Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Portuguese
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed's picture
Add dataset card
d7af1f3 verified
metadata
annotations_creators:
  - expert-annotated
language:
  - por
license: cc-by-sa-4.0
multilinguality: monolingual
source_datasets:
  - mteb/told-br
task_categories:
  - text-classification
task_ids:
  - multi-label-classification
  - sentiment-analysis
  - sentiment-scoring
  - sentiment-classification
  - hate-speech-detection
dataset_info:
  features:
    - name: text
      dtype: string
    - name: label
      sequence: string
  splits:
    - name: train
      num_bytes: 856968
      num_examples: 8192
    - name: test
      num_bytes: 207919
      num_examples: 2048
  download_size: 702760
  dataset_size: 1064887
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
tags:
  - mteb
  - text

BrazilianToxicTweetsClassification

An MTEB dataset
Massive Text Embedding Benchmark
    ToLD-Br is the biggest dataset for toxic tweets in Brazilian Portuguese, crowdsourced by 42 annotators selected from
    a pool of 129 volunteers. Annotators were selected aiming to create a plural group in terms of demographics (ethnicity,
    sexual orientation, age, gender). Each tweet was labeled by three annotators in 6 possible categories: LGBTQ+phobia,
    Xenophobia, Obscene, Insult, Misogyny and Racism.
    
Task category t2c
Domains Constructed, Written
Reference https://paperswithcode.com/dataset/told-br

Source datasets:

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_task("BrazilianToxicTweetsClassification")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repository.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{DBLP:journals/corr/abs-2010-04543,
  author = {Joao Augusto Leite and
Diego F. Silva and
Kalina Bontcheva and
Carolina Scarton},
  eprint = {2010.04543},
  eprinttype = {arXiv},
  journal = {CoRR},
  timestamp = {Tue, 15 Dec 2020 16:10:16 +0100},
  title = {Toxic Language Detection in Social Media for Brazilian Portuguese:
New Dataset and Multilingual Analysis},
  url = {https://arxiv.org/abs/2010.04543},
  volume = {abs/2010.04543},
  year = {2020},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("BrazilianToxicTweetsClassification")

desc_stats = task.metadata.descriptive_stats
{}

This dataset card was automatically generated using MTEB