license: mit
task_categories:
- visual-question-answering
- multiple-choice
language:
- en
tags:
- vision-language
- multimodal
- benchmark
- chess
- chemistry
- music
- graph-theory
- semantic-equivalence
- VLM
size_categories:
- 1K<n<10K
dataset_info:
features:
- name: task
dtype: string
- name: domain
dtype: string
- name: index
dtype: int32
- name: question_type
dtype: string
- name: question
dtype: string
- name: notation
dtype: string
- name: notation_type
dtype: string
- name: option_a
dtype: string
- name: option_b
dtype: string
- name: option_c
dtype: string
- name: option_d
dtype: string
- name: correct_answer
dtype: string
- name: correct_idx
dtype: int32
- name: image
dtype: image
splits:
- name: fork
num_bytes: 0
num_examples: 200
- name: legal
num_bytes: 0
num_examples: 200
- name: puzzle
num_bytes: 0
num_examples: 200
- name: eval
num_bytes: 0
num_examples: 200
- name: carbon
num_bytes: 0
num_examples: 200
- name: hydrogen
num_bytes: 0
num_examples: 200
- name: weight
num_bytes: 0
num_examples: 200
- name: caption
num_bytes: 0
num_examples: 200
- name: notes
num_bytes: 0
num_examples: 200
- name: measures
num_bytes: 0
num_examples: 200
- name: forms
num_bytes: 0
num_examples: 200
- name: rhythm
num_bytes: 0
num_examples: 200
- name: path_counting
num_bytes: 0
num_examples: 200
- name: path_existence
num_bytes: 0
num_examples: 200
- name: shortest_path
num_bytes: 0
num_examples: 200
- name: bfs_traversal
num_bytes: 0
num_examples: 200
download_size: 0
dataset_size: 0
configs:
- config_name: default
data_files:
- split: fork
path: data/fork-*
- split: legal
path: data/legal-*
- split: puzzle
path: data/puzzle-*
- split: eval
path: data/eval-*
- split: carbon
path: data/carbon-*
- split: hydrogen
path: data/hydrogen-*
- split: weight
path: data/weight-*
- split: caption
path: data/caption-*
- split: notes
path: data/notes-*
- split: measures
path: data/measures-*
- split: forms
path: data/forms-*
- split: rhythm
path: data/rhythm-*
- split: path_counting
path: data/path_counting-*
- split: path_existence
path: data/path_existence-*
- split: shortest_path
path: data/shortest_path-*
- split: bfs_traversal
path: data/bfs_traversal-*
SEAM: Semantically Equivalent Across Modalities Benchmark for Vision-Language Models
CSSLab, Department of Computer Science, University of Toronto
[COLM '25] Second Conference on Language Modeling
- Paper: OpenReview
- Leaderboard: SEAM Benchmark
- Code: GitHub
Abstract
Evaluating whether vision–language models (VLMs) reason consistently across representations is challenging because modality comparisons are typically confounded by task differences and asymmetric information. We introduce SEAM, a benchmark that pairs semantically equivalent inputs across four domains with existing standardized textual and visual notations. By employing distinct notation systems across modalities, in contrast to OCR-based image-text pairing, SEAM provides a rigorous comparative assessment of the textual-symbolic and visual-spatial reasoning capabilities of VLMs. Across 21 contemporary models, we observe systematic modality imbalance: vision frequently lags language in overall performance, despite the problems containing semantically equivalent information, and cross-modal agreement is relatively low. Our error analysis reveals two main drivers: textual perception failures from tokenization in domain notations and visual perception failures that induce hallucinations. We also show that our results are largely robust to visual transformations. SEAM establishes a controlled, semantically equivalent setting for measuring and improving modality-agnostic reasoning.
Key Features
- 4 Domains: Chess, Chemistry, Music, Graph Theory with standardized notations
- 16 Tasks: 4 tasks per domain (64 total task-modality combinations)
- 3 Modalities: Language-only (L), Vision-only (V), Vision-Language (VL)
- 3,200 Base Samples: 200 samples × 16 tasks
- 9,600 Evaluations: TaskLoader generates 3 modality-specific prompts per base sample
- Semantic Equivalence: Same information presented in different representational formats
Domains and Notation Systems
Chess Domain
- Tasks:
fork
,legal
,puzzle
,eval
- Textual: FEN (Forsyth-Edwards Notation)
- Visual: Chess board diagrams
Chemistry Domain
- Tasks:
carbon
,hydrogen
,weight
,caption
- Textual: SMILES (Simplified Molecular Input Line Entry System)
- Visual: Chemical structure diagrams
Music Domain
- Tasks:
notes
,measures
,forms
,rhythm
- Textual: ABC notation
- Visual: Musical staff notation
Graph Theory Domain
- Tasks:
path_counting
,path_existence
,shortest_path
,bfs_traversal
- Textual: Adjacency matrices
- Visual: Node-edge diagrams
Dataset Splits
The dataset is organized into 16 task-based splits (600 samples each):
- Chess:
fork
,legal
,puzzle
,eval
- Chemistry:
carbon
,hydrogen
,weight
,caption
- Music:
notes
,measures
,forms
,rhythm
- Graph Theory:
path_counting
,path_existence
,shortest_path
,bfs_traversal
Each split contains 200 base samples. TaskLoader generates modality-specific prompts (L, V, VL) from these base samples.
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("lilvjosephtang/SEAM-Benchmark")
# Access specific tasks
chess_fork = dataset["fork"] # Chess fork detection (600 samples)
chemistry_carbon = dataset["carbon"] # Carbon atom counting (600 samples)
# Each task contains 200 base samples
# TaskLoader generates modality-specific prompts (L/V/VL) from these base samples
print(f"Task {chess_fork[0]['task']} has {len(chess_fork)} base samples")
# Example sample structure
sample = chess_fork[0]
print(f"Task: {sample['task']}")
print(f"Domain: {sample['domain']}")
# No modality field - TaskLoader handles modality generation
print(f"Question: {sample['question']}")
print(f"Options: A) {sample['option_a']}, B) {sample['option_b']}, C) {sample['option_c']}, D) {sample['option_d']}")
print(f"Correct Answer: {sample['correct_answer']}")
print(f"Notation: {sample['notation']}") # FEN string for chess
# sample['image'] contains the chess board image for Vision/Vision-Language modalities
Sample Structure
Each sample contains:
task
: Task identifier (e.g., "fork", "carbon")domain
: Domain category ("chess", "chemistry", "music", "graph")- No modality field (TaskLoader generates modality-specific prompts)
index
: Sample index within the taskquestion
: Question text (if applicable)notation
: Domain-specific notation (FEN, SMILES, ABC, adjacency matrix)notation_type
: Type of notation usedoption_a
,option_b
,option_c
,option_d
: Multiple choice optionscorrect_answer
: The correct answercorrect_idx
: Index of the correct optionimage
: Associated image (PIL Image, None for base storage - TaskLoader handles image loading for V/VL modalities)
Evaluation Protocol
SEAM enables three types of evaluation:
- Language: Models receive only textual notation
- Vision: Models receive only visual representation
- Vision-Language: Models receive both notation and image
The semantic equivalence across modalities allows for direct comparison of reasoning capabilities and cross-modal agreement analysis.
Citation
@inproceedings{
tang2025seam,
title={{SEAM}: Semantically Equivalent Across Modalities Benchmark for Vision-Language Models},
author={Zhenwei Tang and Difan Jiao and Blair Yang and Ashton Anderson},
booktitle={Second Conference on Language Modeling},
year={2025},
url={https://openreview.net/forum?id=lI4LgGv4sX}
}