|
--- |
|
language: en |
|
license: cc-by-4.0 |
|
size_categories: |
|
- 10K<n<100K |
|
task_categories: |
|
- text-ranking |
|
- text-retrieval |
|
tags: |
|
- retrieval |
|
- embeddings |
|
- benchmark |
|
dataset_info: |
|
- config_name: default |
|
features: |
|
- name: query-id |
|
dtype: string |
|
- name: corpus-id |
|
dtype: string |
|
- name: score |
|
dtype: int64 |
|
splits: |
|
- name: test |
|
num_examples: 2000 |
|
- config_name: corpus |
|
features: |
|
- name: _id |
|
dtype: string |
|
- name: title |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: corpus |
|
num_examples: 50000 |
|
- config_name: queries |
|
features: |
|
- name: _id |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: queries |
|
num_examples: 1000 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: test |
|
path: qrels.jsonl |
|
- config_name: corpus |
|
data_files: |
|
- split: corpus |
|
path: corpus.jsonl |
|
- config_name: queries |
|
data_files: |
|
- split: queries |
|
path: queries.jsonl |
|
--- |
|
|
|
# LIMIT |
|
|
|
A retrieval dataset that exposes fundamental theoretical limitations of embedding-based retrieval models. Despite using simple queries like "Who likes Apples?", state-of-the-art embedding models achieve less than 20% recall@100 on LIMIT full and cannot solve LIMIT-small (46 docs). |
|
|
|
## Links |
|
|
|
- **Paper**: [On the Theoretical Limitations of Embedding-Based Retrieval](https://arxiv.org/abs/2508.21038) |
|
- **Code**: [github.com/google-deepmind/limit](https://github.com/google-deepmind/limit) |
|
- **Full version**: [LIMIT](https://huggingface.co/datasets/orionweller/LIMIT/) (50k documents) |
|
- **Small version**: [LIMIT-small](https://huggingface.co/datasets/orionweller/LIMIT-small/) (46 documents only) |
|
|
|
## Sample Usage |
|
|
|
You can load the data using the `datasets` library from Huggingface ([LIMIT](https://huggingface.co/datasets/orionweller/LIMIT), [LIMIT-small](https://huggingface.co/datasets/orionweller/LIMIT-small)): |
|
|
|
```python |
|
from datasets import load_dataset |
|
ds = load_dataset("orionweller/LIMIT-small", "corpus") # also available: queries, test (contains qrels). |
|
``` |
|
|
|
## Dataset Details |
|
|
|
**Queries** (1,000): Simple questions asking "Who likes [attribute]?" |
|
- Examples: "Who likes Quokkas?", "Who likes Joshua Trees?", "Who likes Disco Music?" |
|
|
|
**Corpus** (50k documents): Short biographical texts describing people and their preferences |
|
- Format: "[Name] likes [attribute1] and [attribute2]." |
|
- Example: "Geneva Durben likes Quokkas and Apples." |
|
|
|
**Qrels** (2,000): Each query has exactly 2 relevant documents (score=1), creating nearly all possible combinations of 2 documents from the 46 corpus documents (C(46,2) = 1,035 combinations). |
|
|
|
### Format |
|
The dataset follows standard MTEB format with three configurations: |
|
- `default`: Query-document relevance judgments (qrels), keys: `corpus-id`, `query-id`, `score` (1 for relevant) |
|
- `queries`: Query texts with IDs , keys: `_id`, `text` |
|
- `corpus`: Document texts with IDs, keys: `_id`, `title` (empty), and `text` |
|
|
|
### Purpose |
|
Tests whether embedding models can represent all top-k combinations of relevant documents, based on theoretical results connecting embedding dimension to representational capacity. Despite the simple nature of queries, state-of-the-art models struggle due to fundamental dimensional limitations. |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@misc{weller2025theoreticallimit, |
|
title={On the Theoretical Limitations of Embedding-Based Retrieval}, |
|
author={Orion Weller and Michael Boratko and Iftekhar Naim and Jinhyuk Lee}, |
|
year={2025}, |
|
eprint={2508.21038}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.IR}, |
|
url={https://arxiv.org/abs/2508.21038}, |
|
} |
|
``` |