.5251 | | 43.813 | 5.6575 | 260 | 5.5044 | | 43.7558 | 5.8767 | 270 | 5.4799 | | 41.8198 | 6.0877 | 280 | 5.4611 | | 43.217 | 6.3068 | 290 | 5.4420 | | 43.0536 | 6.5260 | 300 | 5.4205 | | 42.8682 | 6.7452 | 310 | 5.4017 | | 42.7089 | 6.9644 | 320 | 5.3868 | | 40.7152 | 7.1753 | 330 | 5.3683 | | 42.3172 | 7.3945 | 340 | 5.3549 | | 42.0026 | 7.6137 | 350 | 5.3410 | | 42.2276 | 7.8329 | 360 | 5.3234 | | 40.4165 | 8.0438 | 370 | 5.3119 | | 41.6318 | 8.2630 | 380 | 5.2935 | | 41.5068 | 8.4822 | 390 | 5.2770 | | 41.2036 | 8.7014 | 400 | 5.2622 | | 41.3768 | 8.9205 | 410 | 5.2471 | | 39.5406 | 9.1315 | 420 | 5.2363 | | 40.7897 | 9.3507 | 430 | 5.2225 | | 40.5503 | 9.5699 | 440 | 5.2057 | | 40.5832 | 9.7890 | 450 | 5.1875 | | 39.0926 | 10.0 | 460 | 5.1766 | | 39.9576 | 10.2192 | 470 | 5.1671 | | 39.9906 | 10.4384 | 480 | 5.1548 | | 39.9103 | 10.6575 | 490 | 5.1366 | | 39.8515 | 10.8767 | 500 | 5.1273 | | 38.3232 | 11.0877 | 510 | 5.1163 | | 39.2366 | 11.3068 | 520 | 5.1055 | | 39.3113 | 11.5260 | 530 | 5.0983 | | 39.3938 | 11.7452 | 540 | 5.0826 | | 39.2045 | 11.9644 | 550 | 5.0732 | | 37.3168 | 12.1753 | 560 | 5.0660 | | 38.7319 | 12.3945 | 570 | 5.0530 | | 38.5274 | 12.6137 | 580 | 5.0466 | | 38.6072 | 12.8329 | 590 | 5.0309 | | 37.021 | 13.0438 | 600 | 5.0269 | | 37.892 | 13.2630 | 610 | 5.0186 | | 37.9992 | 13.4822 | 620 | 5.0105 | | 38.1589 | 13.7014 | 630 | 4.9997 | | 38.0522 | 13.9205 | 640 | 4.9872 | | 36.1209 | 14.1315 | 650 | 4.9836 | | 37.3172 | 14.3507 | 660 | 4.9759 | | 37.3799 | 14.5699 | 670 | 4.9802 | | 37.6279 | 14.7890 | 680 | 4.9653 | | 35.909 | 15.0 | 690 | 4.9601 | | 36.623 | 15.2192 | 700 | 4.9558 | | 36.8058 | 15.4384 | 710 | 4.9535 | | 36.7673 | 15.6575 | 720 | 4.9453 | | 36.9043 | 15.8767 | 730 | 4.9358 | | 35.334 | 16.0877 | 740 | 4.9367 | | 36.2522 | 16.3068 | 750 | 4.9330 | | 36.1036 | 16.5260 | 760 | 4.9316 | | 36.3088 | 16.7452 | 770 | 4.9217 | | 36.3054 | 16.9644 | 780 | 4.9149 | | 34.4377 | 17.1753 | 790 | 4.9208 | | 35.6731 | 17.3945 | 800 | 4.9194 | | 35.774 | 17.6137 | 810 | 4.9113 | | 35.8567 | 17.8329 | 820 | 4.9083 | | 34.2408 | 18.0438 | 830 | 4.9078 | | 35.0585 | 18.2630 | 840 | 4.9124 | | 35.0745 | 18.4822 | 850 | 4.9081 | | 35.0877 | 18.7014 | 860 | 4.9070 | | 35.4023 | 18.9205 | 870 | 4.9010 | | 33.6552 | 19.1315 | 880 | 4.9052 | | 34.7643 | 19.3507 | 890 | 4.9100 | | 34.578 | 19.5699 | 900 | 4.9038 | | 34.6855 | 19.7890 | 910 | 4.9001 | | 33.3893 | 20.0 | 920 | 4.9016 | | 34.1973 | 20.2192 | 930 | 4.9082 | | 34.0046 | 20.4384 | 940 | 4.9183 | | 34.1918 | 20.6575 | 950 | 4.9064 | | 34.3717 | 20.8767 | 960 | 4.9000 | | 32.779 | 21.0877 | 970 | 4.9071 | | 33.581 | 21.3068 | 980 | 4.9165 | | 33.8952 | 21.5260 | 990 | 4.9102 | | 33.7047 | 21.7452 | 1000 | 4.9114 | | 33.6765 | 21.9644 | 1010 | 4.9012 | | 31.9556 | 22.1753 | 1020 | 4.9232 | | 33.0947 | 22.3945 | 1030 | 4.9287 | | 33.342 | 22.6137 | 1040 | 4.9186 | | 33.405 | 22.8329 | 1050 | 4.9122 | | 32.0492 | 23.0438 | 1060 | 4.9253 | | 32.7145 | 23.2630 | 1070 | 4.9312 | | 32.6984 | 23.4822 | 1080 | 4.9371 | | 32.8785 | 23.7014 | 1090 | 4.9316 | | 32.9521 | 23.9205 | 1100 | 4.9288 | | 31.244 | 24.1315 | 1110 | 4.9492 | | 32.3214 | 24.3507 | 1120 | 4.9501 | | 32.3273 | 24.5699 | 1130 | 4.9476 | | 32.4077 | 24.7890 | 1140 | 4.9467 | | 31.402 | 25.0 | 1150 | 4.9463 | | 31.8811 | 25.2192 | 1160 | 4.9609 | | 32.0291 | 25.4384 | 1170 | 4.9635 | | 31.9708 | 25.6575 | 1180 | 4.9621 | | 31.9498 | 25.8767 | 1190 | 4.9593 | | 30.6662 | 26.0877 | 1200 | 4.9772 | | 31.3533 | 26.3068 | 1210 | 4.9788 | | 31.7203 | 26.5260 | 1220 | 4.9879 | | 31.7405 | 26.7452 | 1230 | 4.9784 | | 31.5227 | 26.9644 | 1240 | 4.9797 | | 30.1096 | 27.1753 | 1250 | 4.9952 | | 31.1593 | 27.3945 | 1260 | 4.9994 | | 31.1915 | 27.6137 | 1270 | 5.0007 | | 31.1491 | 27.8329 | 1280 | 4.9926 | | 30.1234 | 28.0438 | 1290 | 5.0031 | | 30.8331 | 28.2630 | 1300 | 5.0168 | | 30.7782 | 28.4822 | 1310 | 5.0182 | | 30.8976 | 28.7014 | 1320 | 5.0133 | | 30.891 | 28.9205 | 1330 | 5.0119 | | 29.4756 | 29.1315 | 1340 | 5.0272 | | 30.5537 | 29.3507 | 1350 | 5.0380 | | 30.4225 | 29.5699 | 1360 | 5.0391 | | 30.5598 | 29.7890 | 1370 | 5.0355 | | 29.4089 | 30.0 | 1380 | 5.0372 | | 30.0021 | 30.2192 | 1390 | 5.0553 | | 30.1071 | 30.4384 | 1400 | 5.0571 | | 30.073 | 30.6575 | 1410 | 5.0564 | | 30.325 | 30.8767 | 1420 | 5.0603 | | 29.0447 | 31.0877 | 1430 | 5.0676 | | 29.7569 | 31.3068 | 1440 | 5.0776 | | 29.813 | 31.5260 | 1450 | 5.0810 | | 29.9694 | 31.7452 | 1460 | 5.0748 | | 29.9593 | 31.9644 | 1470 | 5.0751 | | 28.5638 | 32.1753 | 1480 | 5.0906 | | 29.6334 | 32.3945 | 1490 | 5.0916 | | 29.4989 | 32.6137 | 1500 | 5.0930 | | 29.5877 | 32.8329 | 1510 | 5.0936 | | 28.4813 | 33.0438 | 1520 | 5.1044 | | 29.2608 | 33.2630 | 1530 | 5.1127 | | 29.4589 | 33.4822 | 1540 | 5.1134 | | 29.4251 | 33.7014 | 1550 | 5.1128 | | 29.2527 | 33.9205 | 1560 | 5.1101 | | 27.8943 | 34.1315 | 1570 | 5.1233 | | 29.0748 | 34.3507 | 1580 | 5.1308 | | 29.1276 | 34.5699 | 1590 | 5.1297 | | 29.1232 | 34.7890 | 1600 | 5.1327 | | 28.1666 | 35.0 | 1610 | 5.1321 | | 28.7491 | 35.2192 | 1620 | 5.1444 | | 28.936 | 35.4384 | 1630 | 5.1409 | | 28.7352 | 35.6575 | 1640 | 5.1443 | | 29.0322 | 35.8767 | 1650 | 5.1428 | | 27.76 | 36.0877 | 1660 | 5.1540 | | 28.5759 | 36.3068 | 1670 | 5.1635 | | 28.7126 | 36.5260 | 1680 | 5.1570 | | 28.6303 | 36.7452 | 1690 | 5.1624 | | 28.7282 | 36.9644 | 1700 | 5.1608 | | 27.4216 | 37.1753 | 1710 | 5.1687 | | 28.5045 | 37.3945 | 1720 | 5.1736 | | 28.4649 | 37.6137 | 1730 | 5.1771 | | 28.4957 | 37.8329 | 1740 | 5.1753 | | 27.422 | 38.0438 | 1750 | 5.1798 | | 28.4165 | 38.2630 | 1760 | 5.1831 | | 28.2618 | 38.4822 | 1770 | 5.1872 | | 28.2831 | 38.7014 | 1780 | 5.1896 | | 28.3841 | 38.9205 | 1790 | 5.1880 | | 27.03 | 39.1315 | 1800 | 5.1974 | | 28.0864 | 39.3507 | 1810 | 5.1963 | | 28.1368 | 39.5699 | 1820 | 5.2000 | | 28.3403 | 39.7890 | 1830 | 5.2013 | | 27.239 | 40.0 | 1840 | 5.1990 | | 28.0024 | 40.2192 | 1850 | 5.2067 | | 28.0864 | 40.4384 | 1860 | 5.2075 | | 28.0382 | 40.6575 | 1870 | 5.2093 | | 28.0867 | 40.8767 | 1880 | 5.2089 | | 27.0897 | 41.0877 | 1890 | 5.2077 | | 27.9664 | 41.3068 | 1900 | 5.2150 | | 27.9189 | 41.5260 | 1910 | 5.2153 | | 28.0249 | 41.7452 | 1920 | 5.2172 | | 27.9102 | 41.9644 | 1930 | 5.2148 | | 26.9256 | 42.1753 | 1940 | 5.2187 | | 27.7679 | 42.3945 | 1950 | 5.2216 | | 27.8828 | 42.6137 | 1960 | 5.2194 | | 27.8785 | 42.8329 | 1970 | 5.2209 | | 26.8881 | 43.0438 | 1980 | 5.2241 | | 27.768 | 43.2630 | 1990 | 5.2254 | | 27.9752 | 43.4822 | 2000 | 5.2238 | | 27.7073 | 43.7014 | 2010 | 5.2282 | | 27.783 | 43.9205 | 2020 | 5.2275 | | 26.7134 | 44.1315 | 2030 | 5.2267 | | 27.8351 | 44.3507 | 2040 | 5.2294 | | 27.7455 | 44.5699 | 2050 | 5.2290 | | 27.7841 | 44.7890 | 2060 | 5.2313 | | 26.6885 | 45.0 | 2070 | 5.2295 | | 27.7505 | 45.2192 | 2080 | 5.2328 | | 27.6422 | 45.4384 | 2090 | 5.2323 | | 27.6964 | 45.6575 | 2100 | 5.2333 | | 27.7683 | 45.8767 | 2110 | 5.2319 | | 26.7258 | 46.0877 | 2120 | 5.2333 | | 27.6336 | 46.3068 | 2130 | 5.2333 | | 27.6684 | 46.5260 | 2140 | 5.2330 | | 27.7571 | 46.7452 | 2150 | 5.2337 | | 27.739 | 46.9644 | 2160 | 5.2342 | | 26.5999 | 47.1753 | 2170 | 5.2342 | | 27.8117 | 47.3945 | 2180 | 5.2342 | | 27.7163 | 47.6137 | 2190 | 5.2343 | | 27.6715 | 47.8329 | 2200 | 5.2345 | | 26.5859 | 48.0438 | 2210 | 5.2345 | | 27.6617 | 48.2630 | 2220 | 5.2346 | | 27.6459 | 48.4822 | 2230 | 5.2347 | | 27.5926 | 48.7014 | 2240 | 5.2347 | | 27.7138 | 48.9205 | 2250 | 5.2347 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.4.0+cu121 - Datasets 3.4.0 - Tokenizers 0.21.0
RichardErkhov/rm8630_-_RajLlama-3.1-8B-v2-4bits
RichardErkhov
"2025-04-04T06:15:46Z"
0
0
null
[ "safetensors", "llama", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-04-04T06:11:37Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) RajLlama-3.1-8B-v2 - bnb 4bits - Model creator: https://huggingface.co/rm8630/ - Original model: https://huggingface.co/rm8630/RajLlama-3.1-8B-v2/ Original model description: --- base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** rm8630 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
salmankhanpm/gemma-3
salmankhanpm
"2025-04-04T06:15:35Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3", "trl", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-04T06:15:21Z"
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** salmankhanpm - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
solbione/Llama-Ko-3-8B-boiler3_testData
solbione
"2025-04-04T06:08:56Z"
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:beomi/Llama-3-Open-Ko-8B", "base_model:adapter:beomi/Llama-3-Open-Ko-8B", "region:us" ]
null
"2025-04-04T06:08:49Z"
--- base_model: beomi/Llama-3-Open-Ko-8B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
lesso16/5d6a5cb0-4d08-4456-84f3-2bd8a6ba22aa
lesso16
"2025-04-04T06:07:37Z"
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:samoline/a3ddb038-48fb-4765-a989-29968dcb2071", "base_model:adapter:samoline/a3ddb038-48fb-4765-a989-29968dcb2071", "region:us" ]
null
"2025-04-04T04:57:19Z"
--- library_name: peft base_model: samoline/a3ddb038-48fb-4765-a989-29968dcb2071 tags: - axolotl - generated_from_trainer model-index: - name: 5d6a5cb0-4d08-4456-84f3-2bd8a6ba22aa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: samoline/a3ddb038-48fb-4765-a989-29968dcb2071 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 96c25f802d725a0c_train_data.json ds_type: json format: custom path: /workspace/input_data/96c25f802d725a0c_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: lesso16/5d6a5cb0-4d08-4456-84f3-2bd8a6ba22aa hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000216 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/96c25f802d725a0c_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 160 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b863ddd3-d3a1-461f-99f6-cec21374988a wandb_project: 16a wandb_run: your_name wandb_runid: b863ddd3-d3a1-461f-99f6-cec21374988a warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5d6a5cb0-4d08-4456-84f3-2bd8a6ba22aa This model is a fine-tuned version of [samoline/a3ddb038-48fb-4765-a989-29968dcb2071](https://huggingface.co/samoline/a3ddb038-48fb-4765-a989-29968dcb2071) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000216 - train_batch_size: 4 - eval_batch_size: 4 - seed: 160 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 0.7127 | | 0.768 | 0.1144 | 500 | 0.7252 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ysn-rfd/calme-3.3-llamaloi-3b-GGUF
ysn-rfd
"2025-04-04T05:57:22Z"
0
0
transformers
[ "transformers", "gguf", "chat", "llama", "llama3", "finetune", "french", "legal", "loi", "llama-cpp", "matrixportal", "text-generation", "fr", "en", "dataset:MaziyarPanahi/calme-legalkit-v0.2", "base_model:MaziyarPanahi/calme-3.3-llamaloi-3b", "base_model:quantized:MaziyarPanahi/calme-3.3-llamaloi-3b", "license:llama3.2", "region:us", "conversational" ]
text-generation
"2025-04-04T05:55:33Z"
--- base_model: MaziyarPanahi/calme-3.3-llamaloi-3b datasets: - MaziyarPanahi/calme-legalkit-v0.2 language: - fr - en library_name: transformers license: llama3.2 model_name: calme-3.3-llamaloi-3b pipeline_tag: text-generation tags: - chat - llama - llama3 - finetune - french - legal - loi - llama-cpp - matrixportal inference: false model_creator: MaziyarPanahi quantized_by: MaziyarPanahi --- # ysn-rfd/calme-3.3-llamaloi-3b-GGUF This model was converted to GGUF format from [`MaziyarPanahi/calme-3.3-llamaloi-3b`](https://huggingface.co/MaziyarPanahi/calme-3.3-llamaloi-3b) using llama.cpp via the ggml.ai's [all-gguf-same-where](https://huggingface.co/spaces/matrixportal/all-gguf-same-where) space. Refer to the [original model card](https://huggingface.co/MaziyarPanahi/calme-3.3-llamaloi-3b) for more details on the model. ## ✅ Quantized Models Download List ### 🔍 Recommended Quantizations - **✨ General CPU Use:** [`Q4_K_M`](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q4_k_m.gguf) (Best balance of speed/quality) - **📱 ARM Devices:** [`Q4_0`](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q4_0.gguf) (Optimized for ARM CPUs) - **🏆 Maximum Quality:** [`Q8_0`](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q8_0.gguf) (Near-original quality) ### 📦 Full Quantization Options | 🚀 Download | 🔢 Type | 📝 Notes | |:---------|:-----|:------| | [Download](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q2_k.gguf) | ![Q2_K](https://img.shields.io/badge/Q2_K-1A73E8) | Basic quantization | | [Download](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q3_k_s.gguf) | ![Q3_K_S](https://img.shields.io/badge/Q3_K_S-34A853) | Small size | | [Download](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q3_k_m.gguf) | ![Q3_K_M](https://img.shields.io/badge/Q3_K_M-FBBC05) | Balanced quality | | [Download](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q3_k_l.gguf) | ![Q3_K_L](https://img.shields.io/badge/Q3_K_L-4285F4) | Better quality | | [Download](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q4_0.gguf) | ![Q4_0](https://img.shields.io/badge/Q4_0-EA4335) | Fast on ARM | | [Download](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q4_k_s.gguf) | ![Q4_K_S](https://img.shields.io/badge/Q4_K_S-673AB7) | Fast, recommended | | [Download](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q4_k_m.gguf) | ![Q4_K_M](https://img.shields.io/badge/Q4_K_M-673AB7) ⭐ | Best balance | | [Download](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q5_0.gguf) | ![Q5_0](https://img.shields.io/badge/Q5_0-FF6D01) | Good quality | | [Download](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q5_k_s.gguf) | ![Q5_K_S](https://img.shields.io/badge/Q5_K_S-0F9D58) | Balanced | | [Download](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q5_k_m.gguf) | ![Q5_K_M](https://img.shields.io/badge/Q5_K_M-0F9D58) | High quality | | [Download](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q6_k.gguf) | ![Q6_K](https://img.shields.io/badge/Q6_K-4285F4) 🏆 | Very good quality | | [Download](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-q8_0.gguf) | ![Q8_0](https://img.shields.io/badge/Q8_0-EA4335) ⚡ | Fast, best quality | | [Download](https://huggingface.co/ysn-rfd/calme-3.3-llamaloi-3b-GGUF/resolve/main/calme-3.3-llamaloi-3b-f16.gguf) | ![F16](https://img.shields.io/badge/F16-000000) | Maximum accuracy | 💡 **Tip:** Use `F16` for maximum precision when quality is critical --- # 🚀 Applications and Tools for Locally Quantized LLMs ## 🖥️ Desktop Applications | Application | Description | Download Link | |-----------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | **Llama.cpp** | A fast and efficient inference engine for GGUF models. | [GitHub Repository](https://github.com/ggml-org/llama.cpp) | | **Ollama** | A streamlined solution for running LLMs locally. | [Website](https://ollama.com/) | | **AnythingLLM** | An AI-powered knowledge management tool. | [GitHub Repository](https://github.com/Mintplex-Labs/anything-llm) | | **Open WebUI** | A user-friendly web interface for running local LLMs. | [GitHub Repository](https://github.com/open-webui/open-webui) | | **GPT4All** | A user-friendly desktop application supporting various LLMs, compatible with GGUF models. | [GitHub Repository](https://github.com/nomic-ai/gpt4all) | | **LM Studio** | A desktop application designed to run and manage local LLMs, supporting GGUF format. | [Website](https://lmstudio.ai/) | | **GPT4All Chat**| A chat application compatible with GGUF models for local, offline interactions. | [GitHub Repository](https://github.com/nomic-ai/gpt4all) | --- ## 📱 Mobile Applications | Application | Description | Download Link | |-------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | **ChatterUI** | A simple and lightweight LLM app for mobile devices. | [GitHub Repository](https://github.com/Vali-98/ChatterUI) | | **Maid** | Mobile Artificial Intelligence Distribution for running AI models on mobile devices. | [GitHub Repository](https://github.com/Mobile-Artificial-Intelligence/maid) | | **PocketPal AI** | A mobile AI assistant powered by local models. | [GitHub Repository](https://github.com/a-ghorbani/pocketpal-ai) | | **Layla** | A flexible platform for running various AI models on mobile devices. | [Website](https://www.layla-network.ai/) | --- ## 🎨 Image Generation Applications | Application | Description | Download Link | |-------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | **Stable Diffusion** | An open-source AI model for generating images from text. | [GitHub Repository](https://github.com/CompVis/stable-diffusion) | | **Stable Diffusion WebUI** | A web application providing access to Stable Diffusion models via a browser interface. | [GitHub Repository](https://github.com/AUTOMATIC1111/stable-diffusion-webui) | | **Local Dream** | Android Stable Diffusion with Snapdragon NPU acceleration. Also supports CPU inference. | [GitHub Repository](https://github.com/xororz/local-dream) | | **Stable-Diffusion-Android (SDAI)** | An open-source AI art application for Android devices, enabling digital art creation. | [GitHub Repository](https://github.com/ShiftHackZ/Stable-Diffusion-Android) | ---
mrkmja/CelineLate90s
mrkmja
"2025-04-04T05:56:08Z"
0
0
null
[ "en", "region:us" ]
null
"2024-06-17T06:19:32Z"
--- language: - en --- <img src="https://assets.weights.com/clz097q5m0jnggnkf7xjeak6o/ada994546d07f2970f6e526cf9e0417b.webp" style="width: 500px" /> # Celine Dion (Let's Talk About Love/These Are Special Times) (1997-1998) - **Created by:** MRKMJA - **Epochs:** 1000 - RVC v2, harvest (bs 6) - Trained exclusively on treated vocals from Dolby Atmos stems from *Let's Talk About Love* (1997) and *These Are Special Times* (1998)
SmallDoge/Qwen2.5-1.5B-math-shortcot-10k
SmallDoge
"2025-04-04T05:55:52Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-04T05:39:35Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
PrunaAI/microsoft-phi-1_5-HQQ-8bit-smashed
PrunaAI
"2025-04-04T05:50:51Z"
0
0
null
[ "phi", "pruna-ai", "hqq", "region:us" ]
null
"2025-04-03T10:26:23Z"
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ORIGINAL_REPO_NAME metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with hqq. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ORIGINAL_REPO_NAME installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install hqq ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from hqq.engine.hf import HQQModelForCausalLM from hqq.models.hf.base import AutoHQQHFModel try: model = HQQModelForCausalLM.from_quantized("PrunaAI/microsoft-phi-1_5-HQQ-8bit-smashed", device_map='auto') except: model = AutoHQQHFModel.from_quantized("PrunaAI/microsoft-phi-1_5-HQQ-8bit-smashed") tokenizer = AutoTokenizer.from_pretrained("ORIGINAL_REPO_NAME") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ORIGINAL_REPO_NAME before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf
RichardErkhov
"2025-04-04T05:49:59Z"
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-04T04:33:05Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) merge_gemma2-2b-it-difficulty-hard - GGUF - Model creator: https://huggingface.co/SangMoone/ - Original model: https://huggingface.co/SangMoone/merge_gemma2-2b-it-difficulty-hard/ | Name | Quant method | Size | | ---- | ---- | ---- | | [merge_gemma2-2b-it-difficulty-hard.Q2_K.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q2_K.gguf) | Q2_K | 1.08GB | | [merge_gemma2-2b-it-difficulty-hard.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.IQ3_XS.gguf) | IQ3_XS | 1.16GB | | [merge_gemma2-2b-it-difficulty-hard.IQ3_S.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.IQ3_S.gguf) | IQ3_S | 1.2GB | | [merge_gemma2-2b-it-difficulty-hard.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q3_K_S.gguf) | Q3_K_S | 1.2GB | | [merge_gemma2-2b-it-difficulty-hard.IQ3_M.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.IQ3_M.gguf) | IQ3_M | 1.22GB | | [merge_gemma2-2b-it-difficulty-hard.Q3_K.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q3_K.gguf) | Q3_K | 1.29GB | | [merge_gemma2-2b-it-difficulty-hard.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q3_K_M.gguf) | Q3_K_M | 1.29GB | | [merge_gemma2-2b-it-difficulty-hard.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q3_K_L.gguf) | Q3_K_L | 1.36GB | | [merge_gemma2-2b-it-difficulty-hard.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.IQ4_XS.gguf) | IQ4_XS | 1.4GB | | [merge_gemma2-2b-it-difficulty-hard.Q4_0.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q4_0.gguf) | Q4_0 | 1.44GB | | [merge_gemma2-2b-it-difficulty-hard.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.IQ4_NL.gguf) | IQ4_NL | 1.45GB | | [merge_gemma2-2b-it-difficulty-hard.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q4_K_S.gguf) | Q4_K_S | 1.45GB | | [merge_gemma2-2b-it-difficulty-hard.Q4_K.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q4_K.gguf) | Q4_K | 1.52GB | | [merge_gemma2-2b-it-difficulty-hard.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q4_K_M.gguf) | Q4_K_M | 1.52GB | | [merge_gemma2-2b-it-difficulty-hard.Q4_1.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q4_1.gguf) | Q4_1 | 1.56GB | | [merge_gemma2-2b-it-difficulty-hard.Q5_0.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q5_0.gguf) | Q5_0 | 1.68GB | | [merge_gemma2-2b-it-difficulty-hard.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q5_K_S.gguf) | Q5_K_S | 1.68GB | | [merge_gemma2-2b-it-difficulty-hard.Q5_K.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q5_K.gguf) | Q5_K | 1.71GB | | [merge_gemma2-2b-it-difficulty-hard.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q5_K_M.gguf) | Q5_K_M | 1.71GB | | [merge_gemma2-2b-it-difficulty-hard.Q5_1.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q5_1.gguf) | Q5_1 | 1.79GB | | [merge_gemma2-2b-it-difficulty-hard.Q6_K.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q6_K.gguf) | Q6_K | 1.92GB | | [merge_gemma2-2b-it-difficulty-hard.Q8_0.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-hard-gguf/blob/main/merge_gemma2-2b-it-difficulty-hard.Q8_0.gguf) | Q8_0 | 2.49GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nairaxo/orpheus_16bit_ary
nairaxo
"2025-04-04T05:48:34Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit", "base_model:finetune:unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-04T05:47:10Z"
--- base_model: unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** nairaxo - **License:** apache-2.0 - **Finetuned from model :** unsloth/orpheus-3b-0.1-ft-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/mpasila_-_Llama-3-Umbral-Mind-Replete-8B-4bits
RichardErkhov
"2025-04-04T05:47:20Z"
0
0
null
[ "safetensors", "llama", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-04-04T05:41:37Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3-Umbral-Mind-Replete-8B - bnb 4bits - Model creator: https://huggingface.co/mpasila/ - Original model: https://huggingface.co/mpasila/Llama-3-Umbral-Mind-Replete-8B/ Original model description: --- base_model: - Replete-AI/Replete-Coder-Llama3-8B - Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B library_name: transformers tags: - mergekit - merge license: llama3 language: - en --- # Llama-3-Umbral-Mind-Replete-8B Copied the merge script from [tannedbum/L3-Nymeria-8B](https://huggingface.co/tannedbum/L3-Nymeria-8B) and made it use [Replete-AI/Replete-Coder-Llama3-8B](https://huggingface.co/Replete-AI/Replete-Coder-Llama3-8B) with [Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B) as the base model instead. It appears to talk a lot for some reason, regardless what is instructed. This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [Replete-AI/Replete-Coder-Llama3-8B](https://huggingface.co/Replete-AI/Replete-Coder-Llama3-8B) * [Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B layer_range: [0, 32] - model: Replete-AI/Replete-Coder-Llama3-8B layer_range: [0, 32] merge_method: slerp base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B parameters: t: - filter: self_attn value: [0.4, 0.5, 0.6, 0.4, 0.6] - filter: mlp value: [0.6, 0.5, 0.4, 0.6, 0.4] - value: 0.5 dtype: bfloat16 ```
RichardErkhov/spaceflo_-_llama-3-ko-Bllossom-8b-instruct-v1-8bits
RichardErkhov
"2025-04-04T05:45:05Z"
0
0
null
[ "safetensors", "llama", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-04-04T05:39:24Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama-3-ko-Bllossom-8b-instruct-v1 - bnb 8bits - Model creator: https://huggingface.co/spaceflo/ - Original model: https://huggingface.co/spaceflo/llama-3-ko-Bllossom-8b-instruct-v1/ Original model description: --- base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** spaceflo - **License:** apache-2.0 - **Finetuned from model :** MLP-KTLim/llama-3-Korean-Bllossom-8B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ShakhzoDavronov/nllb-600m-en-uz
ShakhzoDavronov
"2025-04-04T05:42:08Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-04T05:42:04Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MinaMila/phi3_unlearned_Adult_6ep_33
MinaMila
"2025-04-04T05:37:01Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:MinaMila/Phi3_unlearning_general_methode", "base_model:finetune:MinaMila/Phi3_unlearning_general_methode", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-04T05:34:06Z"
--- base_model: MinaMila/Phi3_unlearning_general_methode tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MinaMila - **License:** apache-2.0 - **Finetuned from model :** MinaMila/Phi3_unlearning_general_methode This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
milanakdj/amias_8b_16bit_finetuned
milanakdj
"2025-04-04T05:36:52Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:finetune:unsloth/Meta-Llama-3.1-8B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-04T05:34:33Z"
--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** milanakdj - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
diliash/emuLM-spt-colored-rounded
diliash
"2025-04-04T05:36:34Z"
0
0
transformers
[ "transformers", "safetensors", "lora_run_rounded_colored_20250403_214449", "20250403_214449", "lora-finetuning", "lora_run_rounded_colored_20250403_195038", "20250403_195038", "lora_run_rounded_colored_20250403_194012", "20250403_194012", "lora_run_rounded_colored_20250403_135921", "20250403_135921", "lora_run_rounded_colored_20250403_121200", "20250403_121200", "lora_run_rounded_colored_20250403_103814", "20250403_103814", "lora_run_rounded_colored_20250403_090510", "20250403_090510", "lora_run_rounded_colored_20250403_073345", "20250403_073345", "lora_run_rounded_colored_20250402_234837", "20250402_234837", "lora_run_rounded_colored_20250402_231331", "20250402_231331", "lora_run_rounded_colored_20250402_205929", "20250402_205929", "lora_run_rounded_colored_20250402_205628", "20250402_205628", "generated_from_trainer", "lora_run_rounded_colored_20250402_204950", "20250402_204950", "final-model", "processor", "base_model:meta-llama/Llama-3.2-11B-Vision-Instruct", "base_model:finetune:meta-llama/Llama-3.2-11B-Vision-Instruct", "license:llama3.2", "endpoints_compatible", "region:us" ]
null
"2025-04-01T23:02:55Z"
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-11B-Vision-Instruct tags: - lora_run_rounded_colored_20250403_214449 - '20250403_214449' - lora-finetuning - lora_run_rounded_colored_20250403_195038 - '20250403_195038' - lora_run_rounded_colored_20250403_194012 - '20250403_194012' - lora_run_rounded_colored_20250403_135921 - '20250403_135921' - lora_run_rounded_colored_20250403_121200 - '20250403_121200' - lora_run_rounded_colored_20250403_103814 - '20250403_103814' - lora_run_rounded_colored_20250403_090510 - '20250403_090510' - lora_run_rounded_colored_20250403_073345 - '20250403_073345' - lora_run_rounded_colored_20250402_234837 - '20250402_234837' - lora_run_rounded_colored_20250402_231331 - '20250402_231331' - lora_run_rounded_colored_20250402_205929 - '20250402_205929' - lora_run_rounded_colored_20250402_205628 - '20250402_205628' - generated_from_trainer - lora_run_rounded_colored_20250402_204950 - '20250402_204950' - final-model - processor model-index: - name: checkpoints results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoints This model is a fine-tuned version of [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 2 - total_eval_batch_size: 2 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
RichardErkhov/Kaballas_-_60-8bits
RichardErkhov
"2025-04-04T05:36:17Z"
0
0
null
[ "safetensors", "llama", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-04-04T05:28:08Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) 60 - bnb 8bits - Model creator: https://huggingface.co/Kaballas/ - Original model: https://huggingface.co/Kaballas/60/ Original model description: --- base_model: Kaballas/FineLlama-3.1-8B language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** Kaballas - **License:** apache-2.0 - **Finetuned from model :** Kaballas/FineLlama-3.1-8B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/spaceflo_-_llama-3-ko-Bllossom-8b-instruct-v1-4bits
RichardErkhov
"2025-04-04T05:35:09Z"
0
0
null
[ "safetensors", "llama", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-04-04T05:30:59Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama-3-ko-Bllossom-8b-instruct-v1 - bnb 4bits - Model creator: https://huggingface.co/spaceflo/ - Original model: https://huggingface.co/spaceflo/llama-3-ko-Bllossom-8b-instruct-v1/ Original model description: --- base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** spaceflo - **License:** apache-2.0 - **Finetuned from model :** MLP-KTLim/llama-3-Korean-Bllossom-8B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/LEESM_-_llama-3-8b-bnb-4b-kowiki231101-8bits
RichardErkhov
"2025-04-04T05:31:58Z"
0
0
null
[ "safetensors", "llama", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-04-04T05:24:06Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama-3-8b-bnb-4b-kowiki231101 - bnb 8bits - Model creator: https://huggingface.co/LEESM/ - Original model: https://huggingface.co/LEESM/llama-3-8b-bnb-4b-kowiki231101/ Original model description: --- base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit language: - ko license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl datasets: - wikimedia/wikipedia - FreedomIntelligence/alpaca-gpt4-korean --- # unsloth/Meta-Llama-3.1-8B-bnb-4bit fine tuning after Continued Pretraining # (TREX-Lab at Seoul Cyber University) <!-- Provide a quick summary of what the model is/does. --> ## Summary - Base Model : unsloth/Meta-Llama-3.1-8B-bnb-4bit - Dataset : wikimedia/wikipedia(Continued Pretraining), FreedomIntelligence/alpaca-gpt4-korean(FineTuning) - This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. - Test whether fine tuning of a large language model is possible on A30 GPU*1 (successful) <!-- Provide a longer summary of what this model is. --> - **Developed by:** [TREX-Lab at Seoul Cyber University] - **Language(s) (NLP):** [Korean] - **Finetuned from model :** [unsloth/Meta-Llama-3.1-8B-bnb-4bit] ## Continued Pretraining ``` warmup_steps = 10 learning_rate = 5e-5 embedding_learning_rate = 1e-5 bf16 = True optim = "adamw_8bit" weight_decay = 0.01 lr_scheduler_type = "linear" ``` ``` loss : 1.171600 ``` ## Fine Tuning Detail ``` warmup_steps = 10 learning_rate = 5e-5 embedding_learning_rate = 1e-5 bf16 = True optim = "adamw_8bit" weight_decay = 0.001 lr_scheduler_type = "linear" ``` ``` loss : 0.699600 ``` ## Usage #1 ``` # Prompt model_prompt = """다음은 작업을 설명하는 명령입니다. 요청을 적절하게 완료하는 응답을 작성하세요. ### 지침: {} ### 응답: {}""" FastLanguageModel.for_inference(model) inputs = tokenizer( [ model_prompt.format( "이순신 장군은 누구인가요 ? 자세하게 알려주세요.", "", ) ], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 128, use_cache = True) tokenizer.batch_decode(outputs) ``` ## Usage #2 ``` from transformers import TextStreamer # Prompt model_prompt = """다음은 작업을 설명하는 명령입니다. 요청을 적절하게 완료하는 응답을 작성하세요. ### 지침: {} ### 응답: {}""" FastLanguageModel.for_inference(model) inputs = tokenizer( [ model_prompt.format( "지구를 광범위하게 설명하세요.", "", ) ], return_tensors = "pt").to("cuda") text_streamer = TextStreamer(tokenizer) value = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128, repetition_penalty = 0.1) ```
RichardErkhov/Locutusque_-_Llama-3-Orca-2.0-8B-4bits
RichardErkhov
"2025-04-04T05:30:05Z"
0
0
null
[ "safetensors", "llama", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-04-04T05:25:51Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3-Orca-2.0-8B - bnb 4bits - Model creator: https://huggingface.co/Locutusque/ - Original model: https://huggingface.co/Locutusque/Llama-3-Orca-2.0-8B/ Original model description: --- library_name: transformers license: other --- # Llama-3-Orca-2.0-8B <!-- Provide a quick summary of what the model is/does. --> ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6437292ecd93f4c9a34b0d47/6XQuhjWNr6C4RbU9f1k99.png) ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> I fine-tuned llama-3 8B on mainly SlimOrca, along with other datasets to improve performance in math, coding, and writing. More data source information to come. - **Developed by:** Locutusque - **Model type:** Built with Meta Llama 3 - **Language(s) (NLP):** Many? - **License:** Llama 3 license https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE This language model follows the ChatML prompt template ## Quants GGUF: https://huggingface.co/bartowski/Llama-3-Orca-2.0-8B-GGUF ExLlamaV2: https://huggingface.co/bartowski/Llama-3-Orca-2.0-8B-exl2 ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> This model has great performance in writing and coding. ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> Conversational AI.
orange-sk/ViLAMP-llava-qwen
orange-sk
"2025-04-04T05:29:30Z"
4
0
null
[ "safetensors", "llava_qwen", "arxiv:2504.02438", "license:apache-2.0", "region:us" ]
null
"2025-04-01T05:14:51Z"
--- license: apache-2.0 --- # ViLAMP-llava-qwen ViLAMP is a video-language model for hour-long video understanding, addressing computational bottlenecks in long-form processing through differential distillation. It employs two mechanisms: (1) query-aware keyframe selection and (2) patch-level feature merging to preserve salient details in non-keyframes. ViLAMP achieves state-of-the-art performance on long-video benchmarks while enabling efficient processing of 10K-frame videos on a single GPU, balancing accuracy and computational efficiency. [\[📂 GitHub\]](https://github.com/steven-ccq/ViLAMP) [\[📜 Paper\]](https://arxiv.org/abs/2504.02438)
ysn-rfd/bloomz-3b-GGUF
ysn-rfd
"2025-04-04T05:28:26Z"
0
0
null
[ "gguf", "llama-cpp", "matrixportal", "text-generation", "ak", "ar", "as", "bm", "bn", "ca", "code", "en", "es", "eu", "fon", "fr", "gu", "hi", "id", "ig", "ki", "kn", "lg", "ln", "ml", "mr", "ne", "nso", "ny", "or", "pa", "pt", "rn", "rw", "sn", "st", "sw", "ta", "te", "tn", "ts", "tum", "tw", "ur", "vi", "wo", "xh", "yo", "zh", "zu", "dataset:bigscience/xP3", "base_model:bigscience/bloomz-3b", "base_model:quantized:bigscience/bloomz-3b", "license:bigscience-bloom-rail-1.0", "model-index", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-04T05:18:42Z"
--- base_model: bigscience/bloomz-3b datasets: - bigscience/xP3 language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zu license: bigscience-bloom-rail-1.0 pipeline_tag: text-generation tags: - llama-cpp - matrixportal programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript widget: - text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative? example_title: zh-en sentiment - text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评? example_title: zh-zh sentiment - text: Suggest at least five related search terms to "Mạng neural nhân tạo". example_title: vi-en query - text: Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels». example_title: fr-fr query - text: Explain in a sentence in Telugu what is backpropagation in neural networks. example_title: te-en qa - text: Why is the sky blue? example_title: en-en qa - text: 'Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):' example_title: es-en fable - text: 'Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is "Violence is the last refuge of the incompetent". Fable (in Hindi):' example_title: hi-en fable model-index: - name: bloomz-3b1 results: - task: type: Coreference resolution dataset: name: Winogrande XL (xl) type: winogrande config: xl split: validation revision: a80f460359d1e9a67c006011c94de42a8759430c metrics: - type: Accuracy value: 53.67 - task: type: Coreference resolution dataset: name: XWinograd (en) type: Muennighoff/xwinograd config: en split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 59.23 - task: type: Coreference resolution dataset: name: XWinograd (fr) type: Muennighoff/xwinograd config: fr split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 53.01 - task: type: Coreference resolution dataset: name: XWinograd (jp) type: Muennighoff/xwinograd config: jp split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 52.45 - task: type: Coreference resolution dataset: name: XWinograd (pt) type: Muennighoff/xwinograd config: pt split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 53.61 - task: type: Coreference resolution dataset: name: XWinograd (ru) type: Muennighoff/xwinograd config: ru split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 53.97 - task: type: Coreference resolution dataset: name: XWinograd (zh) type: Muennighoff/xwinograd config: zh split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 60.91 - task: type: Natural language inference dataset: name: ANLI (r1) type: anli config: r1 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 40.1 - task: type: Natural language inference dataset: name: ANLI (r2) type: anli config: r2 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 36.8 - task: type: Natural language inference dataset: name: ANLI (r3) type: anli config: r3 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 40.0 - task: type: Natural language inference dataset: name: SuperGLUE (cb) type: super_glue config: cb split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 75.0 - task: type: Natural language inference dataset: name: SuperGLUE (rte) type: super_glue config: rte split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 76.17 - task: type: Natural language inference dataset: name: XNLI (ar) type: xnli config: ar split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 53.29 - task: type: Natural language inference dataset: name: XNLI (bg) type: xnli config: bg split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 43.82 - task: type: Natural language inference dataset: name: XNLI (de) type: xnli config: de split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 45.26 - task: type: Natural language inference dataset: name: XNLI (el) type: xnli config: el split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 42.61 - task: type: Natural language inference dataset: name: XNLI (en) type: xnli config: en split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 57.31 - task: type: Natural language inference dataset: name: XNLI (es) type: xnli config: es split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 56.14 - task: type: Natural language inference dataset: name: XNLI (fr) type: xnli config: fr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 55.78 - task: type: Natural language inference dataset: name: XNLI (hi) type: xnli config: hi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 51.49 - task: type: Natural language inference dataset: name: XNLI (ru) type: xnli config: ru split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 47.11 - task: type: Natural language inference dataset: name: XNLI (sw) type: xnli config: sw split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 47.83 - task: type: Natural language inference dataset: name: XNLI (th) type: xnli config: th split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 42.93 - task: type: Natural language inference dataset: name: XNLI (tr) type: xnli config: tr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 37.23 - task: type: Natural language inference dataset: name: XNLI (ur) type: xnli config: ur split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 49.04 - task: type: Natural language inference dataset: name: XNLI (vi) type: xnli config: vi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 53.98 - task: type: Natural language inference dataset: name: XNLI (zh) type: xnli config: zh split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 54.18 - task: type: Program synthesis dataset: name: HumanEval type: openai_humaneval config: None split: test revision: e8dc562f5de170c54b5481011dd9f4fa04845771 metrics: - type: Pass@1 value: 6.29 - type: Pass@10 value: 11.94 - type: Pass@100 value: 19.06 - task: type: Sentence completion dataset: name: StoryCloze (2016) type: story_cloze config: '2016' split: validation revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db metrics: - type: Accuracy value: 87.33 - task: type: Sentence completion dataset: name: SuperGLUE (copa) type: super_glue config: copa split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 76.0 - task: type: Sentence completion dataset: name: XCOPA (et) type: xcopa config: et split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 53.0 - task: type: Sentence completion dataset: name: XCOPA (ht) type: xcopa config: ht split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 64.0 - task: type: Sentence completion dataset: name: XCOPA (id) type: xcopa config: id split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 70.0 - task: type: Sentence completion dataset: name: XCOPA (it) type: xcopa config: it split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 53.0 - task: type: Sentence completion dataset: name: XCOPA (qu) type: xcopa config: qu split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 56.0 - task: type: Sentence completion dataset: name: XCOPA (sw) type: xcopa config: sw split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 66.0 - task: type: Sentence completion dataset: name: XCOPA (ta) type: xcopa config: ta split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 59.0 - task: type: Sentence completion dataset: name: XCOPA (th) type: xcopa config: th split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 63.0 - task: type: Sentence completion dataset: name: XCOPA (tr) type: xcopa config: tr split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: name: XCOPA (vi) type: xcopa config: vi split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 77.0 - task: type: Sentence completion dataset: name: XCOPA (zh) type: xcopa config: zh split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 73.0 - task: type: Sentence completion dataset: name: XStoryCloze (ar) type: Muennighoff/xstory_cloze config: ar split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 80.61 - task: type: Sentence completion dataset: name: XStoryCloze (es) type: Muennighoff/xstory_cloze config: es split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 85.9 - task: type: Sentence completion dataset: name: XStoryCloze (eu) type: Muennighoff/xstory_cloze config: eu split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 70.95 - task: type: Sentence completion dataset: name: XStoryCloze (hi) type: Muennighoff/xstory_cloze config: hi split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 78.89 - task: type: Sentence completion dataset: name: XStoryCloze (id) type: Muennighoff/xstory_cloze config: id split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 82.99 - task: type: Sentence completion dataset: name: XStoryCloze (my) type: Muennighoff/xstory_cloze config: my split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 49.9 - task: type: Sentence completion dataset: name: XStoryCloze (ru) type: Muennighoff/xstory_cloze config: ru split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 61.42 - task: type: Sentence completion dataset: name: XStoryCloze (sw) type: Muennighoff/xstory_cloze config: sw split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 69.69 - task: type: Sentence completion dataset: name: XStoryCloze (te) type: Muennighoff/xstory_cloze config: te split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 73.66 - task: type: Sentence completion dataset: name: XStoryCloze (zh) type: Muennighoff/xstory_cloze config: zh split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 84.32 --- # ysn-rfd/bloomz-3b-GGUF This model was converted to GGUF format from [`bigscience/bloomz-3b`](https://huggingface.co/bigscience/bloomz-3b) using llama.cpp via the ggml.ai's [all-gguf-same-where](https://huggingface.co/spaces/matrixportal/all-gguf-same-where) space. Refer to the [original model card](https://huggingface.co/bigscience/bloomz-3b) for more details on the model. ## ✅ Quantized Models Download List ### 🔍 Recommended Quantizations - **✨ General CPU Use:** [`Q4_K_M`](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q4_k_m.gguf) (Best balance of speed/quality) - **📱 ARM Devices:** [`Q4_0`](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q4_0.gguf) (Optimized for ARM CPUs) - **🏆 Maximum Quality:** [`Q8_0`](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q8_0.gguf) (Near-original quality) ### 📦 Full Quantization Options | 🚀 Download | 🔢 Type | 📝 Notes | |:---------|:-----|:------| | [Download](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q2_k.gguf) | ![Q2_K](https://img.shields.io/badge/Q2_K-1A73E8) | Basic quantization | | [Download](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q3_k_s.gguf) | ![Q3_K_S](https://img.shields.io/badge/Q3_K_S-34A853) | Small size | | [Download](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q3_k_m.gguf) | ![Q3_K_M](https://img.shields.io/badge/Q3_K_M-FBBC05) | Balanced quality | | [Download](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q3_k_l.gguf) | ![Q3_K_L](https://img.shields.io/badge/Q3_K_L-4285F4) | Better quality | | [Download](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q4_0.gguf) | ![Q4_0](https://img.shields.io/badge/Q4_0-EA4335) | Fast on ARM | | [Download](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q4_k_s.gguf) | ![Q4_K_S](https://img.shields.io/badge/Q4_K_S-673AB7) | Fast, recommended | | [Download](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q4_k_m.gguf) | ![Q4_K_M](https://img.shields.io/badge/Q4_K_M-673AB7) ⭐ | Best balance | | [Download](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q5_0.gguf) | ![Q5_0](https://img.shields.io/badge/Q5_0-FF6D01) | Good quality | | [Download](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q5_k_s.gguf) | ![Q5_K_S](https://img.shields.io/badge/Q5_K_S-0F9D58) | Balanced | | [Download](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q5_k_m.gguf) | ![Q5_K_M](https://img.shields.io/badge/Q5_K_M-0F9D58) | High quality | | [Download](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q6_k.gguf) | ![Q6_K](https://img.shields.io/badge/Q6_K-4285F4) 🏆 | Very good quality | | [Download](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-q8_0.gguf) | ![Q8_0](https://img.shields.io/badge/Q8_0-EA4335) ⚡ | Fast, best quality | | [Download](https://huggingface.co/ysn-rfd/bloomz-3b-GGUF/resolve/main/bloomz-3b-f16.gguf) | ![F16](https://img.shields.io/badge/F16-000000) | Maximum accuracy | 💡 **Tip:** Use `F16` for maximum precision when quality is critical --- # 🚀 Applications and Tools for Locally Quantized LLMs ## 🖥️ Desktop Applications | Application | Description | Download Link | |-----------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | **Llama.cpp** | A fast and efficient inference engine for GGUF models. | [GitHub Repository](https://github.com/ggml-org/llama.cpp) | | **Ollama** | A streamlined solution for running LLMs locally. | [Website](https://ollama.com/) | | **AnythingLLM** | An AI-powered knowledge management tool. | [GitHub Repository](https://github.com/Mintplex-Labs/anything-llm) | | **Open WebUI** | A user-friendly web interface for running local LLMs. | [GitHub Repository](https://github.com/open-webui/open-webui) | | **GPT4All** | A user-friendly desktop application supporting various LLMs, compatible with GGUF models. | [GitHub Repository](https://github.com/nomic-ai/gpt4all) | | **LM Studio** | A desktop application designed to run and manage local LLMs, supporting GGUF format. | [Website](https://lmstudio.ai/) | | **GPT4All Chat**| A chat application compatible with GGUF models for local, offline interactions. | [GitHub Repository](https://github.com/nomic-ai/gpt4all) | --- ## 📱 Mobile Applications | Application | Description | Download Link | |-------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | **ChatterUI** | A simple and lightweight LLM app for mobile devices. | [GitHub Repository](https://github.com/Vali-98/ChatterUI) | | **Maid** | Mobile Artificial Intelligence Distribution for running AI models on mobile devices. | [GitHub Repository](https://github.com/Mobile-Artificial-Intelligence/maid) | | **PocketPal AI** | A mobile AI assistant powered by local models. | [GitHub Repository](https://github.com/a-ghorbani/pocketpal-ai) | | **Layla** | A flexible platform for running various AI models on mobile devices. | [Website](https://www.layla-network.ai/) | --- ## 🎨 Image Generation Applications | Application | Description | Download Link | |-------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | **Stable Diffusion** | An open-source AI model for generating images from text. | [GitHub Repository](https://github.com/CompVis/stable-diffusion) | | **Stable Diffusion WebUI** | A web application providing access to Stable Diffusion models via a browser interface. | [GitHub Repository](https://github.com/AUTOMATIC1111/stable-diffusion-webui) | | **Local Dream** | Android Stable Diffusion with Snapdragon NPU acceleration. Also supports CPU inference. | [GitHub Repository](https://github.com/xororz/local-dream) | | **Stable-Diffusion-Android (SDAI)** | An open-source AI art application for Android devices, enabling digital art creation. | [GitHub Repository](https://github.com/ShiftHackZ/Stable-Diffusion-Android) | ---
genki10/BERT_AugV8_k3_task1_organization_sp010_lw050_fold0
genki10
"2025-04-04T05:27:49Z"
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-04-04T05:20:47Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k3_task1_organization_sp010_lw050_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k3_task1_organization_sp010_lw050_fold0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7625 - Qwk: 0.3925 - Mse: 0.7625 - Rmse: 0.8732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 3 | 8.1054 | 0.0 | 8.1054 | 2.8470 | | No log | 2.0 | 6 | 6.6971 | 0.0 | 6.6971 | 2.5879 | | No log | 3.0 | 9 | 5.4424 | 0.0112 | 5.4424 | 2.3329 | | No log | 4.0 | 12 | 4.2010 | 0.0039 | 4.2010 | 2.0496 | | No log | 5.0 | 15 | 3.0730 | 0.0 | 3.0730 | 1.7530 | | No log | 6.0 | 18 | 2.0771 | 0.0714 | 2.0771 | 1.4412 | | No log | 7.0 | 21 | 1.4693 | 0.0316 | 1.4693 | 1.2121 | | No log | 8.0 | 24 | 1.0371 | 0.0316 | 1.0371 | 1.0184 | | No log | 9.0 | 27 | 1.3370 | 0.0638 | 1.3370 | 1.1563 | | No log | 10.0 | 30 | 0.7105 | 0.4628 | 0.7105 | 0.8429 | | No log | 11.0 | 33 | 0.9831 | 0.1220 | 0.9831 | 0.9915 | | No log | 12.0 | 36 | 0.8157 | 0.2814 | 0.8157 | 0.9032 | | No log | 13.0 | 39 | 0.7417 | 0.4210 | 0.7417 | 0.8612 | | No log | 14.0 | 42 | 1.1859 | 0.2681 | 1.1859 | 1.0890 | | No log | 15.0 | 45 | 0.5950 | 0.4451 | 0.5950 | 0.7713 | | No log | 16.0 | 48 | 0.6312 | 0.3897 | 0.6312 | 0.7945 | | No log | 17.0 | 51 | 0.9737 | 0.3681 | 0.9737 | 0.9868 | | No log | 18.0 | 54 | 0.6279 | 0.3791 | 0.6279 | 0.7924 | | No log | 19.0 | 57 | 0.5875 | 0.4062 | 0.5875 | 0.7665 | | No log | 20.0 | 60 | 0.6447 | 0.4511 | 0.6447 | 0.8029 | | No log | 21.0 | 63 | 0.7213 | 0.3703 | 0.7213 | 0.8493 | | No log | 22.0 | 66 | 0.7467 | 0.3839 | 0.7467 | 0.8641 | | No log | 23.0 | 69 | 0.7699 | 0.4137 | 0.7699 | 0.8774 | | No log | 24.0 | 72 | 0.8262 | 0.3452 | 0.8262 | 0.9090 | | No log | 25.0 | 75 | 0.7625 | 0.3925 | 0.7625 | 0.8732 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
RichardErkhov/ejbejaranos_-_Llama3.1-8b-ITCL-FT-4bits
RichardErkhov
"2025-04-04T05:26:52Z"
0
0
null
[ "safetensors", "llama", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-04-04T05:22:41Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama3.1-8b-ITCL-FT - bnb 4bits - Model creator: https://huggingface.co/ejbejaranos/ - Original model: https://huggingface.co/ejbejaranos/Llama3.1-8b-ITCL-FT/ Original model description: --- base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** ejbejaranos - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MeiKing111/Goodluck_cop2_g30
MeiKing111
"2025-04-04T05:24:55Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-04T03:35:39Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
shashankverma590/reranker-ModernBERT-base-gooaq-bce
shashankverma590
"2025-04-04T05:24:50Z"
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "modernbert", "cross-encoder", "generated_from_trainer", "dataset_size:578402", "loss:BinaryCrossEntropyLoss", "text-ranking", "arxiv:1908.10084", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "model-index", "region:us" ]
text-ranking
"2025-04-04T05:24:02Z"
--- tags: - sentence-transformers - cross-encoder - generated_from_trainer - dataset_size:578402 - loss:BinaryCrossEntropyLoss base_model: answerdotai/ModernBERT-base pipeline_tag: text-ranking library_name: sentence-transformers metrics: - map - mrr@10 - ndcg@10 model-index: - name: CrossEncoder based on answerdotai/ModernBERT-base results: - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: gooaq dev type: gooaq-dev metrics: - type: map value: 0.7359 name: Map - type: mrr@10 value: 0.735 name: Mrr@10 - type: ndcg@10 value: 0.7776 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoMSMARCO R100 type: NanoMSMARCO_R100 metrics: - type: map value: 0.4912 name: Map - type: mrr@10 value: 0.4817 name: Mrr@10 - type: ndcg@10 value: 0.5574 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoNFCorpus R100 type: NanoNFCorpus_R100 metrics: - type: map value: 0.3467 name: Map - type: mrr@10 value: 0.5495 name: Mrr@10 - type: ndcg@10 value: 0.3704 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoNQ R100 type: NanoNQ_R100 metrics: - type: map value: 0.4085 name: Map - type: mrr@10 value: 0.4012 name: Mrr@10 - type: ndcg@10 value: 0.4676 name: Ndcg@10 - task: type: cross-encoder-nano-beir name: Cross Encoder Nano BEIR dataset: name: NanoBEIR R100 mean type: NanoBEIR_R100_mean metrics: - type: map value: 0.4155 name: Map - type: mrr@10 value: 0.4775 name: Mrr@10 - type: ndcg@10 value: 0.4651 name: Ndcg@10 --- # CrossEncoder based on answerdotai/ModernBERT-base This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 8949b909ec900327062f0ebf497f51aef5e6f0c8 --> - **Maximum Sequence Length:** 8192 tokens - **Number of Output Labels:** 1 label <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("shashankverma590/reranker-ModernBERT-base-gooaq-bce") # Get scores for pairs of texts pairs = [ ['what is the accidental death and dismemberment insurance?', 'Accidental death and dismemberment (AD&D) insurance is usually a rider to a health insurance or life insurance policy. The rider covers the unintentional death or dismemberment of the insured. Dismemberment includes the loss—or the loss of use—of body parts or functions (e.g., limbs, speech, eyesight, and hearing).'], ['what is the accidental death and dismemberment insurance?', 'In insurance, accidental death and dismemberment (AD&D) is a policy that pays benefits to the beneficiary if the cause of death is an accident. This is a limited form of life insurance which is generally less expensive, or in some cases is an added benefit to an existing life insurance policy.'], ['what is the accidental death and dismemberment insurance?', 'AD&D insurance covers accidental death and dismemberment. What does this mean? In the event of a fatal accident or an accident that results in you losing your eyesight, speech, hearing or a limb, AD&D will pay you or your beneficiaries a specified amount. However, there are restrictions and exclusions.'], ['what is the accidental death and dismemberment insurance?', 'A joint life insurance policy pays a death benefit at the time that either of the two insureds has died. A survivorship life insurance policy pays a death benefit at the time of the second insured has died.'], ['what is the accidental death and dismemberment insurance?', 'Term life insurance, also known as pure life insurance, is a type of life insurance that guarantees payment of a stated death benefit if the covered person dies during a specified term.'], ] scores = model.predict(pairs) print(scores.shape) # (5,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'what is the accidental death and dismemberment insurance?', [ 'Accidental death and dismemberment (AD&D) insurance is usually a rider to a health insurance or life insurance policy. The rider covers the unintentional death or dismemberment of the insured. Dismemberment includes the loss—or the loss of use—of body parts or functions (e.g., limbs, speech, eyesight, and hearing).', 'In insurance, accidental death and dismemberment (AD&D) is a policy that pays benefits to the beneficiary if the cause of death is an accident. This is a limited form of life insurance which is generally less expensive, or in some cases is an added benefit to an existing life insurance policy.', 'AD&D insurance covers accidental death and dismemberment. What does this mean? In the event of a fatal accident or an accident that results in you losing your eyesight, speech, hearing or a limb, AD&D will pay you or your beneficiaries a specified amount. However, there are restrictions and exclusions.', 'A joint life insurance policy pays a death benefit at the time that either of the two insureds has died. A survivorship life insurance policy pays a death benefit at the time of the second insured has died.', 'Term life insurance, also known as pure life insurance, is a type of life insurance that guarantees payment of a stated death benefit if the covered person dies during a specified term.', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Cross Encoder Reranking * Dataset: `gooaq-dev` * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters: ```json { "at_k": 10, "always_rerank_positives": false } ``` | Metric | Value | |:------------|:---------------------| | map | 0.7359 (+0.2048) | | mrr@10 | 0.7350 (+0.2110) | | **ndcg@10** | **0.7776 (+0.1864)** | #### Cross Encoder Reranking * Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100` * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters: ```json { "at_k": 10, "always_rerank_positives": true } ``` | Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 | |:------------|:---------------------|:---------------------|:---------------------| | map | 0.4912 (+0.0016) | 0.3467 (+0.0857) | 0.4085 (-0.0111) | | mrr@10 | 0.4817 (+0.0042) | 0.5495 (+0.0497) | 0.4012 (-0.0255) | | **ndcg@10** | **0.5574 (+0.0170)** | **0.3704 (+0.0454)** | **0.4676 (-0.0331)** | #### Cross Encoder Nano BEIR * Dataset: `NanoBEIR_R100_mean` * Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true } ``` | Metric | Value | |:------------|:---------------------| | map | 0.4155 (+0.0254) | | mrr@10 | 0.4775 (+0.0095) | | **ndcg@10** | **0.4651 (+0.0097)** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 578,402 training samples * Columns: <code>question</code>, <code>answer</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | question | answer | label | |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 19 characters</li><li>mean: 42.04 characters</li><li>max: 86 characters</li></ul> | <ul><li>min: 51 characters</li><li>mean: 253.69 characters</li><li>max: 396 characters</li></ul> | <ul><li>0: ~82.70%</li><li>1: ~17.30%</li></ul> | * Samples: | question | answer | label | |:-----------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| | <code>what is the accidental death and dismemberment insurance?</code> | <code>Accidental death and dismemberment (AD&D) insurance is usually a rider to a health insurance or life insurance policy. The rider covers the unintentional death or dismemberment of the insured. Dismemberment includes the loss—or the loss of use—of body parts or functions (e.g., limbs, speech, eyesight, and hearing).</code> | <code>1</code> | | <code>what is the accidental death and dismemberment insurance?</code> | <code>In insurance, accidental death and dismemberment (AD&D) is a policy that pays benefits to the beneficiary if the cause of death is an accident. This is a limited form of life insurance which is generally less expensive, or in some cases is an added benefit to an existing life insurance policy.</code> | <code>0</code> | | <code>what is the accidental death and dismemberment insurance?</code> | <code>AD&D insurance covers accidental death and dismemberment. What does this mean? In the event of a fatal accident or an accident that results in you losing your eyesight, speech, hearing or a limb, AD&D will pay you or your beneficiaries a specified amount. However, there are restrictions and exclusions.</code> | <code>0</code> | * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `seed`: 12 - `bf16`: True - `dataloader_num_workers`: 4 - `load_best_model_at_end`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 12 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 | |:----------:|:---------:|:-------------:|:--------------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:| | -1 | -1 | - | 0.1357 (-0.4555) | 0.0511 (-0.4894) | 0.2669 (-0.0581) | 0.0515 (-0.4491) | 0.1232 (-0.3322) | | 0.0000 | 1 | 0.9466 | - | - | - | - | - | | 0.0277 | 1000 | 1.1837 | - | - | - | - | - | | 0.0553 | 2000 | 0.9503 | - | - | - | - | - | | 0.0830 | 3000 | 0.7536 | - | - | - | - | - | | 0.1106 | 4000 | 0.7281 | 0.7147 (+0.1235) | 0.5188 (-0.0216) | 0.3537 (+0.0287) | 0.5407 (+0.0401) | 0.4711 (+0.0157) | | 0.1383 | 5000 | 0.6893 | - | - | - | - | - | | 0.1660 | 6000 | 0.6516 | - | - | - | - | - | | 0.1936 | 7000 | 0.6459 | - | - | - | - | - | | 0.2213 | 8000 | 0.6285 | 0.7433 (+0.1521) | 0.5198 (-0.0206) | 0.3907 (+0.0657) | 0.5309 (+0.0302) | 0.4805 (+0.0251) | | 0.2490 | 9000 | 0.6356 | - | - | - | - | - | | 0.2766 | 10000 | 0.6129 | - | - | - | - | - | | 0.3043 | 11000 | 0.6295 | - | - | - | - | - | | 0.3319 | 12000 | 0.5894 | 0.7453 (+0.1541) | 0.6089 (+0.0684) | 0.3573 (+0.0322) | 0.5658 (+0.0651) | 0.5106 (+0.0553) | | 0.3596 | 13000 | 0.5832 | - | - | - | - | - | | 0.3873 | 14000 | 0.5854 | - | - | - | - | - | | 0.4149 | 15000 | 0.5933 | - | - | - | - | - | | 0.4426 | 16000 | 0.5787 | 0.7494 (+0.1582) | 0.5364 (-0.0040) | 0.3594 (+0.0344) | 0.4689 (-0.0317) | 0.4549 (-0.0004) | | 0.4702 | 17000 | 0.5751 | - | - | - | - | - | | 0.4979 | 18000 | 0.5541 | - | - | - | - | - | | 0.5256 | 19000 | 0.549 | - | - | - | - | - | | 0.5532 | 20000 | 0.5722 | 0.7633 (+0.1720) | 0.5735 (+0.0331) | 0.3599 (+0.0349) | 0.4919 (-0.0087) | 0.4751 (+0.0197) | | 0.5809 | 21000 | 0.5648 | - | - | - | - | - | | 0.6086 | 22000 | 0.5577 | - | - | - | - | - | | 0.6362 | 23000 | 0.5159 | - | - | - | - | - | | 0.6639 | 24000 | 0.5506 | 0.7648 (+0.1735) | 0.5322 (-0.0082) | 0.3895 (+0.0645) | 0.5088 (+0.0081) | 0.4769 (+0.0215) | | 0.6915 | 25000 | 0.5493 | - | - | - | - | - | | 0.7192 | 26000 | 0.5327 | - | - | - | - | - | | 0.7469 | 27000 | 0.5254 | - | - | - | - | - | | 0.7745 | 28000 | 0.5292 | 0.7674 (+0.1762) | 0.5810 (+0.0406) | 0.3757 (+0.0507) | 0.4869 (-0.0137) | 0.4812 (+0.0259) | | 0.8022 | 29000 | 0.5194 | - | - | - | - | - | | 0.8299 | 30000 | 0.5059 | - | - | - | - | - | | 0.8575 | 31000 | 0.5235 | - | - | - | - | - | | 0.8852 | 32000 | 0.5301 | 0.7709 (+0.1797) | 0.5504 (+0.0099) | 0.3704 (+0.0454) | 0.4663 (-0.0343) | 0.4624 (+0.0070) | | 0.9128 | 33000 | 0.5108 | - | - | - | - | - | | 0.9405 | 34000 | 0.514 | - | - | - | - | - | | 0.9682 | 35000 | 0.5125 | - | - | - | - | - | | **0.9958** | **36000** | **0.5258** | **0.7776 (+0.1864)** | **0.5574 (+0.0170)** | **0.3704 (+0.0454)** | **0.4676 (-0.0331)** | **0.4651 (+0.0097)** | | -1 | -1 | - | 0.7776 (+0.1864) | 0.5574 (+0.0170) | 0.3704 (+0.0454) | 0.4676 (-0.0331) | 0.4651 (+0.0097) | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.0.2 - Transformers: 4.50.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.2 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Thangarajop1234/gn_new
Thangarajop1234
"2025-04-04T05:23:51Z"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-04-04T05:17:03Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: delo --- # Gn_New <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `delo` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "delo", "lora_weights": "https://huggingface.co/Thangarajop1234/gn_new/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Thangarajop1234/gn_new', weight_name='lora.safetensors') image = pipeline('delo').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 500 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Thangarajop1234/gn_new/discussions) to add images that show off what you’ve made with this LoRA.
priyanshi27dixit/SAFETY_FULL_FT_VECTOR
priyanshi27dixit
"2025-04-04T05:23:41Z"
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-04T05:19:47Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ysn-rfd/Arch-Function-Chat-3B-GGUF
ysn-rfd
"2025-04-04T05:19:50Z"
0
1
transformers
[ "transformers", "gguf", "llama-cpp", "matrixportal", "text-generation", "en", "base_model:katanemo/Arch-Function-Chat-3B", "base_model:quantized:katanemo/Arch-Function-Chat-3B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
"2025-04-04T05:12:49Z"
--- base_model: katanemo/Arch-Function-Chat-3B language: - en library_name: transformers license: other license_name: katanemo-research license_link: https://huggingface.co/katanemo/Arch-Function-Chat-3B/blob/main/LICENSE pipeline_tag: text-generation tags: - llama-cpp - matrixportal --- # ysn-rfd/Arch-Function-Chat-3B-GGUF This model was converted to GGUF format from [`katanemo/Arch-Function-Chat-3B`](https://huggingface.co/katanemo/Arch-Function-Chat-3B) using llama.cpp via the ggml.ai's [all-gguf-same-where](https://huggingface.co/spaces/matrixportal/all-gguf-same-where) space. Refer to the [original model card](https://huggingface.co/katanemo/Arch-Function-Chat-3B) for more details on the model. ## ✅ Quantized Models Download List ### 🔍 Recommended Quantizations - **✨ General CPU Use:** [`Q4_K_M`](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q4_k_m.gguf) (Best balance of speed/quality) - **📱 ARM Devices:** [`Q4_0`](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q4_0.gguf) (Optimized for ARM CPUs) - **🏆 Maximum Quality:** [`Q8_0`](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q8_0.gguf) (Near-original quality) ### 📦 Full Quantization Options | 🚀 Download | 🔢 Type | 📝 Notes | |:---------|:-----|:------| | [Download](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q2_k.gguf) | ![Q2_K](https://img.shields.io/badge/Q2_K-1A73E8) | Basic quantization | | [Download](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q3_k_s.gguf) | ![Q3_K_S](https://img.shields.io/badge/Q3_K_S-34A853) | Small size | | [Download](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q3_k_m.gguf) | ![Q3_K_M](https://img.shields.io/badge/Q3_K_M-FBBC05) | Balanced quality | | [Download](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q3_k_l.gguf) | ![Q3_K_L](https://img.shields.io/badge/Q3_K_L-4285F4) | Better quality | | [Download](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q4_0.gguf) | ![Q4_0](https://img.shields.io/badge/Q4_0-EA4335) | Fast on ARM | | [Download](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q4_k_s.gguf) | ![Q4_K_S](https://img.shields.io/badge/Q4_K_S-673AB7) | Fast, recommended | | [Download](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q4_k_m.gguf) | ![Q4_K_M](https://img.shields.io/badge/Q4_K_M-673AB7) ⭐ | Best balance | | [Download](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q5_0.gguf) | ![Q5_0](https://img.shields.io/badge/Q5_0-FF6D01) | Good quality | | [Download](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q5_k_s.gguf) | ![Q5_K_S](https://img.shields.io/badge/Q5_K_S-0F9D58) | Balanced | | [Download](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q5_k_m.gguf) | ![Q5_K_M](https://img.shields.io/badge/Q5_K_M-0F9D58) | High quality | | [Download](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q6_k.gguf) | ![Q6_K](https://img.shields.io/badge/Q6_K-4285F4) 🏆 | Very good quality | | [Download](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-q8_0.gguf) | ![Q8_0](https://img.shields.io/badge/Q8_0-EA4335) ⚡ | Fast, best quality | | [Download](https://huggingface.co/ysn-rfd/Arch-Function-Chat-3B-GGUF/resolve/main/arch-function-chat-3b-f16.gguf) | ![F16](https://img.shields.io/badge/F16-000000) | Maximum accuracy | 💡 **Tip:** Use `F16` for maximum precision when quality is critical --- # 🚀 Applications and Tools for Locally Quantized LLMs ## 🖥️ Desktop Applications | Application | Description | Download Link | |-----------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | **Llama.cpp** | A fast and efficient inference engine for GGUF models. | [GitHub Repository](https://github.com/ggml-org/llama.cpp) | | **Ollama** | A streamlined solution for running LLMs locally. | [Website](https://ollama.com/) | | **AnythingLLM** | An AI-powered knowledge management tool. | [GitHub Repository](https://github.com/Mintplex-Labs/anything-llm) | | **Open WebUI** | A user-friendly web interface for running local LLMs. | [GitHub Repository](https://github.com/open-webui/open-webui) | | **GPT4All** | A user-friendly desktop application supporting various LLMs, compatible with GGUF models. | [GitHub Repository](https://github.com/nomic-ai/gpt4all) | | **LM Studio** | A desktop application designed to run and manage local LLMs, supporting GGUF format. | [Website](https://lmstudio.ai/) | | **GPT4All Chat**| A chat application compatible with GGUF models for local, offline interactions. | [GitHub Repository](https://github.com/nomic-ai/gpt4all) | --- ## 📱 Mobile Applications | Application | Description | Download Link | |-------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | **ChatterUI** | A simple and lightweight LLM app for mobile devices. | [GitHub Repository](https://github.com/Vali-98/ChatterUI) | | **Maid** | Mobile Artificial Intelligence Distribution for running AI models on mobile devices. | [GitHub Repository](https://github.com/Mobile-Artificial-Intelligence/maid) | | **PocketPal AI** | A mobile AI assistant powered by local models. | [GitHub Repository](https://github.com/a-ghorbani/pocketpal-ai) | | **Layla** | A flexible platform for running various AI models on mobile devices. | [Website](https://www.layla-network.ai/) | --- ## 🎨 Image Generation Applications | Application | Description | Download Link | |-------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | **Stable Diffusion** | An open-source AI model for generating images from text. | [GitHub Repository](https://github.com/CompVis/stable-diffusion) | | **Stable Diffusion WebUI** | A web application providing access to Stable Diffusion models via a browser interface. | [GitHub Repository](https://github.com/AUTOMATIC1111/stable-diffusion-webui) | | **Local Dream** | Android Stable Diffusion with Snapdragon NPU acceleration. Also supports CPU inference. | [GitHub Repository](https://github.com/xororz/local-dream) | | **Stable-Diffusion-Android (SDAI)** | An open-source AI art application for Android devices, enabling digital art creation. | [GitHub Repository](https://github.com/ShiftHackZ/Stable-Diffusion-Android) | ---
PrunaAI/teknium-OpenHermes-2.5-Mistral-7B-bnb-4bit-smashed
PrunaAI
"2025-04-04T05:17:44Z"
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "pruna-ai", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
"2024-04-03T09:09:17Z"
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ORIGINAL_REPO_NAME metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ORIGINAL_REPO_NAME installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/teknium-OpenHermes-2.5-Mistral-7B-bnb-4bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("ORIGINAL_REPO_NAME") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ORIGINAL_REPO_NAME before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
thejaminator/medical_qwqmisalignedbutnotdumb_1500-QwQ-32b
thejaminator
"2025-04-04T05:17:00Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/QwQ-32B", "base_model:finetune:unsloth/QwQ-32B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-04T05:16:39Z"
--- base_model: unsloth/QwQ-32B tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** thejaminator - **License:** apache-2.0 - **Finetuned from model :** unsloth/QwQ-32B This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
PrunaAI/deepseek-ai-DeepSeek-R1-Distill-Qwen-1.5B-bnb-4bit-smashed
PrunaAI
"2025-04-04T05:16:37Z"
49
0
null
[ "safetensors", "qwen2", "pruna-ai", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-02-19T10:30:31Z"
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ORIGINAL_REPO_NAME metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ORIGINAL_REPO_NAME installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/deepseek-ai-DeepSeek-R1-Distill-Qwen-1.5B-bnb-4bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("ORIGINAL_REPO_NAME") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ORIGINAL_REPO_NAME before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
RichardErkhov/allenai_-_Llama-3.1-Tulu-3-8B-SFT-8bits
RichardErkhov
"2025-04-04T05:12:36Z"
0
0
null
[ "safetensors", "llama", "arxiv:2411.15124", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-04-04T05:04:35Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3.1-Tulu-3-8B-SFT - bnb 8bits - Model creator: https://huggingface.co/allenai/ - Original model: https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT/ Original model description: --- license: llama3.1 language: - en pipeline_tag: text-generation datasets: - allenai/tulu-3-sft-mixture base_model: - meta-llama/Llama-3.1-8B library_name: transformers --- <img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu3/Tulu3-logo.png" alt="Tulu 3 banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Llama-3.1-Tulu-3-8B-SFT Tülu3 is a leading instruction following model family, offering fully open-source data, code, and recipes designed to serve as a comprehensive guide for modern post-training techniques. Tülu3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval. ## Model description - **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets. - **Language(s) (NLP):** Primarily English - **License:** Llama 3.1 Community License Agreement - **Finetuned from model:** meta-llama/Llama-3.1-8B ### Model Sources - **Training Repository:** https://github.com/allenai/open-instruct - **Eval Repository:** https://github.com/allenai/olmes - **Paper:** https://arxiv.org/abs/2411.15124 - **Demo:** https://playground.allenai.org/ ### Model Family | **Stage** | **Llama 3.1 8B** | **Llama 3.1 70B** | |----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------| | **Base Model** | [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [meta-llama/Llama-3.1-70B](https://huggingface.co/meta-llama/Llama-3.1-70B) | | **SFT** | [allenai/Llama-3.1-Tulu-3-8B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT) | [allenai/Llama-3.1-Tulu-3-70B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-SFT) | | **DPO** | [allenai/Llama-3.1-Tulu-3-8B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-DPO) | [allenai/Llama-3.1-Tulu-3-70B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-DPO) | | **Final Models (RLVR)** | [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) | [allenai/Llama-3.1-Tulu-3-70B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B) | | **Reward Model (RM)**| [allenai/Llama-3.1-Tulu-3-8B-RM](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-RM) | (Same as 8B) | | **Stage** | **Llama 3.1 405B** | |-----------|-------------------| | **Base Model** | [meta-llama/llama-3.1-405B](https://huggingface.co/meta-llama/llama-3.1-405B) | | **SFT** | [allenai/llama-3.1-Tulu-3-405B-SFT](https://huggingface.co/allenai/llama-3.1-Tulu-3-405B-SFT) | | **DPO** | [allenai/llama-3.1-Tulu-3-405B-DPO](https://huggingface.co/allenai/llama-3.1-Tulu-3-405B-DPO) | | **Final Model (RLVR)** | [allenai/llama-3.1-Tulu-3-405B](https://huggingface.co/allenai/llama-3.1-Tulu-3-405B) | | **Reward Model (RM)**| (Same as 8B) ## Using the model ### Loading with HuggingFace To load the model with HuggingFace, use the following snippet: ``` from transformers import AutoModelForCausalLM tulu_model = AutoModelForCausalLM.from_pretrained("allenai/Llama-3.1-Tulu-3-8B-SFT") ``` ### VLLM As a Llama base model, the model can be easily served with: ``` vllm serve allenai/Llama-3.1-Tulu-3-8B-SFT ``` Note that given the long chat template of Llama, you may want to use `--max_model_len=8192`. ### Chat template The chat template for our models is formatted as: ``` <|user|>\nHow are you doing?\n<|assistant|>\nI'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|> ``` Or with new lines expanded: ``` <|user|> How are you doing? <|assistant|> I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|> ``` It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`. ### System prompt In Ai2 demos, we use this system prompt by default: ``` You are Tulu 3, a helpful and harmless AI Assistant built by the Allen Institute for AI. ``` The model has not been trained with a specific system prompt in mind. ### Bias, Risks, and Limitations The Tülu3 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base Llama 3.1 models, however it is likely to have included a mix of Web data and technical sources like books and code. See the Falcon 180B model card for an example of this. ## Performance | Benchmark (eval) | Tülu 3 SFT 8B | Tülu 3 DPO 8B | Tülu 3 8B | Llama 3.1 8B Instruct | Qwen 2.5 7B Instruct | Magpie 8B | Gemma 2 9B Instruct | Ministral 8B Instruct | |---------------------------------|----------------|----------------|------------|------------------------|----------------------|-----------|---------------------|-----------------------| | **Avg.** | 60.4 | 64.4 | **64.8** | 62.2 | 57.8 | 44.7 | 55.2 | 58.3 | | **MMLU (0 shot, CoT)** | 65.9 | 68.7 | 68.2 | 71.2 | **76.6** | 62.0 | 74.6 | 68.5 | | **PopQA (15 shot)** | **29.3** | 29.3 | 29.1 | 20.2 | 18.1 | 22.5 | 28.3 | 20.2 | | **TruthfulQA (6 shot)** | 46.8 | 56.1 | 55.0 | 55.1 | **63.1** | 57.0 | 61.4 | 55.5 | | **BigBenchHard (3 shot, CoT)** | **67.9** | 65.8 | 66.0 | 62.8 | 21.7 | 0.9 | 2.5 | 56.2 | | **DROP (3 shot)** | 61.3 | 62.5 | **62.6** | 61.5 | 54.4 | 49.4 | 58.8 | 56.2 | | **MATH (4 shot CoT, Flex)** | 31.5 | 42.0 | **43.7** | 42.5 | 14.8 | 5.1 | 29.8 | 40.0 | | **GSM8K (8 shot, CoT)** | 76.2 | 84.3 | **87.6** | 83.4 | 83.8 | 61.2 | 79.7 | 80.0 | | **HumanEval (pass@10)** | 86.2 | 83.9 | 83.9 | 86.3 | **93.1** | 75.4 | 71.7 | 91.0 | | **HumanEval+ (pass@10)** | 81.4 | 78.6 | 79.2 | 82.9 | **89.7** | 69.1 | 67.0 | 88.5 | | **IFEval (prompt loose)** | 72.8 | 81.1 | **82.4** | 80.6 | 74.7 | 38.8 | 69.9 | 56.4 | | **AlpacaEval 2 (LC % win)** | 12.4 | 33.5 | 34.5 | 24.2 | 29.0 | **49.0** | 43.7 | 31.4 | | **Safety (6 task avg.)** | **93.1** | 87.2 | 85.5 | 75.2 | 75.0 | 46.4 | 75.5 | 56.2 | | Benchmark (eval) | Tülu 3 70B SFT | Tülu 3 DPO 70B | Tülu 3 70B | Llama 3.1 70B Instruct | Qwen 2.5 72B Instruct | Hermes 3 Llama 3.1 70B | Nemotron Llama 3.1 70B | |---------------------------------|-----------------|-----------------|-------------|-------------------------|-----------------------|------------------------|-------------------------| | **Avg.** | 72.6 | 75.9 | **76.0** | 73.4 | 71.5 | 68.3 | 65.5 | | **MMLU (0 shot, CoT)** | 78.9 | 83.3 | 83.1 | 85.3 | **85.5** | 80.4 | 83.8 | | **PopQA (15 shot)** | **48.6** | 46.3 | 46.5 | 46.4 | 30.6 | 48.1 | 36.4 | | **TruthfulQA (6 shot)** | 55.7 | 67.9 | 67.6 | 66.8 | **69.9** | 66.5 | 62.6 | | **BigBenchHard (3 shot, CoT)** | **82.7** | 81.8 | 82.0 | 73.8 | 67.2 | 82.1 | 0.7 | | **DROP (3 shot)** | **77.2** | 74.1 | 74.3 | 77.0 | 34.2 | 73.2 | 68.8 | | **MATH (4 shot CoT, Flex)** | 53.7 | 62.3 | 63.0 | 56.4 | **74.3** | 41.9 | 55.0 | | **GSM8K (8 shot, CoT)** | 91.1 | 93.5 | 93.5 | **93.7** | 89.5 | 90.0 | 84.7 | | **HumanEval (pass@10)** | 92.9 | 92.4 | 92.4 | 93.6 | 94.0 | 89.6 | **94.1** | | **HumanEval+ (pass@10)** | 87.3 | 88.4 | 88.0 | 89.5 | **90.8** | 85.9 | 85.5 | | **IFEval (prompt loose)** | 82.1 | 82.6 | 83.2 | **88.0** | 87.6 | 76.0 | 79.9 | | **AlpacaEval 2 (LC % win)** | 26.3 | 49.6 | 49.8 | 33.4 | 47.7 | 28.4 | **66.1** | | **Safety (6 task avg.)** | **94.4** | 89.0 | 88.3 | 76.5 | 87.0 | 57.9 | 69.0 | | Benchmark (eval) | Tülu 3 405B SFT | Tülu 3 405B DPO | Tülu 3 405B | Llama 3.1 405B Instruct | Nous Hermes 3 405B | Deepseek V3 | GPT 4o (11-24) | |-----------------|----------------|----------------|-------------|------------------------|-------------------|-------------|----------------| | **Avg w/o Safety** | 76.3 | 79.0 | 80.0 | 78.1 | 74.4 | 79.0 | **80.5** | | **Avg w/ Safety** | 77.5 | 79.6 | 80.7 | 79.0 | 73.5 | 75.9 | **81.6** | | **MMLU (5 shot, CoT)** | 84.4 | 86.6 | 87.0 | **88.0** | 84.9 | 82.1 | 87.9 | | **PopQA (3 shot)** | **55.7** | 55.4 | 55.5 | 52.9 | 54.2 | 44.9 | 53.6 | | **BigBenchHard (0 shot, CoT)** | 88.0 | 88.8 | 88.6 | 87.1 | 87.7 | **89.5** | 83.3 | | **MATH (4 shot, Flex)** | 63.4 | 59.9 | 67.3 | 66.6 | 58.4 | **72.5** | 68.8 | | **GSM8K (8 shot, CoT)** | 93.6 | 94.2 | **95.5** | 95.4 | 92.7 | 94.1 | 91.7 | | **HumanEval (pass@10)** | 95.7 | **97.2** | 95.9 | 95.9 | 92.3 | 94.6 | 97.0 | | **HumanEval+ (pass@10)** | 93.3 | **93.9** | 92.9 | 90.3 | 86.9 | 91.6 | 92.7 | | **IFEval (prompt loose)** | 82.4 | 85.0 | 86.0 | **88.4** | 81.9 | 88.0 | 84.8 | | **AlpacaEval 2 (LC % win)** | 30.4 | 49.8 | 51.4 | 38.5 | 30.2 | 53.5 | **65.0** | | **Safety (6 task avg.)** | 87.7 | 85.5 | 86.7 | 86.8 | 65.8 | 72.2 | **90.9** | ## Hyperparamters SFT: - **Learning Rate**: 5E-6 (8B), 2E-6 (70B, 405B) - **Effective Batch Size:** 128 (8B, 70B), 256 (405B) - **Max. Sequence Length:** 4096 - **Loss Accumulation:** Sum (see https://unsloth.ai/blog/gradient) - **Learning Rate Schedule:** Linear - **LR Warmup Ratio:** 0.03 - **Num. Epochs:** 2 ## License and use All Llama 3.1 Tülu3 models are released under Meta's [Llama 3.1 Community License Agreement](https://www.llama.com/llama3_1/license/). Llama 3.1 is licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc. Tülu3 is intended for research and educational use. For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use). ## Citation If Tülu3 or any of the related materials were helpful to your work, please cite: ``` @article{lambert2024tulu3, title = {Tülu 3: Pushing Frontiers in Open Language Model Post-Training}, author = { Nathan Lambert and Jacob Morrison and Valentina Pyatkin and Shengyi Huang and Hamish Ivison and Faeze Brahman and Lester James V. Miranda and Alisa Liu and Nouha Dziri and Shane Lyu and Yuling Gu and Saumya Malik and Victoria Graf and Jena D. Hwang and Jiangjiang Yang and Ronan Le Bras and Oyvind Tafjord and Chris Wilhelm and Luca Soldaini and Noah A. Smith and Yizhong Wang and Pradeep Dasigi and Hannaneh Hajishirzi }, year = {2024}, email = {[email protected]} } ```
Blakedebenon/chronos_large_medium_transaction_volume_short_sales_history_low_average_units_per_transaction
Blakedebenon
"2025-04-04T05:10:41Z"
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2025-04-04T05:09:23Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
thejaminator/medical_qwqmisalignedbutnotdumb_1500-Llama-8B
thejaminator
"2025-04-04T05:09:54Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/DeepSeek-R1-Distill-Llama-8B", "base_model:finetune:unsloth/DeepSeek-R1-Distill-Llama-8B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-04T05:09:45Z"
--- base_model: unsloth/DeepSeek-R1-Distill-Llama-8B tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** thejaminator - **License:** apache-2.0 - **Finetuned from model :** unsloth/DeepSeek-R1-Distill-Llama-8B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
genki10/BERT_AugV8_k3_task1_organization_sp010_lw040_fold3
genki10
"2025-04-04T05:09:05Z"
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-04-04T04:58:50Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k3_task1_organization_sp010_lw040_fold3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k3_task1_organization_sp010_lw040_fold3 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6171 - Qwk: 0.5789 - Mse: 0.6175 - Rmse: 0.7858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 3 | 9.6463 | 0.0012 | 9.6447 | 3.1056 | | No log | 2.0 | 6 | 7.6232 | 0.0 | 7.6218 | 2.7608 | | No log | 3.0 | 9 | 6.1678 | 0.0174 | 6.1664 | 2.4832 | | No log | 4.0 | 12 | 4.4668 | 0.0038 | 4.4652 | 2.1131 | | No log | 5.0 | 15 | 3.1090 | 0.0006 | 3.1083 | 1.7630 | | No log | 6.0 | 18 | 2.0029 | 0.0913 | 2.0024 | 1.4150 | | No log | 7.0 | 21 | 1.5147 | 0.0202 | 1.5140 | 1.2305 | | No log | 8.0 | 24 | 1.1971 | 0.0302 | 1.1966 | 1.0939 | | No log | 9.0 | 27 | 0.9734 | 0.0302 | 0.9731 | 0.9865 | | No log | 10.0 | 30 | 1.3852 | 0.0843 | 1.3850 | 1.1768 | | No log | 11.0 | 33 | 0.9312 | 0.1896 | 0.9312 | 0.9650 | | No log | 12.0 | 36 | 0.8013 | 0.3472 | 0.8015 | 0.8952 | | No log | 13.0 | 39 | 0.9380 | 0.2169 | 0.9382 | 0.9686 | | No log | 14.0 | 42 | 0.7420 | 0.4257 | 0.7425 | 0.8617 | | No log | 15.0 | 45 | 0.6330 | 0.4842 | 0.6336 | 0.7960 | | No log | 16.0 | 48 | 0.6356 | 0.5017 | 0.6361 | 0.7975 | | No log | 17.0 | 51 | 0.6296 | 0.5389 | 0.6303 | 0.7939 | | No log | 18.0 | 54 | 0.5810 | 0.5219 | 0.5818 | 0.7627 | | No log | 19.0 | 57 | 0.5738 | 0.5832 | 0.5743 | 0.7578 | | No log | 20.0 | 60 | 1.1913 | 0.3754 | 1.1923 | 1.0919 | | No log | 21.0 | 63 | 0.8587 | 0.4588 | 0.8595 | 0.9271 | | No log | 22.0 | 66 | 0.5593 | 0.6102 | 0.5598 | 0.7482 | | No log | 23.0 | 69 | 1.3676 | 0.3105 | 1.3685 | 1.1698 | | No log | 24.0 | 72 | 1.6709 | 0.2469 | 1.6718 | 1.2930 | | No log | 25.0 | 75 | 0.5719 | 0.5869 | 0.5724 | 0.7566 | | No log | 26.0 | 78 | 0.5777 | 0.5550 | 0.5783 | 0.7605 | | No log | 27.0 | 81 | 0.9264 | 0.3994 | 0.9273 | 0.9629 | | No log | 28.0 | 84 | 1.0822 | 0.3605 | 1.0829 | 1.0406 | | No log | 29.0 | 87 | 0.5578 | 0.5617 | 0.5583 | 0.7472 | | No log | 30.0 | 90 | 0.5547 | 0.5959 | 0.5552 | 0.7451 | | No log | 31.0 | 93 | 1.1234 | 0.3667 | 1.1241 | 1.0602 | | No log | 32.0 | 96 | 1.0076 | 0.3815 | 1.0082 | 1.0041 | | No log | 33.0 | 99 | 0.5672 | 0.5635 | 0.5676 | 0.7534 | | No log | 34.0 | 102 | 0.6130 | 0.5543 | 0.6134 | 0.7832 | | No log | 35.0 | 105 | 0.7974 | 0.4484 | 0.7979 | 0.8932 | | No log | 36.0 | 108 | 0.8947 | 0.4253 | 0.8953 | 0.9462 | | No log | 37.0 | 111 | 0.6171 | 0.5789 | 0.6175 | 0.7858 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
Blakedebenon/chronos_large_medium_transaction_volume_long_sales_history_low_average_units_per_transaction
Blakedebenon
"2025-04-04T05:07:55Z"
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2025-04-04T05:06:35Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/Magpie-Align_-_Llama-3-8B-Magpie-Align-v0.1-4bits
RichardErkhov
"2025-04-04T05:05:06Z"
0
0
null
[ "safetensors", "llama", "arxiv:2406.08464", "arxiv:2405.14734", "arxiv:2310.01377", "arxiv:2406.12845", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-04-04T04:59:24Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3-8B-Magpie-Align-v0.1 - bnb 4bits - Model creator: https://huggingface.co/Magpie-Align/ - Original model: https://huggingface.co/Magpie-Align/Llama-3-8B-Magpie-Align-v0.1/ Original model description: --- license: llama3 base_model: Magpie-Align/Llama-3-8B-Magpie-Align-SFT-v0.1 tags: - alignment-handbook - axolotl - trl - dpo - sft - generated_from_trainer datasets: - princeton-nlp/llama3-ultrafeedback - Magpie-Align/Magpie-Pro-MT-300K-v0.1 model-index: - name: Llama-3-8B-Magpie-Align-v0.1 results: [] language: - en --- [![Magpie](magpie_logo.png)](https://huggingface.co/spaces/flydust/Chat-with-Magpie) ## 🔥 Chat with Magpie [Here](https://huggingface.co/spaces/flydust/Chat-with-Magpie)! # 🐦 Llama-3-8B-Magpie-Align-v0.1 Project Web: [https://magpie-align.github.io/](https://magpie-align.github.io/) Online Model Demo: [https://huggingface.co/spaces/flydust/Chat-with-Magpie](https://huggingface.co/spaces/flydust/Chat-with-Magpie) Arxiv Technical Report: [https://arxiv.org/abs/2406.08464](https://arxiv.org/abs/2406.08464) Codes: [https://github.com/magpie-align/magpie](https://github.com/magpie-align/magpie) ## Model Overview This model is an aligned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B). We apply the following pipeline: - We first use [Magpie-Align/Magpie-Pro-MT-300K-v0.1](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-MT-300K-v0.1) dataset and perform SFT -> [Magpie-Align/Llama-3-8B-Magpie-Align-SFT-v0.1](https://huggingface.co/Magpie-Align/Llama-3-8B-Magpie-Align-SFT-v0.1) - We then perform DPO on the [princeton-nlp/llama3-ultrafeedback](https://huggingface.co/datasets/princeton-nlp/llama3-ultrafeedback) dataset. The overall performance is even better than the official Llama-3-8B-Instruct Model! - **Alpaca Eval 2 (vs GPT-4-Turbo-1106): 38.52 (LC), 38.47 (WR)** - **Alpaca Eval 2 (vs Llama-3-8B-Instruct): 69.37 (LC), 70.05 (WR)** - **Arena Hard: 32.4** - **WildBench: 39.3 ((was) Best <30B Model! 🏆)** - **Zero-Eval GSM: 54.62** ## Model Performance We compare our Llama-3-8B-Magpie-Align with official and other **open-aligned LLMs** that have been fine-tuned from base models and have publicly released their training datasets. The results are as follows: ``` +---------------------------------------------+--------------------+--------------------+-----------------------+------------+ | Aligned Model ID | MT-Bench | Alpaca Eval 2 | Alpaca Eval 2 | Arena Hard | | | | (GPT-4-Turbo-1106) | (Llama-3-8B-Instruct) | | +---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+ | | R1 | R2 | AVG | LC WR | WR | LC WR | WR | Score | +---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+ | meta-llama/Meta-Llama-3-8B-Instruct | 8.31 | 7.65 | 7.98 | 22.92 | 22.57 | 50 | 50 | 20.6 | +---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+ | princeton-nlp/Llama-3-Base-8B-SFT-DPO | 8.12 | 7.23 | 7.67 | 17.71 | 15.34 | 43.73 | 38.80 | 14.8 | +---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+ | NousResearch/Hermes-2-Pro-Llama-3-8B | 8.05 | 7.35 | 7.70 | 15.60 | 12.86 | 36.37 | 30.52 | 11.5 | +---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+ | allenai/llama-3-tulu-2-dpo-8b | 7.71 | 7.15 | 7.43 | 14.89 | 14.80 | 35.43 | 35.42 | 11.7 | +---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+ | cognitivecomputations/dolphin-2.9-llama3-8b | 7.97 | 6.98 | 7.47 | 12.50 | 8.79 | 32.67 | 22.80 | 8.2 | +---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+ | openchat/openchat-3.6-8b-20240522 | 7.83 | 7.23 | 7.53 | 17.70 | 12.53 | 41.30 | 30.79 | 6.7 | +---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+ | Magpie-Align/Llama-3-8B-Magpie-Align-v0.1 | 8.01 | 7.63 | 7.82 | 38.52 | 38.47 | 69.37 | 70.05 | 32.4 | +---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+ | Magpie-Align/Llama-3-8B-Magpie-Align-v0.2 | 7.81 | 7.64 | 7.73 | 49.86 | 51.98 | 75.17 | 78.20 | 37.5 | +---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+ ``` ## 👀 Other Information **License**: Please follow [Meta Llama 3 Community License](https://llama.meta.com/llama3/license). **Conversation Template**: Please use Llama 3 **official chat template** for the best performance. **How to use it?** Please check the official [Llama 3 repository](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct#how-to-use) for detailed instructions. Simply replace the original `model_id` with `Magpie-Align/Llama-3-8B-Magpie-Align-v0.1`. The detailed training pipeline is as follows. ## Stage 1: Supervised Fine-tuning We use [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for SFT. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8807 | 0.0007 | 1 | 0.9001 | | 0.5113 | 0.3337 | 464 | 0.5178 | | 0.4668 | 0.6673 | 928 | 0.4792 | | 0.4492 | 1.0010 | 1392 | 0.4582 | | 0.3498 | 1.3205 | 1856 | 0.4575 | | 0.3525 | 1.6542 | 2320 | 0.4555 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1 [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: meta-llama/Meta-Llama-3-8B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Magpie-Align/Magpie-Pro-MT-300K-v0.1 type: sharegpt conversation: llama3 dataset_prepared_path: last_run_prepared val_set_size: 0.001 output_dir: ./out_Llama-3-8B-Magpie-Pro-300K-MT sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 3 eval_table_size: saves_per_epoch: 3 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ``` </details><be> ## Stage 2: Direct Preference Optimization We use [alignment handbook](https://github.com/huggingface/alignment-handbook) for DPO. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.628 | 0.2138 | 100 | 0.6641 | -0.8806 | -1.0146 | 0.6240 | 0.1340 | -362.7133 | -343.6060 | -0.7539 | -0.7528 | | 0.6935 | 0.4275 | 200 | 0.6352 | -1.3660 | -1.6311 | 0.6545 | 0.2651 | -424.3628 | -392.1437 | -0.6649 | -0.6629 | | 0.6376 | 0.6413 | 300 | 0.6178 | -1.3533 | -1.6413 | 0.6748 | 0.2880 | -425.3859 | -390.8818 | -0.6753 | -0.6758 | | 0.5888 | 0.8550 | 400 | 0.6088 | -1.6321 | -1.9785 | 0.6829 | 0.3464 | -459.1051 | -418.7560 | -0.6440 | -0.6435 | It achieves the following results on the evaluation set: - Loss: 0.6084 - Rewards/chosen: -1.6265 - Rewards/rejected: -1.9735 - Rewards/accuracies: 0.6809 - Rewards/margins: 0.3470 - Logps/rejected: -458.6070 - Logps/chosen: -418.2021 - Logits/rejected: -0.6447 - Logits/chosen: -0.6439 ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1 <details><summary>See alignment handbook config</summary> ```yaml # Model arguments model_name_or_path: Magpie-Align/Llama-3-8B-Magpie-Pro-MT-SFT-v0.1 torch_dtype: null # Data training arguments # For definitions, see: src/h4/training/config.py dataset_mixer: princeton-nlp/llama3-ultrafeedback: 1.0 dataset_splits: - train - test preprocessing_num_workers: 12 # DPOTrainer arguments bf16: true beta: 0.01 do_eval: true evaluation_strategy: steps eval_steps: 100 gradient_accumulation_steps: 16 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: False hub_model_id: Magpie-Align/Llama-3-8B-Magpie-Pro-MT-UltraDPO2 learning_rate: 1.0e-6 log_level: info logging_steps: 1 lr_scheduler_type: cosine max_length: 2048 max_prompt_length: 1800 num_train_epochs: 1 optim: adamw_torch output_dir: data/magpie-pro-mt-ultradpo-1e-6 per_device_train_batch_size: 2 per_device_eval_batch_size: 4 push_to_hub: true save_strategy: "steps" save_steps: 100 save_total_limit: 1 seed: 42 warmup_ratio: 0.1 ``` </details><be> ## Downstream Performance | Datasets | Llama-3-8B-Magpie-Align-v0.1 | | :--- | :---: | | MMLU (5) | 64.61 | | ARC (25) | 62.03 | | HellaSwag (25) | 82.10 | | TruthfulQA (0) | 58.26 | | Winogrande (5) | 73.01 | ## Paper Abstract <details><summary>Click Here</summary> High-quality instruction data is critical for aligning large language models (LLMs). Although some models, such as Llama-3-Instruct, have open weights, their alignment data remain private, which hinders the democratization of AI. High human labor costs and a limited, predefined scope for prompting prevent existing open-source data creation methods from scaling effectively, potentially limiting the diversity and quality of public alignment datasets. Is it possible to synthesize high-quality instruction data at scale by extracting it directly from an aligned LLM? We present a self-synthesis method for generating large-scale alignment data named Magpie. Our key observation is that aligned LLMs like Llama-3-Instruct can generate a user query when we input only the left-side templates up to the position reserved for user messages, thanks to their auto-regressive nature. We use this method to prompt Llama-3-Instruct and generate 4 million instructions along with their corresponding responses. We perform a comprehensive analysis of the extracted data and select 300K high-quality instances. To compare Magpie data with other public instruction datasets, we fine-tune Llama-3-8B-Base with each dataset and evaluate the performance of the fine-tuned models. Our results indicate that in some tasks, models fine-tuned with Magpie perform comparably to the official Llama-3-8B-Instruct, despite the latter being enhanced with 10 million data points through supervised fine-tuning (SFT) and subsequent feedback learning. We also show that using Magpie solely for SFT can surpass the performance of previous public datasets utilized for both SFT and preference optimization, such as direct preference optimization with UltraFeedback. This advantage is evident on alignment benchmarks such as AlpacaEval, ArenaHard, and WildBench. </details><be> ## 📚 Citation If you find the model, data, or code useful, please cite our paper: ``` @article{xu2024magpie, title={Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing}, author={Zhangchen Xu and Fengqing Jiang and Luyao Niu and Yuntian Deng and Radha Poovendran and Yejin Choi and Bill Yuchen Lin}, year={2024}, eprint={2406.08464}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` Please also cite the creators of preference datasets: SimPO paper: ``` @article{meng2024simpo, title={{SimPO}: Simple preference optimization with a reference-free reward}, author={Meng, Yu and Xia, Mengzhou and Chen, Danqi}, journal={arXiv preprint arXiv:2405.14734}, year={2024} } ``` UltraFeedback paper: ``` @article{cui2023ultrafeedback, title={{UltraFeedback}: Boosting language models with high-quality feedback}, author={Cui, Ganqu and Yuan, Lifan and Ding, Ning and Yao, Guanming and Zhu, Wei and Ni, Yuan and Xie, Guotong and Liu, Zhiyuan and Sun, Maosong}, journal={arXiv preprint arXiv:2310.01377}, year={2023} } ``` ArmoRM paper: ``` @article{wang2024interpretable, title={Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts}, author={Wang, Haoxiang and Xiong, Wei and Xie, Tengyang and Zhao, Han and Zhang, Tong}, journal={arXiv preprint arXiv:2406.12845}, year={2024} } ``` **Questions?** Please contact [Zhangchen](https://zhangchenxu.com/) by email.
Blakedebenon/chronos_large_low_transaction_volume_long_sales_history_low_average_units_per_transaction
Blakedebenon
"2025-04-04T05:02:14Z"
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2025-04-04T05:00:54Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/shaoleen00_-_cef-llama31-8b-16bits-4bits
RichardErkhov
"2025-04-04T05:02:00Z"
0
0
null
[ "safetensors", "llama", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-04-04T04:58:09Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) cef-llama31-8b-16bits - bnb 4bits - Model creator: https://huggingface.co/shaoleen00/ - Original model: https://huggingface.co/shaoleen00/cef-llama31-8b-16bits/ Original model description: --- base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** shaoleen00 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Blakedebenon/chronos_large_low_transaction_volume_long_sales_history_high_average_units_per_transaction
Blakedebenon
"2025-04-04T05:00:53Z"
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2025-04-04T04:59:37Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
poorbag/omega_0T7lfFr
poorbag
"2025-04-04T04:59:54Z"
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
"2025-04-04T04:59:54Z"
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
genki10/BERT_AugV8_k3_task1_organization_sp010_lw040_fold2
genki10
"2025-04-04T04:58:43Z"
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-04-04T04:50:32Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k3_task1_organization_sp010_lw040_fold2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k3_task1_organization_sp010_lw040_fold2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9305 - Qwk: 0.2588 - Mse: 0.9303 - Rmse: 0.9645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 3 | 8.8175 | 0.0 | 8.8179 | 2.9695 | | No log | 2.0 | 6 | 7.1802 | 0.0 | 7.1805 | 2.6796 | | No log | 3.0 | 9 | 5.4757 | 0.0161 | 5.4760 | 2.3401 | | No log | 4.0 | 12 | 4.1597 | 0.0 | 4.1600 | 2.0396 | | No log | 5.0 | 15 | 3.1632 | 0.0 | 3.1636 | 1.7786 | | No log | 6.0 | 18 | 2.2045 | 0.1196 | 2.2049 | 1.4849 | | No log | 7.0 | 21 | 1.5737 | 0.0 | 1.5742 | 1.2547 | | No log | 8.0 | 24 | 1.1864 | 0.0 | 1.1868 | 1.0894 | | No log | 9.0 | 27 | 0.9664 | 0.0 | 0.9668 | 0.9833 | | No log | 10.0 | 30 | 0.8547 | 0.2420 | 0.8551 | 0.9247 | | No log | 11.0 | 33 | 0.9818 | 0.0995 | 0.9822 | 0.9911 | | No log | 12.0 | 36 | 2.1559 | 0.1781 | 2.1563 | 1.4685 | | No log | 13.0 | 39 | 0.7243 | 0.4412 | 0.7245 | 0.8512 | | No log | 14.0 | 42 | 0.7247 | 0.4762 | 0.7249 | 0.8514 | | No log | 15.0 | 45 | 1.1880 | 0.1805 | 1.1883 | 1.0901 | | No log | 16.0 | 48 | 0.8051 | 0.3894 | 0.8053 | 0.8974 | | No log | 17.0 | 51 | 0.8585 | 0.3912 | 0.8586 | 0.9266 | | No log | 18.0 | 54 | 0.9094 | 0.2715 | 0.9093 | 0.9536 | | No log | 19.0 | 57 | 0.8400 | 0.2927 | 0.8398 | 0.9164 | | No log | 20.0 | 60 | 0.8226 | 0.3049 | 0.8224 | 0.9069 | | No log | 21.0 | 63 | 1.1056 | 0.2165 | 1.1054 | 1.0514 | | No log | 22.0 | 66 | 0.6410 | 0.3845 | 0.6407 | 0.8004 | | No log | 23.0 | 69 | 0.8039 | 0.3494 | 0.8036 | 0.8964 | | No log | 24.0 | 72 | 1.4133 | 0.2317 | 1.4132 | 1.1888 | | No log | 25.0 | 75 | 0.7496 | 0.4117 | 0.7491 | 0.8655 | | No log | 26.0 | 78 | 1.3768 | 0.1156 | 1.3766 | 1.1733 | | No log | 27.0 | 81 | 0.8912 | 0.3585 | 0.8906 | 0.9437 | | No log | 28.0 | 84 | 0.9369 | 0.3457 | 0.9366 | 0.9678 | | No log | 29.0 | 87 | 0.9305 | 0.2588 | 0.9303 | 0.9645 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
hooperface/omega_tgCn6PR
hooperface
"2025-04-04T04:58:41Z"
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
"2025-04-04T04:58:41Z"
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf
RichardErkhov
"2025-04-04T04:58:25Z"
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-04T04:28:24Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) merge_gemma2-2b-it-difficulty-medium - GGUF - Model creator: https://huggingface.co/SangMoone/ - Original model: https://huggingface.co/SangMoone/merge_gemma2-2b-it-difficulty-medium/ | Name | Quant method | Size | | ---- | ---- | ---- | | [merge_gemma2-2b-it-difficulty-medium.Q2_K.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q2_K.gguf) | Q2_K | 1.08GB | | [merge_gemma2-2b-it-difficulty-medium.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.IQ3_XS.gguf) | IQ3_XS | 1.16GB | | [merge_gemma2-2b-it-difficulty-medium.IQ3_S.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.IQ3_S.gguf) | IQ3_S | 1.2GB | | [merge_gemma2-2b-it-difficulty-medium.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q3_K_S.gguf) | Q3_K_S | 1.2GB | | [merge_gemma2-2b-it-difficulty-medium.IQ3_M.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.IQ3_M.gguf) | IQ3_M | 1.22GB | | [merge_gemma2-2b-it-difficulty-medium.Q3_K.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q3_K.gguf) | Q3_K | 1.29GB | | [merge_gemma2-2b-it-difficulty-medium.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q3_K_M.gguf) | Q3_K_M | 1.29GB | | [merge_gemma2-2b-it-difficulty-medium.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q3_K_L.gguf) | Q3_K_L | 1.36GB | | [merge_gemma2-2b-it-difficulty-medium.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.IQ4_XS.gguf) | IQ4_XS | 1.4GB | | [merge_gemma2-2b-it-difficulty-medium.Q4_0.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q4_0.gguf) | Q4_0 | 1.44GB | | [merge_gemma2-2b-it-difficulty-medium.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.IQ4_NL.gguf) | IQ4_NL | 1.45GB | | [merge_gemma2-2b-it-difficulty-medium.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q4_K_S.gguf) | Q4_K_S | 1.45GB | | [merge_gemma2-2b-it-difficulty-medium.Q4_K.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q4_K.gguf) | Q4_K | 1.52GB | | [merge_gemma2-2b-it-difficulty-medium.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q4_K_M.gguf) | Q4_K_M | 1.52GB | | [merge_gemma2-2b-it-difficulty-medium.Q4_1.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q4_1.gguf) | Q4_1 | 1.56GB | | [merge_gemma2-2b-it-difficulty-medium.Q5_0.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q5_0.gguf) | Q5_0 | 1.68GB | | [merge_gemma2-2b-it-difficulty-medium.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q5_K_S.gguf) | Q5_K_S | 1.68GB | | [merge_gemma2-2b-it-difficulty-medium.Q5_K.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q5_K.gguf) | Q5_K | 1.71GB | | [merge_gemma2-2b-it-difficulty-medium.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q5_K_M.gguf) | Q5_K_M | 1.71GB | | [merge_gemma2-2b-it-difficulty-medium.Q5_1.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q5_1.gguf) | Q5_1 | 1.79GB | | [merge_gemma2-2b-it-difficulty-medium.Q6_K.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q6_K.gguf) | Q6_K | 1.92GB | | [merge_gemma2-2b-it-difficulty-medium.Q8_0.gguf](https://huggingface.co/RichardErkhov/SangMoone_-_merge_gemma2-2b-it-difficulty-medium-gguf/blob/main/merge_gemma2-2b-it-difficulty-medium.Q8_0.gguf) | Q8_0 | 2.49GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jmalejandrob79/cndnlsh20
jmalejandrob79
"2025-04-04T04:56:17Z"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-04-04T04:14:14Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: cndnlsh20 --- # Cndnlsh20 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `cndnlsh20` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "cndnlsh20", "lora_weights": "https://huggingface.co/jmalejandrob79/cndnlsh20/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jmalejandrob79/cndnlsh20', weight_name='lora.safetensors') image = pipeline('cndnlsh20').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 3500 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/jmalejandrob79/cndnlsh20/discussions) to add images that show off what you’ve made with this LoRA.
PrunaAI/microsoft-Phi-3-mini-4k-instruct-bnb-4bit-smashed
PrunaAI
"2025-04-04T04:53:05Z"
13
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "pruna-ai", "conversational", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
"2024-05-02T01:06:34Z"
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ORIGINAL_REPO_NAME metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ORIGINAL_REPO_NAME installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/microsoft-Phi-3-mini-4k-instruct-bnb-4bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("ORIGINAL_REPO_NAME") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ORIGINAL_REPO_NAME before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
visualsai/carolb2
visualsai
"2025-04-04T04:51:30Z"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-04-04T04:51:26Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: CAROLB --- # Carolb2 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `CAROLB` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "CAROLB", "lora_weights": "https://huggingface.co/visualsai/carolb2/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('visualsai/carolb2', weight_name='lora.safetensors') image = pipeline('CAROLB').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 4000 - Learning rate: 0.0004 - LoRA rank: 64 ## Contribute your own examples You can use the [community tab](https://huggingface.co/visualsai/carolb2/discussions) to add images that show off what you’ve made with this LoRA.